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Object recognition in primates: 
what can early visual areas 
contribute?
Christian Quaia * and Richard J. Krauzlis 

Laboratory of Sensorimotor Research, National Eye Institute, NIH, Bethesda, MD, United States

Introduction: If neuroscientists were asked which brain area is responsible for 
object recognition in primates, most would probably answer infero-temporal (IT) 
cortex. While IT is likely responsible for fine discriminations, and it is accordingly 
dominated by foveal visual inputs, there is more to object recognition than fine 
discrimination. Importantly, foveation of an object of interest usually requires 
recognizing, with reasonable confidence, its presence in the periphery. Arguably, 
IT plays a secondary role in such peripheral recognition, and other visual areas 
might instead be more critical.

Methods: To investigate how signals carried by early visual processing areas 
(such as LGN and V1) could be  used for object recognition in the periphery, 
we focused here on the task of distinguishing faces from non-faces. We tested 
how sensitive various models were to nuisance parameters, such as changes in 
scale and orientation of the image, and the type of image background.

Results: We  found that a model of V1 simple or complex cells could provide 
quite reliable information, resulting in performance better than 80% in realistic 
scenarios. An LGN model performed considerably worse.

Discussion: Because peripheral recognition is both crucial to enable fine 
recognition (by bringing an object of interest on the fovea), and probably 
sufficient to account for a considerable fraction of our daily recognition-guided 
behavior, we think that the current focus on area IT and foveal processing is too 
narrow. We propose that rather than a hierarchical system with IT-like properties 
as its primary aim, object recognition should be seen as a parallel process, with 
high-accuracy foveal modules operating in parallel with lower-accuracy and 
faster modules that can operate across the visual field.
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Introduction

It is commonly accepted that in primates visual recognition of an object is strongly 
dependent on the activity of neurons in the inferior temporal (IT) cortex (Logothetis and 
Sheinberg, 1996; Tanaka, 1996), an area at the end of the ventral visual stream (Ungerleider 
and Mishkin, 1982; Goodale and Milner, 1992). This hypothesis was first prompted by the 
discovery in monkey IT of neurons that respond vigorously to complex object shapes and faces 
(Gross et al., 1972; Desimone et al., 1984; Gross, 2008). Comparisons between the activity of 
artificial neural networks (ANNs) trained on object classification and the activity of large 
populations of IT neurons have lent further support to this hypothesis (Khaligh-Razavi and 
Kriegeskorte, 2014; Yamins et  al., 2014; Kriegeskorte, 2015; Yamins and DiCarlo, 2016; 
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Rajalingham et  al., 2018). Additional support came from the 
observation that large bilateral lesions of IT in monkeys result in 
considerable deficits in performing fine discriminations (Eldridge 
et al., 2018; Setogawa et al., 2021; Matsumoto et al., 2022). Similarly, 
causal manipulations of monkey IT activity while the animal is 
performing difficult discriminations impairs performance, further 
indicating a causal involvement of IT (Afraz et al., 2006, 2015; Moeller 
et al., 2017).

Visual object recognition is however not limited to such fine 
discriminations. It is also important for quickly identifying and 
locating a potential prey or predator, thus providing information 
critical for survival. These needs are shared by animals that do not 
have the high visual acuity of diurnal primates, or anything resembling 
the ventral visual pathway (Kirk and Kay, 2004; Vinken et al., 2016; 
Kaas, 2020; Leopold et al., 2020), and can usually be satisfied by a 
coarser type of recognition (enabling, for example, to tell apart a 
mouse from a cat). Just as importantly, fine discriminations are 
supported almost exclusively by foveal vision. Accordingly, IT has a 
strong foveal bias (De Beeck and Vogels, 2000; Arcaro et al., 2017; Op 
de Beeck et al., 2019), meaning that its neurons respond preferentially 
to images placed on or near the fovea. Initial reports seemed to 
indicate that IT had large receptive fields covering most of the 
contralateral visual field, but that was confounded by the use of large 
stimuli. When small stimuli are used, moving the stimulus by as little 
as 2° away from the fovea results in a dramatic reduction in activity, 
even for preferred objects (DiCarlo and Maunsell, 2003; Hung et al., 
2005). Taken together these observations suggest that IT in primates 
might be  specialized for fine, mostly foveal, discriminations. This 
would readily explain the rather mild deficits in coarse object 
classification (e.g., dog vs. cat) observed following bilateral ablations 
of IT in monkeys (Matsumoto et al., 2016).

Setting aside the needs of afoveated animals, we now end up with 
a chicken-and-egg problem: If IT is crucial for fine discriminations, 
and it relies predominantly on foveal inputs, how can an object of 
interest be foveated in the first place? Since our visual field covers 
approximately 180° × 120°, and the fovea is approximately 2° across, 
it would take 5,400 refixations—18 min at a rate of 5 saccades/s—to 
scan the entire visual field. Since this is not our daily experience 
(Potter, 1975; Najemnik and Geisler, 2008; Drewes et al., 2011), there 
must exist a system that is capable of locating objects in the 
environment and prioritizing those of likely behavioral interest. 
Importantly, this system must provide accurate information about the 
position of the target object, so that foveation can be achieved in a 
single saccade. This would require specificity for retinotopic location, 
thus eschewing the position invariance sought by ANNs.

The need for such a system—often involving a saliency or priority 
map—has been long recognized (Treisman, 1986; Fecteau and Munoz, 
2006; Serences and Yantis, 2006). The saliency map is usually 
envisioned as a topographically organized neural map of visual space, 
in which activity at any given location represents the priority to 
be given to that location for covert or overt shifts of attention (Itti 
et  al., 1998). Originally, bottom-up saliency (e.g., local contrast, 
orientation, etc.) was considered the main determinant of this map 
(Itti and Koch, 2000), but it has become clear that the identification of 
objects (Einhäuser et al., 2008), and even more complex cognitive 
processes (Schütz et al., 2011), play a major role. Its neural substrate 
has been hypothesized to lie in a network of interconnected areas 
involving the superior colliculus (SC) in the midbrain (McPeek and 

Keller, 2002; White et  al., 2017), the pulvinar nuclei in thalamus 
(Robinson and Petersen, 1992), the frontal eye fields (FEF) in 
prefrontal cortex (Thompson and Bichot, 2005), and the lateral 
intraparietal (LIP) area in parietal cortex (Gottlieb et al., 1998). The 
SC is likely to play a pivotal role, as it has a finer topographical 
organization than FEF and LIP, and it is more directly involved in 
controlling gaze and attention shifts (Krauzlis, 2005; Krauzlis et al., 
2013). It also receives retinotopic inputs from most of the visual 
cortex, including areas V1, V2, V3, V4, and IT (Fries, 1984; Cusick, 
1988; May, 2006). As noted, IT has a strong foveal bias, and presumably 
contributes less to the processing of peripheral objects and events than 
areas V1–V4. Topographically organized inputs from these areas to 
the salience network might then form the basis of a spatially localized 
system for peripheral (and coarse) object detection.

We thus sought to evaluate the ability of the first stages of cortical 
visual processing, simple and complex cells in area V1, to convey 
information about object category. We focused on information that 
can be extracted with a simple linear classifier (i.e., a weighted sum 
followed by a threshold operation, a good approximation of the 
operation performed by a neuron downstream of V1, Rosenblatt, 
1962). We restricted our model to using only relatively low spatial 
frequencies, thus approximating processes in peripheral vision 
(Robson and Graham, 1981) or in infancy (Sokol, 1978). Finally, 
we  focused on the classification task of identifying a face among 
non-face images. This is a coarse recognition task of strong behavioral 
significance for primates, and at which they are highly proficient 
(Rosenfeld and Van Hoesen, 1979; Diamond and Carey, 1986; Carey, 
1992; Tanaka and Gauthier, 1997; Pascalis and Bachevalier, 1998; 
Pascalis et al., 1999), even when very young (Nelson and Ludemann, 
1989; Pascalis and de Schonen, 1994; Nelson, 2001), and even in the 
(near) periphery (Mäkelä et al., 2001; McKone, 2004). To investigate 
the plausibility of V1 being directly involved in the detection of faces 
in the periphery, we assessed how variations in scale, orientation, and 
background affected the ability of a V1-like model to provide 
information useful to classification.

Methods

Image sets

For our face vs. non-face image classification task, we assembled 
three sets of images: A set of 1,756 frontal images of human faces, a 
set of 1,502 images of non-face stimuli (which includes a variety of 
human-made objects, animals, fruits, and vegetables), and a set of 
1,525 images of urban and natural landscapes.

We derived the face dataset from a larger (2,000 images) set of frontal 
images of faces that was kindly shared with us by Prof. Doris Tsao. The 
set contained images of subjects from both sexes and from all races, 
under varying levels of illumination. We modified this set in a few ways. 
First, we dropped 244 images that either had a lower resolution compared 
to the others or in which a large fraction of the face was occluded by hair 
or face coverings. Next, we resized each image from the original 256 × 
360 (width × height) pixels (px) to our desired square size (256 × 256 px). 
This was done by preserving the aspect ratio and adding white space on 
the left and right sides. The image was then saved as a grayscale image 
with a transparency (alpha) channel (an RGBA image in which the red, 
green, and blue channels all have the same value). Because most images 
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also contained hair, neck and shoulder, we used the dlib library (King, 
2009) and the MTCNN face segmentation neural network (Zhang et al., 
2016) to isolate the face region, removing completely neck and shoulders 
and leaving only minimum hair (while retaining an oval shape). Anything 
outside the face region was then set to transparent. Finally, the face region 
was rescaled (preserving its aspect ratio) to make its largest side equal to 
246 px, and it was centered on the 256 × 256 px canvas. 8 samples from 
this set, centered on a 340 × 340 px mid gray background, are shown in 
Figure 1 (top row). Note that to make the subjects not identifiable we 
have blurred their images in Figure 1 and Figure 4. The images presented 
to the models were however not blurred.

The images for the non-face dataset were selected by us from 
images freely available on the web for non-commercial use. 
We selected images of a wide range of animals with many different 
poses, fruits and vegetables, and man-made objects. We intentionally 
did not select any “unnatural” images, such as cartoons, flags, letters, 
and numbers, and we tried to add as many oval/circular shapes as 
we found. The images were of varying sizes and formats, and almost 
all were in color with a transparent background (we segmented those 
that did not have a transparent background to create one). 
We converted them all to grayscale and resized them (preserving their 
aspect ratio) so that their longest side was 246 px, and then centered 
them on a 256 × 256 px transparent canvas.

We then computed the distribution of mean luminance and 
contrast of both sets of images. We found that their contrast levels 
overlapped, but non-face images were on average darker. We thus 
increased their luminance by 15% to approximately match the 
distributions. 8 samples from this set, centered on a 340 × 340 px mid 
gray background, are shown in Figure 1 (second row). The distribution 
of mean luminance, contrast, and two measures of shape (the fraction 

of foreground pixels within the original 256 × 256 px canvas, and the 
elongation ratio, defined as the ratio of the largest and smallest 
dimension of the rectangle that encompasses the foreground image) 
for the images we  fed to the models are shown in Figure  2. Not 
surprisingly, the shape variation across the non-face set is much larger 
than across the face set.

Landscape images were selected from MIT’s Places dataset of 10 
million images (Zhou et al., 2018). We went through the dataset one 
image at a time until we had collected approximately 1,500 images that 
included neither humans nor animals, and depicted natural and urban 
scenes (for the latter mostly exteriors, with some interior scenes). 
Since all the images were in color, we  then converted them to 
grayscale, resized them to 340 × 340 px, and corrected over and under 
exposed images by equalizing their luminance histogram using the 
OpenCV library (Bradski and Kaehler, 2008). 8 samples from this set 
of scenes are shown in Figure 1 (third row).

A second set of landscape images was obtained from this set by 
reducing the contrast of each image by 50% and blurring it with a 
Gaussian filter with a standard deviation of 3 px. We refer to this set 
as blurred scenes. 8 samples from this set of blurred scenes are shown 
in Figure 1 (bottom row).

Images from the face and non-face sets were provided as inputs to 
the models (see below) one at a time, superimposed over a background 
canvas having a size of 340 × 340 px. Besides the high contrast and 
blurred scenes discussed above, the background could be a uniform 
mid gray (128), a uniform gray with the same luminance as the image 
presented, 2-D pink (1/f) noise, pixelated (4 × 4 px blocks) white noise 
(i.e., each block of pixels could have any luminance value from 0 to 
255, randomly selected), pixelated binary noise (i.e., each block of 
pixels was set to 0 or 255, randomly), or pixelated noise with 

FIGURE 1

Random samples of images from sets. Top row: 8 images from our set of 1,756 face images. Variations in sex, age, gender, and race, as well as contrast and 
mean luminance, seen above are representative of the entire set. Here, but not in the simulations, the images have been blurred to prevent identification of 
the subject. Second row: 8 images from our set of 1,502 non-face images. Variations in shape, contrast and mean luminance seen above are representative 
of the entire set. Third row: 8 images from our set of 1,525 high contrast background scenes. Variations in content, contrast and mean luminance seen 
above are representative of the entire set. Bottom row: Same 8 background images, but blurred and with their contrast reduced.
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luminance values sampled from the image content. Samples of a single 
non-face image superimposed on these eight backgrounds are shown 
in Figure 3.

Besides being superimposed on the background, each image 
could be  rescaled (always reduced in size, up to 50% in each 
dimension) or rotated (up to 180° in each direction). When in the text 
we refer to a scaling of images by x% we mean that each image was 
scaled by a random factor that varied between 100% and x%. Similarly, 
when we refer to a rotation of x° we mean that each image was rotated 
by a random angle between x° clockwise and x° counterclockwise. In 
Figure 4, we show 4 sample faces and 4 sample non-faces presented 
over four different types of background at a scaling of up to 50% and 
rotation of up to ±90°.

Finally, the location of each image on the background canvas was 
jittered (relative to the center) by a random number of pixels in the 
horizontal and vertical direction, up to ±42 px (because the original 
image was always centered in a 256 × 256 px window, even with the 
shift the image was always fully contained in the 340 × 340 px 
background canvas).

In our last experiment, we  tested our models on a gender 
classification task. For this task we manually classified the images from 
our face set into male or female, based on subjective appearance. This 
step was carried out on the original images, but the cropped versions 
of these images (same as for the face/non-face classification) were used 
as inputs to the models. A small fraction of the faces for which we felt 
unsure about the gender were excluded. We ended up with 924 images 
of males and 805 images of females, which we fed to our V1-like and 
AlexNet model (see below). For the FaceNet model we also created a 

set of images that were cropped to a section of each image that was 
identified by MTCNN (Zhang et al., 2016) as the bounding box for the 
face (the full horizontal extent of the face is usually kept, but the image 
is cropped vertically across the chin and the forehead). This region was 
then stretched (without preserving the aspect ratio) to match the 
image size required by FaceNet (160 × 160 px). In a final test we also 
used these images for AlexNet (resizing them to 224 × 224 px) or our 
V1-like model (resizing them to 256 × 256 px, centered on a 340 × 340 
px mid gray background).

V1-simple cells model

We implemented a two-layer model for binary classification in 
which the first layer was composed of a fixed set of oriented Gabor 
filters that resemble the receptive field properties of V1 simple cells 
(Marcelja, 1980; Jones and Palmer, 1987a). We used four sets of Gabor 
filters, each tuned to a different spatial frequency, spaced in one octave 
(i.e., a factor of two) steps. Since our images were scaled to fit in 
256 × 256 px, we used for our largest scale 2-D Gabor functions with 
a carrier having a wavelength of 256 px. The wavelengths for the other 
three sets were then 128, 64, and 32 px. We set the standard deviation 
of the Gaussian envelope of the Gabor to 40% of the carrier 
wavelength, a value representative of orientation tuned cells in 
macaque V1 (Ringach, 2002) and cat area 17 (Jones and Palmer, 
1987b). We truncated the size of each filter to 1.5 times the wavelength, 
again matching average properties of macaque V1 cells. At each scale 
we defined 16 different filters, covering 4 orientations (0°, i.e., vertical, 

FIGURE 2

Distributions of low-level features for the faces and non-faces image sets. Mean luminance and RMS contrast of the images were well matched 
(Average mean luminance: face  =  102.96, non-face  =  103.07; Average RMS contrast: face  =  41.55, non-face  =  41.54). The fraction filled represents the 
fraction of pixels within the 256 × 256 area of the image proper (i.e., no background) that belong to the foreground (i.e., the face or non-face itself). 
Faces had a much narrower distribution, and a larger average (0.56 vs. 0.43), than non-faces. The elongation ratio is the largest of the width/height or 
height/width ratios for the foreground. Faces had a much narrower distribution, and a smaller average (1.66 vs. 2.51).

FIGURE 3

Superposition of a single non-face image on the backgrounds that we considered.
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45°, 90°, and 135°) and four spatial phases (0°, 90°, 180°, and 270°) 
for the sinusoidal carrier. The filters for one scale are shown in 
Figure 5A (the top row shows the amplitude profile of the filters shown 
in the second row, those tuned to vertical orientation). Each set of 16 
filters then tiled the entire space of the image (convolutional network), 
with a stride (distance in the horizontal or vertical direction between 
two nearby filters in image space) equal to half their wavelength. 
Because higher frequency filters have smaller sizes, they were more 
numerous than low spatial frequency filters. Overall, the model had 
7,088 linear filters (distributed across the four spatial frequency 
channels as 144, 144, 1,024, and 5,776). Each filter was followed by a 
half-rectifying nonlinearity (negative values were set to zero, positive 
values were kept unchanged). The half-rectified outputs of the filters 
were then fed into a linear classifier, whose 7,088 trainable weights 
were initialized with the Kaiming uniform initialization method (He 
et al., 2015; the bias term was initially set to zero). This process of 
summing the rectified outputs of the filters with learned weights is 
depicted in Figure 5B.

Since we randomly jittered the location of the images by ±42 px, 
units with shorter wavelengths/higher spatial frequencies than those 
we  used (e.g., 16 px) cannot be  expected to extract any reliable 
information from the images, and thus would mostly contribute noise 
to the classifier.

V1-complex cells model

We implemented a model of V1 complex cells by simply summing 
together the outputs of the V1 simple cells in the above model that 
shared the same spatial location, spatial frequency, and orientation 
(i.e., we summed the output of single cells that differed only in spatial 
phases, Figure 5C). This is a standard way of simulating V1 complex 

cells, analogous to the energy model of V1 complex cells (Carandini 
et al., 2005; Lian et al., 2021) but more biologically realistic (Hubel and 
Wiesel, 1962; Movshon et  al., 1978; Martinez and Alonso, 2003). 
Because we  considered four spatial phases at each scale and 
orientation, our V1-complex cells model had 1,772 units, whose 
outputs were fed to the linear classifier to learn the summing weights.

V1 linear receptive field model

We also implemented a model of V1 simple cells linear receptive 
fields. Essentially, we took the model of V1-simple cells described 
above and removed the half-rectifying nonlinearity. Because with this 
modification the outputs of units with a spatial phase of 180° (270°) 
were simply the opposite of units with a spatial phase of 0° (90°), and 
thus entirely redundant (the weights of the classification layers can 
be  positive or negative), we  removed them. Thus, our V1 linear 
receptive field (RF) model had 3,544 units, whose outputs were fed to 
the linear classifier (Figure 5D).

LGN-like model

We also implemented a two-layer model for binary classification 
in which the first layer was composed of a fixed set of difference of 
Gaussians (or Mexican-hat) filters that resemble the receptive field 
properties of neurons in the lateral geniculate nucleus (LGN; Rodieck, 
1965; Enroth-Cugell and Robson, 1966). Just as for the V1-like model, 
we used four sets of filters, each tuned to a different spatial frequency, 
spaced in one octave (i.e., a factor of two) steps. To match the preferred 
spatial frequency of the V1 filters, we set the standard deviation of the 
center Gaussian to 1/12th of the desired spatial frequency, the standard 

FIGURE 4

Samples of 4 faces and 4 non-faces on different backgrounds (from top to bottom: mid-gray, pixelated white noise, high contrast scene, blurred 
scene). Each image was randomly scaled down by up to 50% of its original size and rotated by up to 90° in either direction before being superimposed 
on the background. Here, but not in the simulations, face images have been blurred to prevent identification of the subject.
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deviation of the surround Gaussian to 5 times that value, and the gain 
of the surround Gaussian to 0.2 (the gain of the center Gaussian was 1).  
The size of the filters was the same as for the V1 filters. At each scale 

we defined 2 different filters, one mimicking on-center cells (i.e., cells 
that prefer a bright center and a dark surround) and the other 
mimicking off-center cells (i.e., cells that prefer a dark center and a 

FIGURE 5

Models of early visual processing. (A) Examples of oriented Gabor filters used for V1 model cells at one spatial location, and for one spatial scale. Four 
spatial phases (columns) and four orientations (rows) were used. Positive values are shown in shades of blue, and negative values in shades of red. The 
top row shows the amplitude profile of the filters in the second row. (B) In a model of V1 simple cells the output of each filter is half-rectified, and then 
summed with a weight (Σw) that is learned during model training. (C) In a model of V1 complex cells the outputs of half-rectified filters associated with 
the same orientation, but different phases, are first summed (Σ). The values for the various orientations are then summed with learned weights. (D) In a 
linear model of V1 cells, only two phases are considered (the others are redundant), and their outputs are directly summed with learned weights. 
(E) Difference of Gaussians filters used for LGN model cells at one spatial location, and for one spatial scale. On-center (left) and off-center (right) cells 
were used. (F) In a model of LGN the output of each filter is half-rectified and then summed with a learned weight.
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bright surround). These filters are shown, for one spatial scale, in 
Figure 5E (the first row shows the amplitude profile of the filters shown 
in the second row). As with the V1 model, each set of 2 filters then tiled 
the entire space of the image (convolutional network), with a stride 
(distance in the horizontal or vertical direction between two nearby 
filters in image space) equal to half their preferred wavelength. Because 
higher frequency filters have smaller sizes, they were more numerous 
than low spatial frequency filters. Overall, the model had 886 linear 
filters (distributed across the four spatial frequency channels as 18, 18, 
128, and 722). Each filter was followed by a half-rectifying nonlinearity 
(negative values were set to zero, positive values were kept unchanged). 
The half-rectified outputs of the filters were then fed into a linear 
classifier (Figure 5F), whose weights were initialized with the Kaiming 
uniform initialization method (He et  al., 2015; the bias term was 
initially set to zero). As with the V1 model, using filters tuned to higher 
spatial frequencies would be unwarranted given our image jittering.

AlexNet model

In some simulations we  also used the model developed by 
Krizhevsky et al. (2012) for image classification. It is not the most 
sophisticated model available now, but it is the one that opened the 
ANN revolution in image recognition and it is still widely used as a 
benchmark. We  used the model pretrained on the ImageNet 
classification task, which involves classifying images in one of 1,000 
categories. We retained its stack of feature layers (which has 9,216 
outputs), stripped it of its fully connected and classification layers, and 
replaced those layers with a single binary classification layer (identical 
to the one we used for our V1 model). Since AlexNet expects images 
of size 224 × 224 px, the 340 × 340 px images we used for our V1 
model were rescaled to this size before feeding them to the model.

FaceNet model

For the gender classification task we also used, as a benchmark, 
the model developed at Google by Schroff et  al. (2015) for face 
recognition. We used the Inception Resnet V1 model pretrained on 
160 × 160 px images from the VGGFace2 face recognition task, which 
involves identifying a subject (out of a pool of 9,131 subjects, for 
which 3.31 million images are available). We  retained its stack of 
feature layers (which in this model had 1,792 outputs), stripped it of 
its fully connected and classification layers, and replaced those layers 
with a single binary classification layer (identical to the one we used 
for our V1 model). Since FaceNet expects images of size 160 × 160 px 
and limited to the face bounding box extracted by MTCNN, the 
images we  used for this model from our gender data set were 
pre-processed accordingly.

Multi-tail AlexNet model

To quantify how the ability of AlexNet to extract useful features 
from our images varies as their processing progresses, we created a 
variant of AlexNet in which the classification is not based only on the 
final layer of features (as typically done and as we did above), but also 
on the output of intermediate layers. More precisely, we  added a 

classification layer after the third, sixth, eighth, and tenth layers in the 
feature stack (in addition to the classifier that follows the 13th and last 
layer in the feature stack). Each binary classifier thus had a different 
number of inputs: classifier C1 had 46,656, C2 had 32,448, C3 had 
64,896, C4 had 43,264, and C5 had 9,216 as before. These classification 
layers were trained concurrently but independently, and thus each 
maximized its ability to best predict the image based on the features 
it extracted.

Model training and performance evaluation

For the face vs. non-face task, we used the same procedure for all 
models. First, we  randomly split each set of images (faces and 
non-faces) into two distinct sets, each with half the images (50/50 
split). We then used one half for training the model, and the other half 
to evaluate its performance, which is thus fully cross-validated (the 
model was tested on images that were never seen by the model during 
the training phase). Unlike in classic model training tasks we did not 
feed the model identical images multiple times. Instead, we initially 
sampled, with replacement, 1,500 images from each of the faces and 
non-faces training subsets. Before feeding each of these images to the 
model, they were jittered by a random amount and, when required, 
also rescaled and/or rotated by a random amount. Finally, a 
background was selected for the image (which, except for the mid gray 
background, would also be different for every image). Thus, if an 
image was present in the resampled training set twice, its location, 
scale, rotation, and background could/would be different in the two 
presentations. And in different epochs (training runs through the 
entire training sets) the images would thus also always be different. 
This can be seen as an extreme form of data augmentation, as the 
model was effectively never fed the same input twice. In practice this 
minimizes the risk of overfitting and maximizes model generalization. 
We empirically verified that performance on the testing set increased 
with the number of epochs, but quickly saturated, plateauing after 50 
epochs, but improving only marginally after 10 epochs. Accordingly, 
we did not feel the need to use a validation set to prevent training from 
overfitting, and simply trained each model for 10 epochs.

After the model was trained, we sampled, with replacement, 1,500 
images from each of the faces and non-faces testing subsets. We then 
fed these images through the model once and evaluated its 
performance (fraction of correctly classified images).

This entire process was repeated 100 times (100 different training/
testing 50/50 splits), and we collected the performance for each round, 
thus obtaining a distribution of performance values. To summarize 
the performance of a model for a given condition (amount of scaling 
and rotation, and type of background) we report the median of the 
distribution of these 100 performance values. Another measure often 
used to quantify performance for binary categorization is d’, which is 
computed as d’ = Z(hit rate) − Z(false alarm rate), where Z is the 
inverse of the cumulative distribution of the standard normal 
distribution. Because in our study classification was on average 
symmetric (i.e., there were as many faces identified as non-faces as 
there were non-faces identified as faces) this can be simplified to d’ = 2 
x Z(hit rate).

For the gender classification task, since we had a considerably 
smaller image set, and some of the simulations (particularly those 
associated with the FaceNet model) were restricted to no or minimal 

https://doi.org/10.3389/fnbeh.2024.1425496
https://www.frontiersin.org/behavioral-neuroscience
https://www.frontiersin.org


Quaia and Krauzlis 10.3389/fnbeh.2024.1425496

Frontiers in Behavioral Neuroscience 08 frontiersin.org

data augmentation and thus a high risk of overfitting to the training 
set, we  split the image set in non-overlapping training (50%), 
validation (10%), and testing (40%) sets. Training was then executed 
over up to 40 epochs and stopped based on the performance on the 
validation set (when performance failed to improve over 5 consecutive 
epochs). For the training and testing sets we  sampled, with 
replacement, 400 images from each of the male and female training 
subsets. For the validation set we used 80 male and 80 female images 
(sampled without replacement) from the validation set. Since model 
performance was measured on the test set, whose images were never 
used during the training phase, it was fully cross-validated.

The models were implemented in Python 3.10, using the PyTorch 
2.0 library. We  trained the models to minimize the binary cross 
entropy with logits loss, the default choice for binary classification 
problems (Hopfield, 1987; Solla et al., 1988; Bishop, 1996). We trained 
the model using Stochastic Gradient Descent (SGD) with a learning 
rate of 0.01 and momentum of 0.9. Batch size was set to 64, and 
shuffling was applied during training.

Results

Face vs. non-face classification

Our primary goal was to assess the impact of various factors 
(extent of scale variation, extent of orientation variation, and type of 
background) on the classification performance of our model of V1 
simple cells. We started by fixing scale and rotation variation (at up to 
50% and 90°, respectively) and evaluated the impact of 8 different 
types of backgrounds. Figure 4 shows samples of both faces (left four 
columns) and non-faces (right four columns) at these levels of scale 
and rotation variation, on four different backgrounds (each on a 
different row): mid-gray, pixelated white noise, high-contrast scenes, 
and blurred scenes.

For each type of background, we split the face and non-face image 
sets into two non-overlapping halves, and used one half (of each image 
set) for training the model, and the other half for testing its 

performance. The results are thus fully cross-validated, meaning that 
no images that were used to train the model were used to evaluate its 
performance. This entire process was repeated 100 times for each 
background type, so that we  could assess the performance of the 
model over many different training/testing splits of the image sets. For 
each background we  thus ended up with a distribution 
of performances.

In Figure  6, we  show the distributions of classification 
performance for the 100 training/testing sets used for each 
background. Gray backgrounds (either at a fixed mid value, 
Figure 4 top row, or at the average luminance of the image content), 
pixelated pink noise, and pixelated noise with luminance values 
matching the image content, were all associated with similar high 
performance (median performance 85%, 85%, 84%, and 85%, 
respectively). Using pixelated white noise as a background 
(Figure 4, second row) reduced performance considerably (79%). 
A blurred visual scene (Figure 4, bottom row) or pixelated binary 
noise (which had higher contrast than all background types 
we tested, Figure 3) made performance even worse (76% in both 
cases). Finally, high-contrast scenes (Figure 4, third row) had the 
most deleterious impact (69%).

To assess the impact of scale and rotation variability, we  then 
selected four of these backgrounds (those shown in Figure 4), and for 
each of them varied independently scale across three levels (100%, i.e., 
no variation, 70%, and 50%) and rotation across five levels (0, i.e., no 
variation, 15°, 45°, 90°, and 180°). Performance degraded as variations 
in scale and rotation increased (Figure 7, top row), but the degradation 
was severe only for the largest variations and for the high contrast 
scene background. Because both faces and objects have a natural 
orientation, and are rarely tilted more than 45° from it, larger rotations 
are likely not representative of our daily experience. Similarly, pixelated 
and high-contrast backgrounds are not common, in part because 
backgrounds are often far from our plane of fixation and therefore 
defocused (i.e., have lower contrast) due to the limited depth-of-field 
of the human eye (Marcos et al., 1999). If we consider scale variations 
of up to 50%, and rotation variations of up to 45°, we see that with a 
gray background the median performance is 89%, and even with a 

FIGURE 6

Distributions of classification performance of the V1 simple cells model as a function of the background used. In all cases each image was scaled down 
by up to 50% of its original size and rotated by up to 90° in each direction.
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blurred scene it is still a respectable  82%. While these levels of 
performance would not win any image classification contests, they are 
probably high enough to account for the preferential looking toward 
faces observed in human adults (Cerf et al., 2009; Crouzet et al., 2010) 
and infants (Fantz, 1961; Goren et al., 1975; Johnson et al., 1991), and 
in monkeys (Gothard et al., 2004; Sugita, 2008; Taubert et al., 2017).

These simulations show that a model with oriented filters like those 
observed in V1 simple cells is capable of extracting information that is 
useful, and potentially sufficient, to distinguish a face-like image from 
something that is unlikely to be a face (a coarse recognition task). 
We thus wondered if an even simpler model, with circular symmetric 
filters like those found in retinal ganglion cells and in the lateral 
geniculate nucleus (LGN), might achieve similar performance. 
However, when we trained and tested a model with LGN-like filters as 
we did for the V1-like model, we found (Figure 7, second row) that its 

performance was considerably worse, by as much as 20%. Thus, 
LGN-like filters seem to be much less useful for detecting face-like 
patterns, although they are sufficient for detecting areas of high contrast.

Next, we wondered how much of the performance of the V1 model 
could be accounted for by its sensitivity to the spatial phase of its filters, 
a characteristic of V1 simple cells. We thus implemented a model of V1 
complex cells, which are insensitive to spatial phase. We found (Figure 7, 
third row) that its performance closely matched that of the model of V1 
simple cells, underperforming by a small margin across the set of 
conditions tested, indicating that spatial phase plays only a minor role.

Finally, to estimate the contribution of the rectifying nonlinearity 
to classification performance, we evaluated a model of V1 simple cells 
linear receptive fields. This is essentially our model of V1 simple cells, 
but with only two spatial phases represented at each location (because 
the other two become redundant) and without the rectifying 

FIGURE 7

Median classification performance of our models (from top to bottom: V1 simple cells, LGN, V1 complex cells, V1 linear RF, and AlexNet) as a function 
of the background (each panel), scale (three levels across columns), and rotation (five levels across rows).
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nonlinearity. We  found that this model underperformed the V1 
simple and complex cell models by large margins (Figure 7, fourth 
row), and was even worse than the LGN model. This clearly highlights 
the critical importance of nonlinearities, even in models as simple as 
those presented here, and counters our tendency to intuitively 
attribute the lion’s share of effects to the linear filter.

Some might be surprised by how well these models performed. To 
provide an additional reference, and a reality check, we also tested a 
model that has been compared in the past to the primate ventral visual 
pathway (Cadieu et al., 2014). This model was developed by Krizhevsky 
et al. (2012) and won the ImageNet image classification contest in 2012, 
and is usually referred to as AlexNet (after Krizhevsky’s first name). 
We selected a version of this model that was already trained on the 
ImageNet classification task, in which an image must be categorized as 
belonging to one of 1,000 categories. We then froze the weights of its 
feature maps (which can be loosely seen as a cascade of several of the 
filter layers that we used in our V1- and LGN-like models, but with 
many more, and more complex, filters), and replaced its classification 
layers with a linear classifier, identical to the one we used for the V1- and 
LGN-like models (although with a different number of inputs, 
corresponding to the number of filters in the last feature layer of 
AlexNet). Not surprisingly, we found that AlexNet does a much better 
job compared to our simple V1-like model, and it is much less sensitive 
to changes in scale, orientation, or background (Figure 7, bottom row). 
Even with our most challenging condition (up to 50% scaling, up to 180° 
rotation, high-contrast scene background) its median cross-validated 
performance is 95% (compared to 65% for the V1-like model); with up 
to 50% scaling, up to 45° rotation, and a blurred scene background it 
performed at 99% (compared to 82% for the V1-like model).

To allow for a more direct comparison between the performance of 
the various models, in Figure 8 we directly compare the performance of 
the V1-simple cells model to the that of the other models. Instead of 
using the percent correct measure that we have use throughout the 

paper, here we used the sensitivity index d’ (see Methods), another 
commonly used metric to characterize binary discrimination (which 
we clipped at 5.15, corresponding to 99.5% correct). Easy (hard) tasks 
are associated with high (low) values of d’. Each data point is associated 
with one condition from Figure 7 (3 scaling factors, 5 rotation factors, 4 
backgrounds, thus 60 points for each model), and we plot on the x-axis 
the value of d’ observed with the V1-simple cells model and on the 
y-axis the value of d’ observed with one of the other models (see legend) 
for the same condition. Points below (above) the diagonal indicate that 
the V1-simple cells models performed better (worse) than the other 
model. Disregarding values at or near saturation at high and low values 
of d’, when expressed in units of d’ the relative performance of the 
various model is relatively constant as difficulty varies (i.e., the points 
for each model are distributed along lines parallel to the main diagonal).

Probing the V1-like model through 
selective lesions

So far, we have shown that a V1-like model (whether based on 
responses of simple or complex cells) contains more (linearly 
separable) information about distinguishing a face from a non-face 
object than a LGN-like model, but much less than a modern ANN 
could extract from the same images. We also showed that the linear 
receptive field and the output nonlinearity are both critical 
determinants of performance. We  next sought to gain further 
understanding about which units of the V1-like models are most 
useful to the classifier. In a manner that is akin to what is done in 
neuropsychology, we  thus simulated “lesions” of the model by 
removing subsets of model units, and evaluated their impact on the 
ability of the model to classify our stimuli. Since our V1-like models 
have four spatial frequency channels, we first eliminated from our 
model of V1 simple cells one or more of them and refit it to the data, 
for the same amount of scaling (up to 50%), rotation (up to 45°), and 
type of background (blurred scene). We found (Figure 9, left) that, 
compared to the full model (blue), dropping any single channel 
(yellow) had a minimal impact on performance. Dropping two 
channels (purple) also had a small impact, unless the two channels 
tuned to the higher frequencies were both dropped. Finally, when a 
single channel was kept (pink), we found that the two highest channels 
by themselves can perform essentially as well as the single model, 
whereas the two tuned to lower SFs are significantly impaired. The 
lowest spatial frequencies, which might have been thought to 
be associated with the overall shape of the face, thus do not play a 
major role in determining performance under these conditions 
(although there is the potential confound that the number of filters 
increases with spatial frequencies, see Methods). When images are 
presented with no random changes in scale and orientation, and on a 
gray background, the two lowest SF channels can effectively classify 
our dataset (Figure 9, right), indicating that their usefulness decreases 
as image variation increases.

Next, we  considered a set of lesions that targeted the most 
consistent inputs to the classifier. We kept or removed only those 
filters that in the trained full model of V1 simple cells were associated 
with a classifier weight that was positive or negative on at least: 90/100 
model runs (CS90, 1,686 filters); 95/100 model runs (CS95, 1,162 
filters); 99/100 model runs (CS99, 612 filters); or all 100 model runs 
(CS100, 406 filters). Note that filters were kept (or removed) across all 

FIGURE 8

Scatter-plot of the median sensitivity index d’ of our models. The V1 
simple cells model is used as a reference and is plotted on the x-axis, 
and all other models we tested (see legend) are plotted against it 
(y-axis).
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SF channels (e.g., for CS90, 22% of filters in F0, 38% of filters in F1, 
32% of filters in F2, and 20% of filters in F3 were kept; for CS100 the 
percentages were 2%, 9%, 10%, 5%, respectively) although in absolute 
numbers many more filters were kept (or removed) from the higher 
SF channels. In all cases in which we kept only the most consistent 
weights (Figure 10, cyan), the model performed as well as the full 
model (or slightly better than it, probably because filters that 
contributed mostly noise were omitted). What was more surprising, 
removing the filters associated with these weights (Figure 10, pink) 
resulted in only a relatively small drop in performance, indicating that 
there is a fair amount of redundancy in the model, which allowed the 
remaining filters to compensate for the loss. However, an inspection 
of the scatter of model performance across runs (which can be visually 
estimated by the length of each violin in Figure  10) reveals that 
keeping only the most relevant weights has a strong impact on the 
reliability of the classification, presumably by making the classifier 
easier to train (i.e., less prone to settle on a local minimum).

Applying these same analyses to our model of V1 complex cells 
yielded similar results (not shown).

A fine recognition task: gender 
classification

While it is difficult to understand what exactly the V1-like model 
responded to (a possibly ill-posed question), the large within-group 
shape similarity across faces is an obvious candidate (Rosch et al., 
1976). To evaluate the V1-like model under more challenging 
conditions, requiring finer discrimination abilities, we tested it on a 
gender classification task. We subdivided our face set into two groups 
(male and female), and then trained the V1-like and the AlexNet 
models as we did before for the face vs. non-face classification (see 
Methods). We only tested two backgrounds, mid-gray and blurred 
scenes. Not surprisingly, cross-validated performance was 
considerably worse than before (Figure 11), dropping by approximately 
25% points for the V1-like model and by 20% point for AlexNet. The 

performance of the V1-like model stayed above 70% only for small 
variations in scale and rotation; at the reference condition 
we considered before (up to 50% scaling, up to 45° rotation, blurred 
scene background) the performance was essentially at chance level, 
compared to the 82% that we observed in the face vs. non-face task.

We also tested FaceNet (Schroff et al., 2015) in this task, a model 
developed explicitly for face recognition, as opposed to image 
classification. We expected it to perform much better than the other 
two models in this task, and indeed its cross-validated classification 

FIGURE 9

Classification performance of the full model of V1 simple cells (blue) and versions of the model in which one (yellow), two (purple) or three (pink) SF 
channels have been removed. Median performance is shown for each distribution. Left: Each image was scaled down by up to 50% of its original size, 
and rotated by up to 45° in each direction, and was presented on a blurred scene background. Right: We presented the original images (no scaling or 
rotations) on a mid-gray background to the full model or versions of it with a single spatial frequency channel.

FIGURE 10

Classification performance of the full model of V1 simple cells (blue) 
and versions of the model in which we kept only those filters that 
were either consistently associated with positive or negative weights 
over a fraction of runs of the full model (cyan, at least 90, 95, 99 or 
100 runs), or in which those same filters were omitted (pink, note 
that the order is reversed) In all cases each image was scaled down 
by up to 50% of its original size and rotated by up to 45° in each 
direction, and was presented on a blurred scene background. 
Median performance is shown above each distribution.
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performance on our data set was 93%. However, there is a catch: This 
network is not trained to work directly on the images, but instead it 
first processes the images with another ANN, called MTCNN, which 
extracts a bounding box containing a face, and then this part of the 
image is stretched to the size preferred by FaceNet (160 by 160 px) and 
fed to it. There is thus a single scale, no rotation, and very little 
background. A fairer comparison would thus involve feeding to our 
two other models the same images that we fed to FaceNet. When 
we did that the V1-like model performed at 91% correct, and AlexNet 
matched FaceNet at 93% correct. Note that these performances are 
much better than those we obtained with no scaling or rotation on our 
image set on a mid-gray background (73% and 84%, respectively). 
What accounts for this difference? One possibility is the stretching of 
the images operated by MTCNN. Another possibility is the lack of 
jitter in the images—recall that in all previous tasks the images were 
always randomly jittered by up to 42 px in all directions. To find the 
answer we again classified the original images with the V1-like and 
AlexNet models, this time omitting jittering, for the no scaling, no 
rotation, and mid-gray background condition. The cross-validated 
performance of both models was now 90%, indicating that the lack of 
jitter accounts for the vast majority of the difference observed. 
Obviously the presence of jitter limits, for both our V1-like model and 
for AlexNet, the ability to perform fine (but not coarse) 
discriminations.

Object recognition along the visual 
hierarchy

We have shown here how recognition performance differs, for two 
tasks, in models of the earliest stages of visual processing (LGN, V1 
simple and complex cells) and in a widely used ANN, whose final 
stage has been likened to IT processing. It would of course 
be interesting to understand how performance varies along the entire 
ventral visual pathway. Unfortunately, there is not yet consensus on 
how the properties of V2, V3, V4, and IT emerge from their inputs. 
However, since it has been argued that there is a hierarchical similarity, 
in terms of feature selectivity of individual units, between layers of 
ANNs and areas of the primate visual system, we  evaluated how 
classifiers trained on the features extracted by intermediate layers of 
AlexNet fared in our tasks (Figure 12A). While direct comparisons 

have not been carried out, in our multi-tail version of AlexNet one can 
roughly consider the stack of layers F1 as akin to area V1, F2 to V2, F3 
to V3, F4 to V4, and F5 to IT. In Figure 12B we plot, for a model 
trained on a face vs. non-face classification task (with images presented 
on a blurred background, scaled by up to 50% and rotated by up to 
45°), the distribution of classifier outputs when presented with 
non-faces (blue) or faces (orange) from the testing image set. While 
performance improved as we  moved deeper in the feature stack, 
classifier C1 already provided actionable information, and going from 
C2 to C5 provided a very limited improvement in performance for the 
additional computational load (for computers) and time (for the brain 
and computers) required. In Figure 12C, we plot the results for a 
model trained on a gender discrimination task (with images presented 
on a blurred background, scaled by up to 50% and rotated by up to 
45°). This is a much harder task, and shortcuts incur significant costs, 
making waiting for the output of C5 a sensible strategy. For all their 
limitations, these simulations again highlight the ability of earlier 
stages of processing to perform adequately in tasks requiring coarse, 
but not fine, categorization.

Discussion

The last 10 years have seen a resurgence in the study of object 
recognition, both in computer science and in primate neuroscience. 
What often goes unacknowledged is that almost all the focus is on 
fine discrimination, or what in primates could be  termed foveal 
object recognition. We  have shown here that for simpler 
discrimination tasks signals in early visual areas are sufficient to 
achieve reasonable accuracy. In itself this is not a new finding (Serre 
et al., 2007), but it is one that has been sidelined once the limitations 
of early visual areas to support fine object recognition under large 
variations in orientation, illumination, and background (such as 
recognizing the image of an elephant upside-down over a high 
contrast skyline of New York City) were revealed (Pinto et al., 2008; 
Rajalingham et al., 2018). Our main contribution here is to more 
accurately describe these limitations for a task that is behaviorally 
important and that had not been considered in previous studies. 
Furthermore, by comparing the performance of different variations 
of our models we were able to highlight the relative contributions of 
their various parts.

FIGURE 11

Median classification performance of the V1-like (simple cells) and AlexNet models in the gender classification task. Two different backgrounds were 
tested for each model, varying scale (three levels across the x axis) and rotation (five levels across the y axis) as before.
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Unlike computer science models, the brain of primates must 
contend with visual inputs that do not uniformly sample the visual 
field, making object recognition in the periphery an altogether 
different problem from object recognition in the fovea. There is no 
doubt that foveal vision is critical to primates’ ability to survive and 
thrive, as clearly demonstrated by the fact that up to 30% of area V1 is 

devoted to this region (Perry and Cowey, 1985; Azzopardi and Cowey, 
1996), and by the devastating effects of macular degeneration 
(Fleckenstein et al., 2021). However, some fundamental aspects of 
object recognition are overlooked when the focus is on foveally 
presented objects in an unusual pose against an out-of-context high 
contrast background (what has been termed core object recognition, 

FIGURE 12

(A) A “multi-tail” (our nomenclature) version of AlexNet, in which the feature stack has been divided into five stages, and a binary classification layer is 
appended to each stage (see Methods). (B) Distribution of each classifier outputs when presented with non-faces (blue) or faces (orange) from the 
testing image set for a model trained on a face vs. non-face classification task with images presented on a blurred background, scaled by up to 50% 
and rotated by up to 45°. The outputs are collated across 100 different training/testing splits of the data. (C) Same as panel (B), but for a model trained 
on a gender discrimination task (with images presented on a blurred background, scaled by up to 50% and rotated by up to 45°).
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DiCarlo and Cox, 2007; DiCarlo et  al., 2012). Most of our daily 
experience is quite different, and involves quickly localizing familiar 
objects in familiar environments, across the visual field (Eckstein, 
2017). Because the fovea covers less than one part in 5,000 of our 
visual field, without a fairly sophisticated system to detect objects in 
the periphery, our ability to make good use of IT’s capacity for fine 
object discrimination would be severely hindered.

Recognizing that an object of interest is somewhere in the 
periphery is not sufficient: its precise localization is critical. Hence, 
peripheral recognition should be based on neurons that carry position 
information. It has been argued that, in tasks involving difficult 
discriminations of objects on high contrast backgrounds, the available 
position information increases along the visual stream (Hong et al., 
2016), and is thus higher in IT than in V1. However, that study used a 
rate code to extract such information (where a larger value of a single 
output indicates a more eccentric position); such a code would 
be difficult to use for controlling behavior, as areas of the salience 
network (such as LIP, FEF, and SC) are retinotopically organized and 
interconnected. In contrast, a retinotopic code (where different cells are 
active to indicate the presence of an object at different retinal locations) 
would be  much more readily usable, but this information is 
progressively diluted deeper (i.e., more anteriorly) in the hierarchy of 
visual areas. Object recognition based on signals in retinotopically 
organized early visual areas is thus not only possible (as we have shown 
here) but would also be eminently useful in primates. Importantly, early 
visual areas do project in a retinotopically organized manner to areas 
of the salience networks, such as the SC (Cerkevich et al., 2014). In 
afoveated animals, which devote to vision a smaller fraction of their 
brain, this kind of rudimentary object recognition might very well 
comprise the entirety of visual object recognition, as they might rely 
more on motion signals and other sensory modalities to direct their 
behavior (motion is of course an important visual cue also for primates, 
but it normally plays a secondary role relative to form vision, with some 
important exceptions, e.g., breaking camouflage, biological motion).

Here we focused on face recognition, because it is one of the most 
widely studied visual classification tasks, and it is one at which 
primates excel (Rosenfeld and Van Hoesen, 1979; Diamond and 
Carey, 1986; Carey, 1992; Pascalis and Bachevalier, 1998; Pascalis et al., 
1999). It is also notable that a preference for looking at faces is already 
present in newborns (Goren et al., 1975; Pascalis and de Schonen, 
1994), well before the development of the cortical machinery that 
supports face identification in older children and adults, the so-called 
face-patch network (Livingstone et al., 2017). This observation had led 
to the suggestion that preferentially looking toward faces might 
initially be mediated by direct projections from the retina to the SC, 
with cortical projections to the SC taking over during development 
(Morton and Johnson, 1991). Indeed, SC cells have been found to 
respond more strongly to images of faces than non-faces in adult 
monkeys (Nguyen et  al., 2014; Yu et  al., 2024). Our finding that 
circular center-surround filters like those found in retinal ganglion 
cells and LGN are not well-suited for this task argues against a retinal 
source for this information. However, because it is difficult to calibrate 
the classification performance of our models against the preferential 
looking methods used when studying infants, it remains possible that 
even the limited performance of our LGN model might be able to 
account for the preferences of infants.

We tested our models also on gender classification. We chose this 
task because it requires discrimination of fine features, and yet it has 

been shown that it requires less time than face identification (Dobs 
et al., 2019), and it is preserved in prosopagnosic patients (Sergent 
et al., 1992), whose cortical face processing network (Tsao et al., 2003; 
Kanwisher and Yovel, 2006) is known to be disrupted (Rosenthal et al., 
2017). These findings point to gender classification as possibly relying 
on visual cortical signals that precede the face-network in IT. Our 
results indicate that V1 is an unlikely source of such signals. However, 
since both texture and curvature have been proposed to play important 
roles in gender discrimination (Brown and Perrett, 1993; Bruce et al., 
1993; Hole and Bourne, 2010), area V2, which is specialized for 
processing naturalistic textures (Freeman et al., 2013; Movshon and 
Simoncelli, 2014), and area V4, which is specialized for processing 
curvature (Pasupathy and Connor, 2002; Nandy et al., 2013), might 
carry useful signals. V2 and V4, like V1, project directly to the SC (May, 
2006), and would thus also be well-positioned to bias refixations.

A different architecture for object 
recognition

The ideas about object classification and recognition that dominate 
the field, with their emphasis on foveal inputs and context-independent 
processing, are certainly important, but they omit some crucial 
functional aspects of how our specialized primate visual system 
identifies objects. A unitary hierarchical architecture of ever more 
complex feature detectors with a read-out/classification stage at its end, 
similar in structure to ANNs for object recognition (with only C5 in 
Figure 12), might work well in computer science, but it is a brittle 
architecture, at odds with evolutionary principles and experimental 
evidence. We envision a parallel architecture, in which classification is 
based on signals in multiple visual areas (as in Figure 12), but, unlike 
in ANNs, with learning for coarse recognition separately at each retinal 
location. Such a system would be more flexible, has strong redundancy, 
and it is easier to see how it could have evolved from simpler systems. 
Information from some stages might be available earlier than that from 
others, but might also be  less reliable, yielding a speed/accuracy 
trade-off that could be easily arbitrated, as we saw in our multi-tail 
version of AlexNet (Figure 12). The information coming from each 
area could be weighted differently in the center and in the periphery, 
and also by pathways involved in action (e.g., controlling refixation 
through the saliency network) vs. perception. Such a system would 
be more flexible than a classic ANN-like architecture, in which the loss 
of any part/stage would be devastating, requiring retraining of the 
entire model (as in our simulated lesions). It would be akin to the 
“wisdom of the crowd” (Aristotle, 2013; Saha Roy et  al., 2021; 
Madirolas et al., 2022) or “ensemble learning” (Hansen and Salamon, 
1990; Schapire, 1990; Polikar, 2006) architectures, in which a highly 
complex decision process is replaced by many simpler ones, each 
evaluating the evidence independently and reaching its own 
conclusion. If any of the processes becomes unavailable, the others 
carry on, as is observed in real life (Matsumoto et al., 2016).
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