
Frontiers in Behavioral Neuroscience 01 frontiersin.org

Tactile stimulation of young 
WAG/Rij rats prevents 
development of depression but 
not absence epilepsy
Aymen Balikci *, Ugur Eryilmaz , Vildan Keles Guler  and Gul Ilbay 

Department of Physiology, Faculty of Medicine, Kocaeli University, İzmit, Türkiye

Investigations in Wistar Albino Glaxo from Rijswijk (WAG/Rij) rats that are 
susceptible to genetic absence epilepsy have demonstrated that environmental 
modifications affect absence seizures. Previously, we  showed that neonatal 
tactile stimulations produce disease-modifying effect on genetically determined 
absence epilepsy and associated depression in Wag/Rij rats. The study presented 
here examined the effect of TS during late ontogenesis (adolescence and young 
adulthood) on epilepsy and depression outcomes in this genetically epileptic rat 
strain. On postnatal day (PND) 38, male WAG/Rij rats randomly were assigned 
to either the tactile stimulation (TS), handled or control group (unhandled) 
with 8 animals in each group. Following a 7-day adaptation period to their 
new surroundings, the animals were submitted to tactile stimulation from 
PND 45 to PND 90, five days per week, for 5  min daily. The tactile-stimulated 
rat was removed from its cage, placed on the experimenter’s lap, and had its 
neck and back gently stroked by the researcher. The handled rats were taken 
to another cage and left alone for 5  min daily from PND 45 to PND 90. The 
control rats were left undisturbed in their home cage, except for regular cage 
cleaning. After PND 90, all rats were left undisturbed until behavioral testing 
and EEG recording. When the animals were 7  months old, they were subjected 
to the sucrose consumption test (SCT) and the forced swimming test (FST). 
Electroencephalogram (EEG) recordings were made at 8  months of age in 
order to measure electroencephalographic seizure activity, thus, the spike–
wave discharges (SWDs). Tactile-stimulated rats showed increased sucrose 
consumption and number of approaches to the sucrose solution in the SCT 
when compared with the handled and control rats. In the FST, rats in TS group 
showed lower immobility time and greater immobility latency, active swimming 
time and diving frequency than the handled and control rats. The duration 
and the number of seizures were not different amongst the groups. The data 
obtained suggest that TS in young rats is able to prevent depression in WAG/
Rij rats.
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Introduction

Epilepsy is a group of progressive neurologic conditions that are characterized by 
spontaneous recurrent seizures and affects about 1% of the population. In patients with 
epilepsy, seizure activity is suppressed symptomatically with medical treatment, but they are 
not disease-modifying as they have no effects on the mechanisms of the brain to generate 
seizures (Dezsi et al., 2013).

OPEN ACCESS

EDITED BY

Lingling Kong,  
Goldbelt frontier, United States

REVIEWED BY

Elisa Rodríguez-Ortega,  
University of Almeria, Spain
Christos Panagiots Lisgaras,  
New York University, United States

*CORRESPONDENCE

Aymen Balikci  
 pt_eymen@hotmail.com

RECEIVED 15 May 2024
ACCEPTED 17 June 2024
PUBLISHED 27 June 2024

CITATION

Balikci A, Eryilmaz U, Guler VK and 
Ilbay G (2024) Tactile stimulation of young 
WAG/Rij rats prevents development of 
depression but not absence epilepsy.
Front. Behav. Neurosci. 18:1433431.
doi: 10.3389/fnbeh.2024.1433431

COPYRIGHT

© 2024 Balikci, Eryilmaz, Guler and Ilbay. This 
is an open-access article distributed under 
the terms of the Creative Commons 
Attribution License (CC BY). The use, 
distribution or reproduction in other forums is 
permitted, provided the original author(s) and 
the copyright owner(s) are credited and that 
the original publication in this journal is cited, 
in accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Original Research
PUBLISHED 27 June 2024
DOI 10.3389/fnbeh.2024.1433431

https://www.frontiersin.org/behavioral-neuroscience
https://www.frontiersin.org/behavioral-neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbeh.2024.1433431&domain=pdf&date_stamp=2024-06-27
https://www.frontiersin.org/articles/10.3389/fnbeh.2024.1433431/full
https://www.frontiersin.org/articles/10.3389/fnbeh.2024.1433431/full
https://www.frontiersin.org/articles/10.3389/fnbeh.2024.1433431/full
https://www.frontiersin.org/articles/10.3389/fnbeh.2024.1433431/full
mailto:pt_eymen@hotmail.com
https://doi.org/10.3389/fnbeh.2024.1433431
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/behavioral-neuroscience#editorial-board
https://www.frontiersin.org/behavioral-neuroscience#editorial-board
https://doi.org/10.3389/fnbeh.2024.1433431


Balikci et al. 10.3389/fnbeh.2024.1433431

Frontiers in Behavioral Neuroscience 02 frontiersin.org

Treatments are also not effective for the psychiatric comorbidities 
observed in individuals with epilepsy, including anxiety, depression, 
and psychosis, which add to the disability burden (Vega et al., 2011; 
Dezsi et al., 2013; Dagar and Falcone, 2020; Holmes, 2021).

Translational epilepsy research not only aims to identify 
symptomatic treatments; but also, to modify the disease 
(Galanopoulou et al., 2012; Brock et al., 2021).

Recent experimental reports have demonstrated that there are 
successful therapies that have interfered with epileptogenesis 
(Blumenfeld et al., 2008; Russo et al., 2010; Wong, 2010; McClelland 
et al., 2011; Balikci et al., 2020; Ilbay et al., 2022; Sarkisova and van 
Luijtelaar, 2022). Moreover, recent evidence for the effects of early life 
manipulations on the epileptic and behavioral phenotype of WAG/Rij 
rats supports the disease-modifying treatment notion (Sarkisova and 
Gabova, 2018; Balikci et al., 2020; Ilbay et al., 2022; Sarkisova and van 
Luijtelaar, 2022).

The WAG/Rij rat strain is a genetic model of absence epilepsy with 
depression-like comorbidity (Coenen and Van Luijtelaar, 2003; 
Sarkisova and van Luijtelaar, 2011; Sarkisova and van Luijtelaar, 2022). 
The animals of this strain are born without seizures. Seizures and their 
EEG hallmarks, SWDs, appear at the age of 2 months and reach a 
maximum at the age of 7–9 months, when the number of daily SWDs 
is approximately 16 to 18 per hour, the frequency is about 7–11 Hz, 
and the mean duration is about 5 s (Coenen and Van Luijtelaar, 1987; 
Sarkisova et al., 2010; Sarkisova and van Luijtelaar, 2022; Zhuravlev 
et al., 2022). Recent experimental research indicates that improvements 
of maternal care in the early stages of development can impact the 
progression of genetically determined absence epilepsy with 
depression (Sarkisova and Gabova, 2018; Sarkisova and van 
Luijtelaar, 2022).

Depressive WAG/Rij rat mothers show reduced maternal 
grooming and licking behavior toward their own pups as compared to 
normal Wistar rat mothers (Dobryakova et al., 2008; Sarkisova and 
Gabova, 2018). If WAG/Rij rats were raised by foster Wistar mothers 
who provided them with good maternal care, they had fewer SWDs 
and shorter durations of comorbid depression (Sarkisova and 
Gabova, 2018).

Maternal care during early life provides a high level of tactile 
stimulation and reduces the manifestation of adult pathologic 
phenotype in WAG/Rij rats. This is achieved through alterations in the 
activity of DNA methyltransferases, which are enzymes responsible 
for catalyzing DNA methylation and generating epigenetic 
modifications linked to gene transcriptional repression. Changes in 
DNA methylation status caused by maternal care may hinder the 
decrease in hyperpolarization-activated cation current and the 
expression of HCN1 ion channel in the somatosensory cortex, which 
is responsible for the occurrence of SWDs. Additionally, it may lead 
to a decrease in the functioning of the mesolimbic dopaminergic brain 
system, which is responsible for the behavioral symptoms of 
depression (Sarkisova and van Luijtelaar, 2022).

In a study done by our group we  found that neonatal tactile 
stimulation slows down the development of absence epilepsy and 
comorbid depression-like symptoms in adult WAG/Rij rats (Balikci 
et al., 2020). In our next study, we have shown that tactile stimulations 
during the early postnatal period have a long-term impact on dendrite 
structure in WAG/Rij rat’s brain, and neonatal tactile stimulation can 
regulate dendritic spines in layer V in pyramidal neurons of SoCx 
which previously defined as the focus of epilepsy (Ilbay et al., 2022). 

Although there are exciting results showing the positive effects of 
enriching tactile experiences in early life on absence epilepsy and 
accompanying depression-like behaviors in WAG/Rij rats, research on 
the effects of tactile experiences later in life does not exist.

Throughout their lifespan, rats exhibit affiliative activities that 
provide them with rich tactile stimulation.

Allogrooming is a common social behavior observed in wild rats 
when one rat licks or nibbles the fur of another rat of the same species 
(Schweinfurth, 2020). In wild rats, the act of allogrooming is typically 
focused on the areas of the body that are difficult to access, such as the 
face or the neck (Schweinfurth et al., 2017; Schweinfurth, 2020). Rats 
experience grooming from their mothers throughout infancy. 
Subsequently, infants extend this behavior to other members of the 
colony (Sachs,1988; Schweinfurth et al., 2017; Schweinfurth, 2020).

It is not known how much time WAG/Rij rats spend for 
allogrooming. It can be expected that the poor maternal care may have 
an impact on the affiliative behaviors of WAG/Rij rats.

As a result of the poor maternal care, a decrease in affiliative 
behaviors and tactile stimulations can occur in WAG/Rij rats later in 
life (Dobryakova et al., 2008, 2011).

Adolescence and young adulthood in humans are two periods 
where interactions with peers become especially important. These 
relationships provide valuable insights into behavioral patterns, 
attitudes, and beliefs (Paus, 2013; Lam et al., 2014; Clark et al., 2023). 
Adolescence is characterized by increased peer interactions compared 
to other stages of development. These interactions are an important 
source of tactile stimulation (Field, 2014; Lam et al., 2014; Della Longa 
et al., 2022).

Similarly, adolescent rats are engaged in more social interactions 
compared to both younger and older animals (Spear and Brake, 1983; 
Trezza et al., 2011). The social activity in adolescent and young rodents 
is crucial to express and understand communication signals 
(Vanderschuren et al., 1997; Trezza et al., 2011). Furthermore, during 
adolescence and young adulthood, rich social interaction serves as the 
main source for tactile experiences based on social contact 
(Field, 2014).

Tactile stimulation is a form of social contact enrichment that 
improves sensory stimulation and results in neurobiological 
alterations that decrease anxiety and improve cognition and memory 
in rats (Richards et al., 2012; Antoniazzi et al., 2014; Balikci et al., 
2020; Ilbay et al., 2022). Studies have shown that tactile stimulation 
promotes changes in the brain’s structure and function, which helps 
to alleviate the negative effects of pathological processes (Gibb et al., 
2010; Richards et al., 2012; Costa et al., 2020; Ilbay et al., 2022).

Multiple neurobehavioral, morphological, neurochemical, and 
pharmacological findings indicate that the brain continues to develop 
during adolescence and young adulthood (Cunningham et al., 2002; 
Steinberg, 2005; Tamnes et al., 2010; Wahlstrom et al., 2010; Lebel and 
Beaulieu, 2011; Arain et al., 2013; Schneider, 2013; Larsen and Luna, 
2018). Tubulinogenesis, axonogenesis, and synaptogenesis take place 
during the time before birth and shortly after birth, while 
myelinogenesis continues into adolescence and early adulthood.

Likewise, glutamatergic neurotransmission is completed during 
the period before and immediately after birth, whereas the 
construction of GABAergic neurotransmission in the prefrontal cortex 
continues (Li and Xu, 2008; Arain et al., 2013). Brain development 
continues into the early adulthood (Yakovlev and Lecours, 1967; 
Benes, 1989). Studies have indicated that the progressive myelination, 
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synaptic pruning, and sprouting of mesocortical dopamine fibers play 
a crucial role in the development of cognitive abilities and emotional 
regulation during the late adolescence and early adulthood 
(Cunningham et al., 2002; Arain et al., 2013; Larsen and Luna, 2018).

In this light, with this study, we aimed to determine the effect of a 
supportive environment, that is TS, during the late adolescence and 
early adult period on absence epilepsy and comorbid depression-like 
behaviors of WAG/Rij adult rats.

Materials and methods

Animals

The experimental procedures were approved by the University of 
Kocaeli Animal Ethics Committee in agreement with the guidelines 
for the Care and Use of Animals for Scientific Purposes (KOU 
HADYEK 7/3–2021).

The WAG/Rij rats were maintained in a 12-h light/dark cycle (lights 
on at 7:00 a.m.) and had unrestricted access to food and water. Male 
WAG/Rij rats were selected in order to eliminate the influence of 
hormonal cycles in females as a variable. On the 38th day after birth, 
male WAG/Rij rats were randomly divided into three groups: the tactile 
stimulation (TS) group, the handled group, and the control group 
(unhandled). Each group consisted of 8 animals. The rats were placed in 
cages with four rats per cage and allowed to adapt to their environment 
for a period of 7 days prior to the initiation of the TS intervention.

The animals had tactile stimulation from adolescence (postnatal 
day [PND 45]) to adulthood (PND 90). The technique was consistently 
implemented by the same researcher, daily from Monday to Friday, 
between the hours of 12 p.m. and 4 p.m., for a duration of 7 weeks. The 
tactile stimulation involved daily sessions of 5 min, during which the 
animal was taken out of its cage and placed on the researcher’s lap. The 
researcher then gently caressed the animal’s neck and back (Costa 
et al., 2020). In contrast to the TS method, the handling technique 
entails removing the animals from their original cages and placing 
them in a separate cage for a duration of 5 min (Costa et al., 2020). The 
Control WAG/Rij rats were confined to their home cage and were only 
interacted with during the routine cleaning of the cage. After PND 90, 
all rats were maintained under normal conditions until the time of 
behavioral testing and EEG recordings. Behavioral testing and EEG 
recordings were performed in adulthood (7–8 months) (Figure 1).

Behavioral tests

All WAG/Rij rats (n = 8 for control, n = 8 for handled, n = 8 for TS 
intervention) were individually exposed to a forced swimming test 
(FST), sucrose consumption test (SCT) and locomotor activity test at 
the age of 7 months between 10:00 am and 4:00 pm each day of the tests.

Forced swimming test

The depressive-like behaviors are assessed using the Forced 
Swimming Test (FST), which has been utilized in numerous researchers 
with slight variations. The experiment took place in a clear cylinder 
with dimensions of 47 × 38 cm, which was filled with water at a 

temperature of 22 ± 1°C. At the beginning, rats were made to swim for 
15 min during the pretest session and were subsequently dried before 
being returned to their cages. Following a 24-h interval from the pretest 
session, rats were subjected to the forced swimming test once more, this 
time for a duration of 5 min. Their swimming behavior was recorded 
using video cameras. Then, an impartial evaluator assessed the duration 
of inactive swimming (immobility), the time it took for immobility to 
occur (immobility latency), and the overall amount of active swimming 
(swimming time) for each rat. Immobility is the state of being 
completely still, with no other movement save for the necessary action 
of keeping the head above water (Balikci et al., 2020; Ilbay et al., 2022).

Sucrose consumption test

The sucrose consumption test (SCT) was used to evaluate 
anhedonia and motivation. SCT was carried out in a cage that 
resembled the rats’ home cage. Rats were given access to two bottles, 
with one containing sucrose solution (20%) and the other containing 
tap water. The consumption of a sucrose solution and the count of 
interactions with the bottle were measured for each rat over a period 
of 15 min. The bottles were weighed prior to and after the test to 
quantify the sugar consumption. The spilled amount was determined 
by placing the bottles in an empty cage and then subtracted from the 
total difference calculated for each rat.

No animals were subjected to any form of food or water 
deprivation. The values of sucrose consumption on the 4th day were 
utilized to assess the disparities across rat groups following a 3-day 
adaption technique, as outlined in prior research. The animals’ 
hedonic-like states were measured by sucrose consumption, while the 
number of approaches served as an indirect sign of exploratory 
activity during the test (Balikci et al., 2020; Ilbay et al., 2022).

Locomotor activity test

Locomotor activity was measured using the rat activity monitoring 
system (Commat Ltd., Ankara, Turkey), which included a Plexiglas 
test chamber, computer, and activity software (Figure 2A). The rats 
were transported to the testing room, were acclimatized for a duration 
of 1 h and were subsequently placed within a plexiglass chamber 
measuring 42 × 42 × 30 cm. The chamber had infrared photocells 
consisting of pairs of 15 infrared photobeams and detectors. These 
were positioned at intervals of 2.5 cm in the horizontal plane (bottom) 
and 4.5 cm in the vertical plane (upper). Locomotor activity was 
recorded and analyzed for a duration of 10 min (Balikci et al., 2020; 
Ilbay et al., 2022). Locomotion was determined by measuring the total 
distance traveled, and anxiety-related behaviors were evaluated using 
total locomotor activity (Karson et al., 2012; Miller et al., 2021).

Surgery, EEG recordings and assessment of 
absence seizures

At the age of 8 months, 7 animals in each group were equipped 
with electrodes.

During the stereotaxic surgery, tripolar electrodes (MS3333/2A; 
Plastic One, the United States) were placed on certain cortical areas to 
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record maximal SWD activity. The frontal electrode was positioned at 
AP 2.0 mm and L 3.5 mm, the parietal electrode at AP −6.0 mm and L 
4.0 mm, and the cerebellar cortex served as the reference electrode. 
Epidural electrodes were implanted in a small separate circular opening 
in the skull (diameter = 1–2 mm). Electrode sets were mounted on the 
skull with a crown of dental cement and fixed with embedded mounting 
screws (Sitnikova and Van Luijtelaar, 2007). The surgery was performed 
under Xylazin (5 mg/kg ip) and Ketamine (60 mg/kg ip) anesthesia. 
Following a two-week period of healing, the animals were connected 
to the MP150 EEG recording system. After they were habituated to the 
conditions for 1 h, the EEG recording was conducted for 4 h (between 
10:00 am and 2:00 pm). Spike wave discharges (SWD) were examined, 
which met particular criteria: (Van Luijtelaar and Coenen, 1986; 
Sitnikova and Van Luijtelaar, 2007) a length of 1–10 s, spike and wave 
frequencies of 7–10 Hz, and doubled amplitude to background activity.

Statistical analyses

All statistical analyses were performed in GraphPad Prism 10.2.3 
version (United States) statistics program. Data are shown as 
mean ± SEM. Kolmogorov–Smirnov test was used to assess the 
assumption of normality. One-Way ANOAVA followed by post hoc 
Tukey’s test was used to compare groups. When the normality 
assumption did not hold, Kruskal-Wallis test was used to compare the 
groups. Dunn’s test was used for the multiple comparisons. A p-value 
less than 0.05 was considered to be statistically significant.

Results

Behavioral tests

There was no statistically significant difference amongst 
TS-treated, handled and control WAG/Rij rats in total locomotor 
activity and distances traveled (p > 0.05) (Figures 2B,C). TS or handled 

WAG/Rij rats did not display different levels of anxiety-like behavior 
compared to the control group, as assessed by the locomotor 
activity test.

In the sucrose consumption test, the sucrose consumption of the 
control and handled group was statistically significantly lower than 
the TS group. Additionally, the frequency of approaching the bottle 
was found to be statistically lower in the control and handled group 
compared to TS group (Figure 3).

Statistically significant differences were found in the forced 
swimming test amongst WAG/Rij rats given TS, control and handled 
group WAG/Rij rats. Immobility latency was longer in the group 
receiving TS, but immobility time was shorter. Additionally, active 
swimming time was found to be longer in WAG/Rij rats that received 
TS and the number of diving was statistically higher than in control 
and handled group rats (Figure 4).

SWDs

Epileptic activity was evaluated by analyzing SWDs in EEG for 4 h 
in WAG/Rij rats given TS, handled and in the control groups. When 
the total duration, mean duration and number of SWDs were 
evaluated for 4 h, no statistically significant difference was found 
amongst the groups (p > 0.05). However, the total seizure duration and 
number of seizures in the tactile stimulation group in adulthood tend 
to decrease compared to the handled and control groups (Figure 5).

Discussion

The interesting aspect of the results of this study was that tactile 
stimulation did not affect the development of absence epilepsy but 
reduced depression-like behaviors that are present in WAG/Rij rats.

The WAG/Rij rat absence epilepsy model is a suitable model for 
studying the development of epilepsy and comorbidities. WAG/Rij 
rats exhibit depression-like behavior compared to nonepileptic Wistar 

FIGURE 1

Experimental design. WAG/Rij rats were randomly divided into the tactile stimulation group, the handled group, and the control group (PND 38). Tactile 
stimulation and handling (removing the animals from their original cages and placing them in a separate cage for a duration of 5  min) were submitted 
(PND 40–90). Behavioral testing (LAM: Locomotor Activity Monitoring; SCT: Sucrose Consumption Test; FST: Forced Swimming Test) was applied (PND 
210–240), and subsequently, EEG recording was conducted (PND 255–270).
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rats (Sarkisova et  al., 2003; Sarkisova and van Luijtelaar, 2022; 
Sitnikova, 2024). Around 3 months, when SWDs become more 
evident, depression-like behavioral symptoms also emerge. As rats get 
older, absence epileptic seizures become more severe and their 
depression-like symptoms worsen (Sarkisova et al., 2014).

Depressive-like behavior is assessed using two distinct behavioral 
tests: the forced swimming test (FST) and the sucrose consumption 
test (SCT). Research has demonstrated that WAG/Rij rats exhibit 
longer periods of immobility in the FST and consume less sucrose 
compared to nonepileptic rats (Gruenbaum et al., 2021).

Our findings demonstrated that TS administration increased 
sucrose consumption and number of approaches to the bottle in the 
sucrose consumption test (SCT). Also, TS administration decreased 
immobility time and increased immobility latency, active swimming 
time and diving frequency in the FST.

The SCT has been developed taking into consideration the rats’ 
preference for sweets. Anhedonia, the main symptom of depression, 
can be assessed with the SCT (Kanner et al., 2012; Klein et al., 2015). 
Anhedonic behavior in rats can be assessed by providing them with 
simultaneous access to both tap water and sweetened solution. A 
healthy animal will have a preference for a sweet solution, but an 
anhedonic animal will drink a reduced amount of sweet solution 
compared to the control group. An important benefit of the SCT is 
that as the rats are held within cages similar to their home cages, the 
occurrence of stress or anxiety is minimal (Klein et al., 2015).

The FST is a commonly used experimental method for studying 
depression-like behavior. In this paradigm, a decrease in 

immobility duration and an increase in immobility latency, 
swimming time, and diving frequency are indicators of a positive 
effect of the intervention on depressive behaviors. This test 
evaluates the rats’ reaction to being forced to swim, which are: the 
duration of their swimming or struggle and duration of their 
immobility. The presence of increased immobility is considered as 
“hopelessness” or a “depressed mood,” (Crawley, 2007; Klein 
et al., 2015).

Studies have demonstrated that early drug treatments can reduce 
epilepsy and depression-like symptoms in WAG/Rij rats (Sarkisova 
et al., 2010; Russo et al., 2011; Sarkisova and van Luijtelaar, 2011; 
Russo and Citraro, 2021). In addition, in WAG/Rij rats, good maternal 
care given by nonepileptic Wistar mothers, has been shown to have 
disease modifying effect on epileptogenesis and comorbidogenesis 
(Sarkisova and Gabova, 2018).

Our previous study also showed that TS that carried out from 
postnatal days 3–21 affects the genetic absence epilepsy and comorbid 
depression-like behavior in the WAG/Rij rat model (Balikci et al., 
2020). Many studies highlight a causal relationship between depression 
and absence seizures (Sarkisova et  al., 2014; Sarkisova and van 
Luijtelaar, 2022), however, there is also contrary evidence. For 
example, Leo et al. (2019) reported that the suppression of absence 
epilepsy with drugs does not always counteract depressive-like 
behavior. Our study has shown that giving TS to young rats decreased 
only the depressive-like behaviors but did not affect the seizures.

Previous data and our results provide evidence that absence 
seizures and depressive-like behavior can originate from the same 

A

B C

FIGURE 2

Behavioral evaluations of locomotor activity in the control group, handled and TS given WAG/Rij rats. (A) Simplified illustration of rat locomotor activity 
monitoring. (B) Total locomotor activity; (C) Locomotor activity-distance. There was no statistical difference between groups (p  >  0.05).
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disease network, independently and separately (Mula and Sander, 
2007; Leo et al., 2019).

Empirical research, both in clinical and experimental settings, has 
demonstrated that TS yields psychological benefits, including 
alleviation of depression and mitigation of mood disorders 
(Maruyama et al., 2012; Roversi et al., 2019; Costa et al., 2020).

TS’s effects on the brain and behavior are connected to many 
underlying mechanisms (Chu et  al., 2021). Research indicates TS 
administration in adulthood has a positive impact on depression-like 
behaviors by influencing the hypothalamus-pituitary–adrenal (HPA) 
axis and regulating neurotrophic factors (Roversi et al., 2019; Costa 
et al., 2020). Depression has been associated with impaired functioning 
of the HPA axis (Plotsky et  al., 1998; Barden, 2004; Pariante and 
Lightman, 2008; Guerry and Hastings, 2011). Glucocorticoids (GC) 
are produced and released by the adrenal glands when the HPA axis 
is active. The glucocorticoids are crucial in providing negative 
feedback to the HPA axis (Gjerstad et al., 2018). Changes in the GC 
receptors in cortico-limbic regions may contribute to depressive 
disorders by affecting the release of glucocorticoids. Furthermore, 
heightened secretion of GCs may have a detrimental effect on 
neurotrophic factors like BDNF (Numakawa et al., 2017). This can 
result in a decline in brain synaptic plasticity, which is one of the 
potential ways that GCs contribute to depression, as shown by Roversi 
et al. (2019).

Costa et al. (2020) showed that TS effectively decreased the release 
of corticosterone and epinephrine in response to stress and lowered 
norepinephrine levels. Then, they proposed that TS to adult animals 
might regulate the HPA axis and the sympathetic nervous system, 
resulting in decreased adrenal responses and reduced basal activity of 
sympathetic nerves.

Additionally, another study demonstrated that TS improves 
symptoms of depression by positively influencing the signaling of the 
HPA axis (Roversi et al., 2019). This is evident in the changes observed 
in adrenal weight, release of corticosterone, and alterations in the 
expression of glucocorticoid receptors. Furthermore, TS enhances the 
levels of neurotrophic factors in the cortex, as reported by Roversi 
et al. (2019).

Taken together, it can be suggested that TS ameliorated depression-
like behaviors in adult WAG/Rij rats, through its influence on HPA 
axis signaling which may lead to modulation of neurotropic factors, 
enhancing the neural plasticity for long lasting effects on depression.

Furthermore, various studies have indicated that the TS’s effects 
are linked to an increase in the release of dopamine (DA) and/or 
serotonin in the brain. Clinical studies have demonstrated an increase 
in the concentration of DA and serotonin in urine following massage 
therapy (Field et al., 2005; Mueller and Grunwald, 2021). A previous 
study demonstrated that a 5-min application of tactile stimulation to 
the back resulted in a considerable increase in DA release in the 

A

B C

FIGURE 3

Behavioral evaluations in the sucrose consumption test in the control group, handled group and TS given WAG/Rij rats, (A) Simplified illustration of the 
sucrose consumption test. (B) Sucrose consumption in grams *p  =  0,0059 TS group compared to control, and handled WAG/Rij rats; (C) Frequency of 
approaching the bottle, *p  =  0,0238 TS group compared to control, and *p  =  0,0382 compared to handled WAG/Rij rats.
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nucleus accumbens (NAc) of both conscious and anesthetized rats 
(Maruyama et al., 2012).

WAG/Rij rats with depression-like behavior exhibit impaired 
functioning in the brain’s dopamine system, as evidenced by 
behavioral, electrophysiological, and pharmacological studies 
(Birioukova et  al., 2005; Sarkisova et  al., 2008; Fedosova et  al., 
2023). It has been shown that a decrease in the activity of the 
dopamine system in the mesolimbic region of the brain is linked 
to both absence seizures and depression-like symptoms in WAG/
Rij rats (Birioukova et al., 2005; Sarkisova et al., 2022; Fedosova 
et  al., 2023). Administering mixed dopamine D1/D2 receptor 
agonists systemically led to a decrease in SWDs and comorbidity 
with depression-like symptoms in WAG/Rij rats (Midzianovskaia 
et  al., 2001; Sarkisova et  al., 2023). Conversely, dopamine 
antagonists enhanced the occurrence of SWDs and depression-like 

behavioral symptoms in these rats (Sarkisova et al., 2008, 2023). 
The basal ganglia regulate absence seizures. The transmission of 
DA neurotransmitters in both the dorsal and ventral striatum has 
an important role (Midzianovskaia et  al., 2001; Sarkisova 
et al., 2023).

The ventral striatum, particularly the NAc, plays a crucial role in 
regulating both absence seizures and depression-like behavioral 
symptoms in WAG/Rij rats (Sarkisova et al., 2003; van Luijtelaar and 
Zobeiri, 2014; Sarkisova et al., 2023; Tsyba et al., 2023a,b). Decreased 
dopaminergic activity in the striatum is thought to cause predisposition 
to cortical hyperexcitability and epilepsy (Sarkisova et al., 2003).

Recent biochemical investigations have demonstrated a decrease 
in DA levels in the NAc and striatum of WAG/Rij rats (Kiu et al., 2013; 
Birioukova et al., 2016; Fedosova et al., 2023; Sarkisova et al., 2023; 
Tsyba et al., 2023a,b).

AE1

E2

E3

C

D

B

FIGURE 4

Behavioral evaluations in the forced swimming test in the control group, handled and WAG/Rij rats given TS, (A) Immobility latency, *p  =  0,0059 TS 
group compared to control, and *p  =  0,0059 compared to handled WAG/Rij rats; (B) Immobility time, *p  =  0,0125 TS group compared to control, and 
*p  =  0,0089 compared to handled WAG/Rij rats; (C) Active swimming time, *p  <  0.0001 TS group compared to control, and *p  =  0.0001 compared to 
handled WAG/Rij rats; (D) Number of diving, *p  =  0.0139 compared to control, and *p  =  0.0074 compared to handled WAG/Rij rats. E1-3. Simplified 
illustrations of the forced swimming test.
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It is also possible that the beneficial influence on depression-like 
behaviors of TS can be related to an increase in DA release in the brain 
during development and DA-dependent neural plasticity (Field et al., 
2005; Mueller and Grunwald, 2021; Rossato et al., 2022).

On the other hand, depression-like behaviors decreased in WAG/
Rij rats treated with TS, we did not find any change in seizure activity.

There are several studies showing that interventions very early in 
life (P3-P21) can alter the development of absence seizures later in life 
(Kovács et al., 2012; Balikci et al., 2020). However, studies demonstrate 
that the effects of interventions starting between P21 and P45 on 

seizures are generally temporary (Russo and Citraro, 2018). It can 
be argued that the onset time/age of the intervention is important for 
disease-modifying effects. Moreover, it is suggested that silent period 
(before the age of P50- P60) offers a range of opportunity in which an 
appropriate treatment could prevent or modify epileptogenesis (Leo 
et al., 2019). Our data indicate that TS treatment starting during late 
adolescence was not able to exert long-lasting disease-modifying effects 
at WAG/Rij rats. Based on this background, it could be considered that 
TS starting after the silent period may not have a modifying effect on 
epileptogenesis in WAG/Rij rats.

A

C

E

D

B

FIGURE 5

(A) Simplified illustration of the EEG recording. (B) Screenshot of the of EEG recordings. Total seizure duration (C), number of SWDs (D) and mean 
duration (E) of the groups (p  >  0.05).
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In the future studies, it would be interesting to investigate the 
effects of TS in epilepsies and comorbidities of adult WAG/Rij rats, 
and gender differeneces.

Conclusion

Here we demonstrate that TS induces a comorbidity-modifying 
effect in the WAG/Rij rat model of generalized absence epilepsy. TS at 
late adolescence and early adulthood mitigates depression-like 
behavioral phenotype in WAG/Rij rats. The present data support the 
notion that environmental manipulations may affect epileptogenesis 
and comorbidogenesis. The administration of TS during adolescence, 
a crucial stage for the development of psychiatric disorders, may 
provide long-lasting protection against depression.
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