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Learning to make adaptive decisions involves making choices, assessing their 
consequence, and leveraging this assessment to attain higher rewarding 
states. Despite vast literature on value-based decision-making, relatively little is 
known about the cognitive processes underlying decisions in highly uncertain 
contexts. Real world decisions are rarely accompanied by immediate feedback, 
explicit rewards, or complete knowledge of the environment. Being able to 
make informed decisions in such contexts requires significant knowledge 
about the environment, which can only be gained via exploration. Here we aim 
at understanding and formalizing the brain mechanisms underlying these 
processes. To this end, we first designed and performed an experimental task. 
Human participants had to learn to maximize reward while making sequences 
of decisions with only basic knowledge of the environment, and in the absence 
of explicit performance cues. Participants had to rely on their own internal 
assessment of performance to reveal a covert relationship between their 
choices and their subsequent consequences to find a strategy leading to the 
highest cumulative reward. Our results show that the participants’ reaction times 
were longer whenever the decision involved a future consequence, suggesting 
greater introspection whenever a delayed value had to be  considered. The 
learning time varied significantly across participants. Second, we  formalized 
the neurocognitive processes underlying decision-making within this task, 
combining mean-field representations of competing neural populations 
with a reinforcement learning mechanism. This model provided a plausible 
characterization of the brain dynamics underlying these processes, and 
reproduced each aspect of the participants’ behavior, from their reaction times 
and choices to their learning rates. In summary, both the experimental results 
and the model provide a principled explanation to how delayed value may 
be computed and incorporated into the neural dynamics of decision-making, 
and to how learning occurs in these uncertain scenarios.
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1 Introduction

The brain mechanisms involved in decision-making have been 
extensively studied in the last decades [reviewed in (Gold and Shadlen, 
2007; Wang, 2008)]. Many studies focused on characterizing the neural 
dynamics of reward processing (Padoa-Schioppa, 2011; Wallis and 
Kennerley, 2011; Gluth et al., 2014), visual discrimination (Shadlen 
and Newsome, 1996; Shadlen and Newsome, 2001; Roitman and 
Shadlen, 2002), and other aspects of option assessment during value-
based decision-making (Pastor-Bernier and Cisek, 2011; Wallis, 2011; 
Cai and Padoa-Schioppa, 2019; Carroll et al., 2019). Other tasks were 
developed to study decisions in the context of short-term memory 
(Siegel et al., 2009), and cost-risk trade-off (Kahneman and Tversky, 
1979; Birnbaum, 2008; Eichberger and Pasichnichenko, 2021). In most 
of these contexts, choice outcomes are immediately experienced. This 
feature makes calculating costs and benefits straightforward, as all the 
necessary information is directly and immediately available to the 
decision maker for calculation (Kurniawan et al., 2013; Skvortsova 
et al., 2014; Apps et al., 2015; Thura and Cisek, 2016). However, a 
complete account of value-based choice behavior requires 
understanding the brain mechanisms underlying the detection and 
computation of non-immediate consequences of choices, and of the 
use of this information to guide subsequent decision strategies. Despite 
the rich literature in cognitive decision-making and the fact that long-
term consequence is a critical concern in our daily decision-making 
processes, the dynamics of its operation are not fully understood, and 
have not been incorporated into state-of-the-art models of decision-
making (Brunel and Wang, 2001; Wong and Wang, 2006; Wong et al., 
2007). Most previous models work only for independent trials by 
considering value and/or accumulation of evidence about choice 
alternatives (Drugowitsch et al., 2012). They often do not, however, 
take into consideration the memory of recent past or the long-term 
effects of decisions in the context of brain dynamics. By contrast, 
studies on hierarchical decision-making show that when choices are 
repeatedly made along nodes of the same decision-tree, they tend to 
integrate elements of subsequent nodes (Hyafil and Moreno-Bote, 
2017). In other words, the assessment of options during decisions 
incorporates elements of subsequent branching points. However, for 
these decisions to be informed, exploration and ultimately knowledge 
about future nodes is required.

Here we  are interested in formalizing the brain mechanisms 
underlying how this exploration leads to information gain when the 
strategy is non-obvious. In other words, which are the brain operations 
involved in considering the consequence of choices during sequences 
of decisions. In this scenario, the case when the immediate most 
rewarding choice leads to lower long-term reward is of particular 
interest, as participants must anticipate that the cost of choosing lower 
value options results in increased delayed reward and higher 
cumulative reward overall. Moreover, if this relationship is covert, 
what are the cognitive mechanisms that enable us to learn the optimal 
strategy? Furthermore, how does the learning occur in the absence of 
explicit performance feedback?

To answer these questions, we developed the consequential task. 
Consecutive perceptual decision-making trials were organized into 
groups of dependent trials, where the choice made in one trial had a 
consequence on the next by determining the available choice options. 
How does the complexity of a perceptual decision-making task 
augment when combined with consequence assessment? First, 

consequence-based decisions (i.e., decisions in which optimal 
performance can only be achieved after acquiring knowledge of future 
nodes) require an increased temporal span of consideration, and, 
consequently, involve a more uncertain and broader set of factors to 
examine. This typically results in more computationally demanding 
option evaluation (Trommershäuser et al., 2008; Nagengast et al., 2011; 
O’Brien and Ahmed, 2015; Kirchler et al., 2017), longer deliberation, 
and often poorer decision accuracy (Schuck-Paim and Kacelnik, 2007; 
Drugowitsch et al., 2016). Second, making decisions based on gauging 
choice consequence involves a range of cognitive processes broader 
than those involved in immediate sensory-motor decisions (Cisek 
et al., 2009; Donner et al., 2009), with particular emphasis on value 
integration (Cisek and Kalaska, 2005; Park et al., 2011), metacognitive 
processing (Klaes et al., 2011; Goodwin et al., 2012) and long-term 
working memory (Cavanagh et al., 2018; Barbosa et al., 2020). Though 
long-term consequence assessment may be viewed as a time extended 
version of immediate action outcome evaluation, significant doubts 
remain regarding the core cognitive and neural processes underlying 
this ability (Balasubramani and Hayden, 2018).

To investigate the cognitive processes underlying consequence-
based decision-making, we carried out a combined experimental and 
theoretical study. In the first part of this work, we designed a decision-
making task, the consequential task, to characterize consequence-
based option assessment. In brief, in the consequential task, 
consequence takes the form of increases/decreases in future reward 
value options as a function of participants’ choices. The nature of this 
inter-trial dependence was not disclosed in the instructions given to 
the participants, and no explicit performance feedback was provided. 
The absence of explicit learning cues was intended to force the 
participants to rely on their own subjective performance feedback to 
infer the delayed consequence of their decisions.

In the second part of our study, we  provided a theoretical 
framework of the cognitive and neural processes required for 
consequence-based decision-making, including the patterns of 
inhibition and of far-sighted consequence assessment required to 
acquire the most reward across trials. The model was organized in 
three layers. The bottom layer, in line with the Amari, Wilson-Cowan 
and Wong-Wang models (Wilson and Cowan, 1972; Soltani et al., 2006; 
Wong and Wang, 2006; Webb et al., 2011; Marcos et al., 2013; Hertäg 
et al., 2014), described the neural dynamics of binary decision-making 
by means of two populations of neurons. The middle and top layers 
modeled an oversight mechanism for the assessment of consequence 
across groups of trials and the learning mechanism as a function of 
reward value across trials. This model reproduced the full range of 
behavioral observations across the different participants accurately 
while predicting a plausible neural implementation of the processes 
underlying the learning of consequence-based decision-making. In 
particular, our model described how the metacognitive assessment of 
consequence extends from short to long-term value prediction through 
an oversight mechanism that monitors predicted performance.

2 Results

2.1 Task design

In this section we  describe the consequential task and, more 
specifically, how it is designed to tap into the cognitive mechanisms 
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involved in learning delayed consequences in the absence of explicit 
performance feedback. In this task, 28 healthy participants were 
instructed to choose one of two stimuli presented left and right on a 
screen. The stimuli represented partially filled containers of water and 
reward value was directly proportional to the amount of water in each 
container. The participants reported their choices by moving the 
computer mouse’s cursor from the central cue to the chosen stimulus 
(see Figure 1 and Materials and Methods for a thorough description). 
Participants were only paid a show-up fee and were, thus, not 
monetarily incentivized to perform well.

Since consequence depends on a predictive assessment of future 
contexts, the task was organized into two block types. In the first, trials 
required one-shot decisions, purely independent of one another. 
Similar to most decision-making tasks, the reward value in this block 
type could be maximized by picking the stimulus associated with the 
most reward value in each trial, i.e., choosing the larger of the two blue 
bars. However, in the second block type, trials were grouped into pairs 
or triads of dependent trials. We called each group of consecutive 
trials an episode to signify the boundary of dependence between 
them, and defined the notion of horizon (nH) as a metric for the depth 
of consequence to be expected for that episode. In other words, nH 
equaled the number of dependent trials following the first trial of the 
episode. For example, for nH = 1 an episode consisted of 2 trials, with 

the second depending on the first. The nature of the dependence 
between trials of an episode was such that the mean reward values of 
the stimuli in the second/third trial were systematically increased or 
decreased based on the participant’s choice in the preceding trial. 
Choosing the larger stimulus value led to a reduction of stimuli values 
in the subsequent trial whereas choosing the smaller stimulus in the 
first trial led to an increase (Figure 1B). The increment/reduction 
amount (G) was a constant and chosen such that selecting the larger 
stimulus in the first trial could never compensate for the loss in future 
reward value. In other words, acquiring the maximum cumulative 
reward value in each episode required choosing “big” in single trial 
episodes (horizon nH = 0), and choosing “small” in all trials of nH = 1 
and nH = 2 episodes except the last, in which “big” should be chosen.

The consequential task design enables investigation into the role 
of perceived consequence during sequential decision-making. 
Consequence, in this context, refers to the influence of a choice on the 
stimuli values in the trial next. The post-decision stimuli heights 
function as a form of feedback which participants must learn to 
interpret in order to become aware of and evaluate the consequences 
associated with particular choices. Performance feedback, however, is 
absent from the task in that participants are never presented with cues 
indicating whether they are behaving optimally. This absence required 
participants to evaluate their own performance based on their 

FIGURE 1

Time-course of a typical horizon 1 episode of the consequential decision-making task. (A) The episode consists of two dependent trials. The first starts 
with the message “New Episode Starting” in the center-top of the screen, a circle surrounding a cross in the center (central target), and a half full 
progress bar at the bottom of the screen. The progress bar indicates the current trial within the episode (for horizon 1, 50% during the first trial, 100% 
during the second trial). After holding for 500  ms, the left or right (chosen at random) stimulus is shown, followed by its complementary stimulus 
500  ms later. Both stimuli are shown simultaneously 500  ms later which serves as the GO signal. At GO, the participant has to slide the mouse from the 
central target to the bar of their choosing. Once the selected target is reached, a yellow dot appears over that target. The second trial follows the same 
pattern as the first. See Methods for more details. (B) Construction scheme for the size of the stimuli in each episode. The first trial within the episode 
consists of 2 stimuli of size M  +  d/2 and M−d/2. The second trial within the episode depends on the selection made in the previous trial. If the first 
selected stimulus is M−d/2 (following symbol “-” in the figure), then the second trial consists of stimuli with size M  +  G  +  d/2 and M  +  G−d/2, otherwise 
M-G  +  d/2 and M-G-d/2 (following symbol “+” in the figure). The cumulative reward value of the episode can therefore assume 4 distinct values 
(ordered from best to worst): 2  M  +  G, 2  M  +  G-d, 2  M-G  +  d, and 2  M-G. See Methods for more details on the values of M, G, d.
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experience during task execution. Importantly, participants were not 
informed of the nature of the inter-trial dependence and had to 
discover it on their own via exploration. Explicit performance 
feedback might have had the undesirable effect of participants 
focusing on finding the specific sequence of choices yielding optimal 
performance feedback, without having to learn the dependence 
between their decisions and the subsequent trials. In other words, an 
explicit measure of performance might have reduced the task to an 
explicit trial-and-error test in which participants would experiment 
with different sequences of choices (“big-small,” “small-big,” etc.) until 
finding the sequence leading to maximum performance, rather than 
learning to evaluate each option’s consequence in terms of their 
prediction of future reward. In contrast, the absence of performance 
feedback obligated participants to create an internal sense of 
assessment, which could only rely on two mechanisms: the sensory 
perception of the systematic stimuli changes in the subsequent trial 
after each choice, and the exploration of option choices at each trial 
during the earlier part of each block. The resulting task essentially 
becomes a measure of learning about delayed consequences associated 
with each option in the absence of explicit performance feedback.

In summary, for the participants to be able to perform the task, 
they were informed of the episode-based organization of trials at each 
block, i.e., the horizon. The instruction to the participant was to find 
the strategy leading to the most cumulative reward value for each 
episode and to actively explore their choices. Learning the optimal 
policy was challenging due to several factors. First, perceptual 
discrimination was difficult in some trials since the height difference 
between stimuli could be as low as 1% the height of the container. 
Second, although participants were informed that their choices may 
affect future trials within the episode, the nature of this dependency 
was not specified. This means that from the perspective of the 
participants, the value of the stimuli offers might at first appear 
random. Third, explicit performance feedback was omitted from the 
task after each episode, requiring participants to discover the nature 
of the inter-trial dependencies via exploration. Further details are 
shown in the Methods section, and in Figure 1.

2.2 Behavioral results

Several metrics were extracted from the participants’ behavioral 
data: performance (PF), reported choices (CH), reaction time (RT), 
and visual discrimination (VD) sensitivity. PF was extracted from 
each episode and assumed values between 0 (worst) and 1 (best). PF 
was calculated as the percentage of the maximum possible reward 
value acquired in each episode and is normalized such that PF = 0 in 
episodes wherein the participant acquired the minimum possible 
reward value. CH was the choice made by the participant in each trial 
and could take one of two values: small (i.e., smaller stimulus), or large 
(i.e., larger stimulus). RT was calculated as the time difference between 
the simultaneous presentation of both stimuli (the GO signal), and the 
onset of the movement. VD is a measure of each participants’ ability 
to visually discriminate between stimuli, i.e., identifying which 
stimulus is bigger/smaller (see Methods for further details). As shown 
below, when the difference between stimuli (ΔS) is the smallest, 
participants were not able to accurately distinguish between stimuli. 
The ΔS varies between 1 and 20% of the size of the container. Note 
that for horizon nH = 0, a trial with ΔS = 0.01 is perceptually difficult, 

but if chosen wrong, the difference in the final reward would be small 
(1%). However, for horizon nH = 1 or 2, choosing the wrong stimulus 
due to perceptual discrimination has a large impact on the final 
performance, since it leads to a decrease of the available stimuli in the 
next trials.

The absence of explicit performance-related feedback at the end 
of each episode made the task more difficult, and, consequently, not 
all participants were able to find the optimal strategy. For horizon 
nH  = 0, 26 of the 28 participants learned and applied the optimal 
strategy, i.e., repeatedly selecting the larger stimulus. In contrast, only 
22 participants learned the optimal strategy during horizon nH = 1, 2 
blocks, i.e., selecting the larger stimulus in the last trial only.

We analyzed the exploratory strategies the participants employed. 
In particular, we tested whether participants only considered the size 
of the stimuli (small/big), or if they also tested other hypotheses 
involving the order of presentation of the stimuli (first/s) or the 
location (left/right) of the stimuli. The result of this analysis can 
be  found in the Supplementary Figure S1. In brief, participants’ 
choices overwhelmingly depended on stimuli size and there was little 
evidence other factors such as order of presentation or location were 
seriously considered in the decision-making process. Most 
participants who did not learn the optimal strategy for nH  = 1,2 
repeatedly chose the larger stimulus for all trials.

In Materials and Methods (subsection Consequential Decision-
Making task), we  described how the task was structured, and 
we mentioned that we randomized the order in which participants 
performed the horizons. This means that, for example, some 
participants performed nH = 2 before nH = 0. We wondered if the order 
of execution of the horizons had an influence on learning. To address 
this, we performed an analysis comparing learning times for different 
orders of horizon presentation. The results of this investigation can 
be found in the Supplementary Figures S2, S3. In brief, we discovered 
that once the optimal strategy was understood in nH = 1 or 2, 
participants generalized the rule and, by abstraction, applied it to the 
horizon performed afterwards. For this reason, we defined a single 
learning time per session. We defined learning time (tL) as the number 
of episodes that occurred before the optimal strategy was assimilated. 
We considered the optimal strategy to be assimilated if the participant 
employed it in at least 9 out of the following 10 episodes, and 75% of 
the remaining episodes until the end of the block. To account for 
perceptual discrimination errors (during low VD), we excluded the 
most difficult episodes in terms of ΔS to calculate the learning time.

Figure 2 shows the summary results for all 28 participants. In 
Panel (a), we show the histogram of their learning times in terms of 
episodes (E). The last histogram bar in Figure 2A (shown as NL – No 
Learning) represents the 6 participants who never learned the optimal 
strategy. We divided participants into 4 groups as a function of their 
learning speed: slow, medium, fast, and those who never learned the 
optimal strategy.

Figure 2B shows the VD, for all difficult trials (smallest ΔS) and 
participants, where VD was calculated as the percentage of correct 
choices over the last 80 episodes in the horizon nH = 0 block. On 
average, stimuli were discriminated correctly in 71% of the most 
difficult trials. This indicates that most participants continued making 
errors after learning the optimal strategy due to low VD. This is 
reported in Figure 2C which shows the grand average and standard 
error of the PF across subjects as a function of the difficulty level for 
all episodes following each participant’s learning time (p = 10−12, 
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F-stat = 59). Note that, in Figure 2D, RT increased as a function of VD 
(p = 10−25, F-stat = 160).

The dependence of PF and RT on VD together with the other 
variables had to be established statistically. To assess the learning process, 
we quantified the relationship of PF and RT with horizon nH, trial within 
episode TE, and episode E. To obtain consistent results, we adjusted these 
variables as follows. The trial within episode was reversed chronologically, 
because the optimal choice for the last TE (large) is the same regardless of 
the horizon number. Furthermore, regarding the model of PF, we made 
a per trial adaptation of PF (PF was originally calculated per episode), i.e., 
the probability of choosing the optimal choice Poc. Finally, to assess 
differences between learning groups, we  introduced the categorical 
variable L that identified the group of participants that learned the 
optimal strategy and the ones who did not (as seen in Figure  2A). 
We then used a generalized linear mixed effects model (Verbeke and 
Molenberghs, 2009; Gałecki and Burzykowski, 2013) to predict PF and 

RT. The independent variables for the fixed effects are horizon nH, trial 
within episode TE, the passage of time expressed in terms of episodes E, 
and ΔS. We set the random effects for the intercept and the episodes 
grouped by participant p; we write the random effects as ( |E p). The 
resulting models are: P L E L S L T E poc n EH~ · · · · )+ + +∆ ( |  and 
RT L E L S L n T E pH E~ · · · · ).+ + +∆ ( |  The regression coefficients, 

along with their respective group significance, are shown in 
Figures 2E,F. The detailed results of the statistical analysis are reported 
in Section 5.5. In panel (e), Poc increases with TE, suggesting that the 
first trial(s) within the episode are less likely to be guessed right, i.e., 
choosing the smaller stimuli. This makes sense, since only the early 
trials within episode required inhibition. Moreover, looking at the 
amplitude of the regression coefficients, we can see that this effect is 
even stronger in the no-learning case. The same argument can be made 
for the dependence with nH. A strong difference between learning and 
no-learning can be appreciated when considering the time dependence: 

FIGURE 2

Summary behavioral results across participants. (A) Histogram of learning times. Learning time is defined as the number of episodes (E) throughout the 
whole session before the optimal strategy was applied repeatedly (see Methods). We identified four groups of participants: fast, medium and slow 
learners, and participants who did not discover the optimal strategy (NL – No Learning). (B) Histogram of visual discrimination (VD) calculated by 
computing the percentage of correct selections of the last 80 episodes, in the horizon 0 block, for only the most difficult trials (ΔS  =  0.01). 
(C) Performance as a function of ΔS, for the trials after the optimal strategy was applied. (D) Reaction Time (RT) versus ΔS. The more similar the stimuli, 
the longer participants needed to make a decision. (E,F) Regression coefficients for the generalized linear mixed-effects models 
P L E L S L n T E poc H E~ · · · · )+ + +∆ ( |  and RT L E L S L n T E pH E~ · · · · )+ + +∆ ( | , where Poc is the probability of making the optimal choice, RT is the reaction 

time, E is the episode number, nH  is the horizon number, TE  is the trial within episode, L identifies the group of participants that learned the optimal 
strategy, n TH E:  is the interaction term, and p is the participant. We used maximum likelihood to estimate the model parameters. Participants were 
divided into two groups: those who learned the optimal strategy (blue) and those who did not (red), see Panel (a). The statistical difference between 
learning groups in reported next to the legend.
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FIGURE 3

Behavioral results for three representative participants. Rows and columns refer to horizons (nH) and participants, respectively. (A) Performance per 
episode. (B) Choice behavior per trial, in terms of selecting the bigger or smaller stimulus. Results are gathered by horizon (nH) and respective trial 
within episode (TE). (C) Cumulative density function (CDF) of reaction times. The color code indicates the trial within episode (green for TE =  1, blue for 
TE =  2, and red for TE =  3). (D) Order of execution of blocks and horizons.

for the learners group Poc increases as time goes by, i.e., E increases, 
while it is not significant for the group that did not learn the optimal 
strategy. The two learning groups are globally statistically different 
(p = 10−7). In panel (f), RT shows converse effect directions between 
learning and no-learning groups for both dependencies on TE  and 
nH. The participants who learned the optimal strategy exhibited longer 
RT for the earlier trials within the episode, consistent with the need to 
inhibit the selection of the larger stimulus. Also, the larger the horizon, 

the longer the RT, opposite to the no-learning group. As expected, RT 
increases with decreasing ΔS for both groups. The two learning groups 
are globally statistically different (p = 10−17).

Figure 3 depicts the data from 3 sample participants. In particular 
we show their PFs, CHs, and RTs metrics, and the order of execution 
of the different blocks and horizons. Each column corresponds to a 
participant and each row to a different horizon level. Note that all three 
participants performed the nH = 0 task correctly (Figures 3A,B). The 
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first 2 participants also performed nH = 1 correctly, while participant 3 
did not learn the correct strategy until executing nH = 2. Note that 
participants 1 and 2 performed nH = 1 before nH = 2 and were able to 
apply what they learned in nH = 1 to nH = 2. Because of this, a very fast 
learning process can be seen during the first nH = 2 block. In Figure 3C, 
note that some RTs are negative. In these cases, the participant did not 
wait for the presentation of the GO signal to start the movement.

2.3 A Neurally-inspired model of 
consequential decision-making

In this section we describe our mathematical formalization of 
consequential decision-making which incorporates a variable 
foresight mechanism and adapts to the distribution of reward value 
across trials. The formalization takes the form of a three-layer neural 
model. In brief, the bottommost layer is a mean-field model for 
binary decision-making. The mean-field is driven by a strategy 
learning layer which then dictate the choices to the decision-
making process.

We feel this novel approach yields several advantages over more 
classical models (i.e., reinforcement learning, drift-diffusion, urgency-
gating, etc.). In brief, we aim to provide a formalization of the neural 
processes involved in reward-driven, delayed-value, multi-step 
decisions in a context in which attaining reward is contingent on 
learning the covert effect of actions on the environment. In other 
words, learning must operate in the absence of explicit performance 
feedback. Another unique aspect of our approach is the incorporation 
of a foresight mechanism which adapts to the covert relationship 
between actions and their effect on the environment as well as to the 
distribution of reward value across the trials of an episode. We expand 
on the reasoning behind the creation of our novel formalization in the 
Discussion section.

2.3.1 Layer 1: Neural dynamics
To describe the neural dynamics at each trial, we used a mean-

field approximation of a biophysically based binary decision-making 
model (Wilson and Cowan, 1972; Brunel and Wang, 2001; Wang, 
2002; Thura et al., 2022). This approximation is often used to analyze 
neuronal dynamics in contexts where mean population activity is 
relevant. It has been shown that even simple mean-field 
approximations leveraging as little as two internal variables could 
reproduce most features of the underlying spiking neuron model 
(Wong and Wang, 2006).

The core of the model consists of two populations of excitatory 
neurons: one sensitive to the stimulus on the left-hand side of the 
screen (L), and the other to the stimulus on the right (R). The intensity 
of the evidence is the size of each stimulus, which is directly 
proportional to the amount of reward displayed. In the model this is 
captured by the parameters λL, λR, respectively. Though distinguishing 
between the bigger and smaller stimulus values is critical in our task, 
in the model it is convenient to characterize stimuli based on their 
position, i.e., left/right. The reason being that the information regarding 
target size is already conveyed by the respective stimuli values, i.e., the 
parameters λL, λR. Moreover, this allows us to introduce an extra degree 
of freedom in the model without increasing the number of variables. 
The equations
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describe the temporal dynamics of the firing rates (rL, rR) for each 
of the two populations, and may be interpreted as originating from 
a neural network as shown in Figure 4A. Each pool has recurrent 
excitation (ω+), and mutual inhibition (ω−). Although the schematic 
indicates that both excitation and inhibition emanate from a single 
population of excitatory neurons, this connectivity could 
be achieved with an equivalent network of excitatory and inhibitory 
subpopulations (Wong and Wang, 2006; Moreno-Bote et al., 2007; 
Wong et  al., 2007; Marcos et  al., 2013; Thura et  al., 2022). In 
particular, we refer to the work by Wong and Wang (2006) in which 
they reduced a spiking neural network of both excitatory and 
inhibitory neurons to a two-variable system describing the firing 
rate of the mean-field dynamics of two populations of excitatory 
neurons. We opted for this simplified architecture because it is 
equivalent to the more complex model under certain conditions 
and provides a more compact formulation. Furthermore, the 
network shares a basic feature with many other models of 
bi-stability: to ensure that only one population is active at a time 
(mutual exclusivity; (Leopold and Logothetis, 1999; Rubin, 2003)), 
mutual inhibition is exerted between the two populations (Blake, 
1989; Laing and Chow, 2002; Wilson, 2003). The overall neuronal 
dynamics are regulated by the time constant τ, and Gaussian noise 
ξ with zero mean and standard deviation σ. The sigmoidal 
function f is defined as f x F x k( ) = + − −( )( )( )max / exp /1 θ  , with 
Fmax  denoting the firing rate saturation value.

The neural dynamics described in this section refer to the time-
course of a single trial, and are related to the discrimination of the 
two stimuli. The model commits to a perceptual decision when the 
difference between the L and R pool activity crosses a threshold Δ 
(Roxin and Ledberg, 2008), see Figure 4B. This event defines the 
trial’s decision time. Note that the decision time and the likelihood of 
picking the larger stimulus are conditioned on the evidence associated 
with the two stimuli (λL, λR), i.e., how easy it is to distinguish between 
them. The larger the difference between the stimuli, the more likely, 
and quickly, the larger stimulus is selected.

This type of decision-making model is made such that the larger 
stimulus is always favored. Indeed, according to Eq. 1, the target with 
the stronger evidence is the most likely to be selected. As described in 
the next section, the addition of the middle layer of our model 
provides a generalization of this mechanism by allowing the choice 
between the smaller and the larger target.

2.3.2 Layer 2: Intended decision
While most decision-making models consider only one-shot 

decisions (Wong and Wang, 2006; Roxin and Ledberg, 2008; Salinas, 
2008; Hernández et  al., 2010; Kilpatrick et  al., 2019), the increased 
temporal span and the various sources of uncertainty inherent in the 
consequential task necessitate the addition of a layer to the model. The 
second layer of the model enables dynamic shifting between the natural 
impulse to choose the larger stimulus and inhibition. We implemented 
such a mechanism by means of an inhibitory control pool, which 
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regulates the reversal of the selection criterion toward the smaller or 
larger stimulus. We called this mechanism intended decision, as it defines 
the intended target to select at each trial. This layer enables the model to 
switch preference as a function of context (see layer 3 description).

The intended decision mechanism is represented by a 
two-attractor dynamical system. The state of the model can 
be interpreted as the continuous expression of the tendency to select 
one choice over another. The attractors are the states toward which the 
dynamics of the system naturally evolve. Since we have two choices, 
we considered the energy function E ψ ψ ψ( ) = −( )2 2

1  which has two 
basins of attraction at 0 and 1. The basins at 0 and 1 are associated with 
the small and big stimulus, respectively (see Figure 5A). Hence, the 
dynamics of ψ are determined by
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where τψ is a time constant. The Gaussian noise ξψ(t) is scaled by a 
constant (σψ) and decays quadratically with time. Thus, the noise 
exerts a strong influence at the beginning of the process and 
becomes increasingly negligible as the system approaches either of 
the basins.

If we set the initial condition to ψ0 0 5= .  and let the system evolve, 
the final state would be either 0 or 1 with equal probability. Shifting 
the initial condition toward one of the attractors results in an increased 
probability of the system ending in the corresponding basin, and 
ultimately its fixed point. Figure 5B shows 10 simulated trajectories of 
ψ t( ) where the initial condition was set to ψ0 0 45= . . Since the initial 
condition is smaller than 0.5, most of the trajectories reach the fixed 
point at 0 and only a few of them, due to the initial noise, reach 1 as 
their final state.

The initial condition (ψ0) and the noise intensity (σψ) are 
interdependent. The closer an initial condition is to one of the 
attractors, the larger the noise must be to escape the corresponding 
basin of attraction. Behaviorally, the role of the initial condition is to 
capture the a-priori bias of choosing the smaller/bigger target. Please 
note, however, that a strong initial bias toward one of the targets does 
not guarantee the final decision, especially when the level of 

uncertainty is large. Because of this behavioral effect, we refer to the 
noise intensity σψ as decisional uncertainty.

The evolution of the dynamical system in Eq. 2 describes the 
intention of the decision-making process, at each trial T, to choose 
the smaller/bigger target. The intention is established once a fixed 
point is reached. We  call ψ T( )  the fixed point reached at trial 
T, i.e.,

 
ψ ψT t
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is the intended decision of choosing the smaller (0) or bigger (1) 
stimulus.

Although the small/big stimulus may be favored at each trial, the 
final decision still depends on the stimuli intensity ratio. More 
specifically, if the evidence associated with the small/large stimulus is 
higher/lower than that of its counterpart, the dynamics of the system 
will evolve as described in the previous section, see Eq. 1. For this 
reason, we  incorporated the intention term ψ T( ) in Eq.  1 which 
connects the intended decision layer with the neural dynamics layer. 
This yields a novel set of equations
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which is able to switch preferences between the large and small 
stimulus. If ψ T( ) =1, the larger stimulus is favored (and the equations 
reduce to Eq. 1); however, if ψ T( ) = 0 the smaller stimulus is preferred.

In summary, the intended decision layer enables the model to 
dynamically adjust preferences for the bigger or smaller stimulus. This 
inhibitory control plays the role of the regulatory criterion (size-wise) 
with which a decision is made in the consequential task, as described 
by Eq. 2.

FIGURE 4

(A) Network structure of binary decision model of mean-field dynamics. The L pool is selective for the stimulus L (λL), while the other population is 
sensitive to the appearance of the stimulus R (λR). The two pools mutually inhibit each other (ω−) and have self-excitatory recurrent connections (ω+). 
(B) Firing rate of the two populations (L, R) of excitatory neurons according to the dynamics in Eq. 1. A decision is taken at time 506  ms (vertical dashed 
line) when the difference in activity between L and R pools passes the threshold of Δ =25  Hz. The strengths of the stimuli are set to λL =  0.0203 and 
λR =  0.0227. The time constant and the noise are set to τ =  80  ms and σ =  0.003  ms−1, respectively.
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2.3.3 Layer 3: Learning the strategy
Although the previously described intended decision layer 

enabled the model to target a specific type of stimulus at each trial, 
a second mechanism is required to internally oversee performance 
and to promote beneficial strategies. In the consequential task, the 
goal is to maximize the cumulative reward value obtained in each 
episode. As shown in previous analyses, most participants learned 
the optimal strategy after an exploratory phase, gradually improving 
their performance until the optimum was reached. Inspired by the 
same principle of exploration and reinforcement, we incorporated 
the strategy learning layer in our model.

The internal dynamics of an episode are such that selecting the 
small/large stimulus in a trial results in an increase/decrease of the 
mean value of the presented stimuli in the next trial (Figure  1). 
Consequently, the strategy to maximize the reward value must vary as 
a function of trial within episode (TE). For clarity, each trial T is 
associated with an episode E and number of trial within episode 
TE. We use both notations interchangeably, i.e., T = (E, TE).

The strategy learning mechanism in the model reinforces beneficial 
strategies and weakens less rewarding ones, see Discussion for a 
comparison with existing models. Following each episode E, the strategy 
function φ φ= ( )E TE,  is updated by considering the intended choice 
ψ T( ) and the obtained reward value R(T). In our case, reward value 

originates from each participant’s subjective evaluation in the absence 
of explicit performance feedback. This internal assessment yields a 
positive or negative perception of reward, i.e., a subjective reward. 
Learning implies that the preference for the selected strategy is 
reinforced if the participant’s internal assessment results in positive 
subjective reward. Namely, with a positive reward (R(T) > 0), φ  is 
increased if the larger stimulus was chosen ( ψ T( ) =1) and decreased 
otherwise ( ψ T( ) = 0). Notice that a negative reward discourages the 
current strategy but promotes the exploration of alternative strategies 
and makes it possible to learn the optimal one over time. Mathematically, 
we describe the dynamics of learning as
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where k is the learning rate. Note that if k = 0, φ E TE,( ) remains 
constant and, therefore, there is no learning. The term 
φ φE T E TE E, ,( ) −( ) ( )( )1

2 2  is required to gradually reduce the increment 
to zero the closer φ  gets to either zero or one. This bounds φ  to the 
interval [0, 1]. The reward function R(E TE, ) represents the subjective 
reward. The only requirement for this function is that R(E TE, ) must 
be  positive or negative if the subjective reward is considered 
beneficial or not, respectively. In the case of the current task, 
participants must look for clues that convey indirect information 
about their performance. The key observation participants had to 
make was the change in stimuli mean M between consecutive trials 
in an episode as a result of their choices. For this reason, we defined 
the reward function as R E T M E T M E TE E E, , ,( ) = +( ) − ( )1  (see 
Eq.  4). We  discuss how the reward function could generalize to 
different tasks in the conclusions section.

The strategy layer operates a longer time scale than the lower 
layers. The strategy is updated at the end of each episode by 
reinforcing/weakening the policy that has yielded a positive/
negative reward. Mathematically, as mentioned before, this means 
that with a positive reward (R(T) > 0), φ  is increased if the larger 
stimulus was chosen ( ψ T( ) =1) and decreased otherwise ( ψ T( ) = 0). 
In the case that both the larger stimulus is repeatedly chosen and 
positive rewards are obtained, then φ  converges to 1. In contrast, if 
both the smaller stimulus is repeatedly chosen and positive rewards 
are obtained, then φ  converges to 0. This update manifests as a 
change in the initial condition for the intended decision ψ  (Eq. 2), 
i.e., biasing the direction, small or big, for the intended decision to 
go. As shown in Figure 5, shifting the initial condition toward one 
of the two basins (0 or 1) increases the probability of reaching it. 
Mathematically, this can be implemented by setting ψ φ0( ) = ( )T  
for each trial. In this way, the connection between the intended 
decision and strategy layers lies in the influence the strategy 
learning exerts at each decision.

To conclude, our model consists of a three layer structure. The 
dynamics of each layer are defined by Eq. 3 (neural dynamics), Eq. 2 
(intended decision), and Eq. 4 (strategy learning). Figure 6 shows a 
schematic of the complete model. The bottom part depicts the neural 
dynamics originating from two pools of neurons which encode the 

FIGURE 5

Dynamics of the second layer of the model. (A) Energy function E ψ ψ ψ( ) = −( )2 2
1  with two basins of attraction at 0 and 1, associated with the small/

big targets, respectively. The small circle represents a possible initial condition for the dynamics of ψ . (B) Ten simulated trajectories for ψ t( ) according 
to Eq. 2 with initial condition ψ 0 0 45( ) = .  and noise amplitude σψ =  0.4  ms−1.
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responses to two external stimuli (L, R). The middle shows the 
intended decision layer at every trial. Finally, the top is the strategy 
learning layer which evolves at a much slower timescale; the 
combined information of the intended decision and the subjective 
reward drives strategy learning.

2.4 Model simulations

We performed a parameter space analysis to assess the influence 
of the model parameters on the main behavioral metrics of interest: 
reaction time (RT) and performance (PF). To obtain meaningful 
biophysical results for the neuronal dynamics, we  simulated our 
model varying the time constant τ, the noise amplitude σ, and the 
decision threshold Δ (in Eq. 3) in the following ranges: τ ∈[ ]25 95,  
ms, 3 210 ,10σ  

 
 

− −∈  ms−1, and ∆∈[ ]0 01 0 035. , .  ms−1 (see (Marcos 
et  al., 2013). Also, we  set Fmax = 0.04 ms−1, θ = 0.015 ms−1, k  = 
0.022 ms−1, ω+ = 1.4, ω− = 1.5. We fixed the parameters defined in the 
function f (see Eq. 3) as well as the connection strengths between 
pools of neurons (ω+ and ω−), as in (Marcos et al., 2013). As we will 
see below, by only varying τ, σ, and Δ we can simulate a wide range 
of different behaviors. In Eq.  2, we  set τψ = 10 ms such that the 
dynamics of Eq. 2 is faster than the dynamics of Eq. 3 while remaining 
the same order of magnitude. Figure 7A shows how RT is affected by 
τ and Δ. By increasing the time constant τ, the RT increases both in 
mean and standard deviation (see Supplementary Figures S4a,d). The 
same trend occurs when increasing the threshold Δ 
(Supplementary Figures S4b,e). When varying the noise σ, we did not 
find a substantial difference in the RT (Supplementary Figures S4c,f). 
By fixing τ, σ, and Δ, we quantified the influence of the learning rate 
k and the decisional uncertainty σψ on the PF, and, consequently, on 
the learning time tL (defined as in section Behavioral Results). 
Figure  7B shows that learning time decreases as learning rate k 

increases and decisional uncertainty σψ decreases. Note that for these 
simulations we used nH = 1 with 50 episodes, therefore any tL bigger 
than 50 means the optimal strategy was not learned.

To demonstrate the behavior of the model, Figure 8 shows the 
results of a typical simulation of a horizon nH = 1 experiment. Figure 8A 
shows the dynamics of the neural dynamics layer of our model together 
with the stimuli used in the simulation during the first three episodes. 
The bottom row shows the time course of the two population firing rates 
(Eq. 3) encoding the stimuli L, R (depicted in the top row). To better 
understand the progression of this process over time, Figure 8B provides 
a view of 36 episodes. The top row shows the performance and difficulty 
(in terms of difference between stimuli ΔS) metrics. Note that the 
optimal strategy in this simulation was learned and applied from the 17th 
episode onward. After this point, only the most difficult trials (smallest 
ΔS) managed to diminish the performance. The same conclusions can 
be drawn by looking at the time course of the intended decision metric 
(middle inset). After the 17th episode the intended decision metric 
exhibits a repeating pattern (small for TE = 1, and big for TE = 2). The 
bottom row shows the strategy learning. For the first trial within episode 
(TE = 1), ϕ tends to 0, i.e., it pushes the intended decision to choose the 
smaller stimulus. For the second trial within episode (TE = 2), the trend 
is reversed, effectively capturing the optimal policy.

2.5 Individual participants’ behavioral fit

In this section we describe the fit of the model parameters to the 
participants’ individual behavioral metrics. The first step is to find the 
best fit for the neural dynamics by fitting the reaction time (RT) and 
the visual discrimination (VD), i.e., fit the parameters involved in 
Eq. 3. These parameters have a biological meaning, and therefore they 
should be  fit to the corresponding measures in the neural data. 
However, in our case we are only aiming to fit behavioral data. As 

FIGURE 6

Multi-layer network structure of mean-field model of consequence-based decision making, in the case of a horizon 1 experiment. From the bottom: 
Neural dynamics layer: pool L is selective for stimulus L (λL), while the other population is sensitive to the appearance of stimulus R (λR). The two pools 
mutually inhibit each other (ω−) and have self-excitatory recurrent connections (ω+). The dynamics of the firing rate of the two populations is regulated 
by Eq. 3. Intended decision layer: the function ψ represents the intention, in terms of decision process, made at each trial T, of aiming for the smaller or 
bigger target. The dynamics of the intended decision is regulated by Eq. 2. Strategy learning layer: after each trial the strategy is revised, in a 
reinforcement learning fashion, depending on the magnitude of the gained reward value. The strategy is updated according to Eq. 4.
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FIGURE 7

Parameter space analysis. (A) The RT increases when increasing either τ or Δ (σ  =  0.001  ms−1). (B) Learning time (tL) decreases when learning rate k 
increases and when decisional uncertainty decreases σψ (τ =  81  ms, σ =  0.001  ms−1, and Δ =  30  Hz).

FIGURE 8

Model example simulations for a horizon 1 block. (A) Simulation of the first 3 episodes. Top row: Stimuli presentation with selections indicated by a 
yellow dot. Bottom row: firing rate of the two populations of neurons encoding the left (in blue) and right (in red) stimuli (Eq. 3). Vertical dashed bars 
indicate the time the decision threshold was crossed. (B) Simulation of 36 consecutive episodes. First row: Performance (blue - solid) and difference 
between stimuli ΔS (green - dashed). Second row: intended decision dynamics of choosing the bigger (1) or smaller (0) stimulus. Third row: evolution 
of strategy learning for each trial within episode (TE). Parameters used for the simulations: G =  0.3, Δ =  25  Hz, τ =  80  ms, σ =  0.006  ms−1, φ0 1 0 5,TE( ) = .  
for TE =  1,2, k =  0.4, σψ =  0.4  ms−1.
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shown in Figure 7, and discussed in the corresponding section, σ does 
not have an influence on RT, and the same mean RT can be found for 
different combinations of τ and Δ. In the absence of neural data, it 
would be meaningless to fit all parameters to RT since this would lead 
to overfitting. Therefore, in order to reduce the number of parameters 
to fit, we  fix σ = 0.001 ms−1, and we  vary τ and Δ dependently to 
explore the parameter space unidimensionally. Specifically, we vary 
τ ∈[ ]25 95,  ms and ∆ = +−2 5710 0 00764. · .τ  ms−1, which corresponds 
to the diagonal in Figure 7A.

The remaining steps of the fitting process pertain to the 
behavioral metrics. The second step consists of calculating the initial 
preferential bias ϕ0. Finally, in the third step, we run the model using 
the previously established parameters to find the best fit for σψ and k, 
i.e., the decisional uncertainty and the learning rate. Following the 
same argument as before, we reduced the number of parameters to 
fit. Since the same mean learning time can be obtained for different 
combinations of σψ and k, as shown in Figure  7B, we  fix σψ = 0.6 
and vary k∈[ ]0 2 5, . .

To test the robustness of the fitting method, and to test whether 
we are overfitting, we performed a parameter recovery analysis (White 
et al., 2018; Evans et al., 2020; Danwitz et al., 2022). We obtained 
correlation coefficients close to 1, which reflect an excellent recovery, 
see Supplementary Figure S5.

We fit the parameters in a sequential fashion because the estimates 
of both RT and VD depend uniquely on Eq. 3. In order to evaluate the 
dynamics of the perceptual processes, RT and VD are fit using horizon 
nH  = 0 only. Once these have been established, we  focus on the 
behavioral part, by fitting the initial preferential bias and the learning 
rate for different horizons.

2.5.1 Reaction times and visual discrimination
The first metric to fit is each participant’s RT. As explained above, 

to perform this fit we use Eq. 3 and data from nH = 0, by varying 
τ ∈[ ]25 95,  ms. Note that due to response anticipation of the GO 
signal, the experimental RTs could be negative in a few cases (see 
Figure 3C). A free parameter was incorporated into the model to 
control for this temporal shift.

The second metric to fit is the VD, i.e., the ability to distinguish 
between stimuli. We assumed VD to be specific to each participant, 
and constant across blocks of each session. As a means of assessment, 
we checked how often the larger stimulus had been selected over the 
last 80 correct trials of the nH = 0 block for each level of difficulty. The 
only case where accuracy was low was the highest difficulty level 
(ΔS = 0.01). For our model to capture this, we  used a linear 
transformation s s= +α β  to re-scale the stimuli s, ranging from 0 
(empty) to 1 (full), to a range more meaningful for the model 
(λL R, ~ 10 2− , (Moreno-Bote et  al., 2007)). Additional constraints 
were set for α and β so that this transformation would not swap the 
intensities between stimuli (i.e., if s sL R≥  then  s sL R≥ ), and so that 
the input stimuli would always be positive (sL R, > 0). Abiding by 
these conditions, we  varied α and β and ran a grid-search set of 
simulations of Eq. 3 (with ∆S s sL R= − = 0 01. ). We calculated how 
often the firing rate of the population encoding the larger stimulus 
was bigger than the alternative. The result depends not only on α and 
β, but also on τ, σ, and Δ. Thus, to capture the large variety of results 
encompassed by the ranges of τ, σ, and Δ, while abiding by the 
aforementioned constraints, we fix α = −0.018, and let β vary between 

0 and 0.1. These conditions allowed for proper exploration of the 
parameter space.

We ran 100-trial simulations of a horizon nH = 0 block for each 
combination of the parameters τ and β. We  then calculated the 
empirical cumulative distribution functions (CDF) of the RTs for 
all trials, and the VDs only for the difficult trials, i.e., when 
ΔS = 0.01. The distribution of simulated RTs was then compared to 
the distributions of experimental RTs by means of the Kolmogorov–
Smirnov distance (KSD) between CDFs (Smirnov, 1948; Stephens, 
1974; Quinn and Keough, 2002; Marsaglia et al., 2003). Since both 
RTs and VDs strongly depend on the parameters, both were fit 
simultaneously. Namely, we  consider the error metric 

ˆ | |sim realKSD c VD VDM = + − , with c being a constant set to 0.4 to 
balance the weight of the two metrics, and VDsim, VDreal being the 
VD from the simulated and real data, respectively. The parameters 
τ and β that minimize M



 are selected for the fit. Figure 9A depicts 
the CDF of the RT for the participants and for the best-fit 
model simulation.

To summarize, in the first step of the fit, we focused on the neural 
dynamics layer by fitting all the free parameters of Eq. 3, i.e., τ and β, 
corresponding to RT and VD. The subsequent steps consider the 
behavioral component of the data.

2.5.2 Initial preferential bias
Each participant performing the task might have an initial choice 

preference, i.e., a natural bias toward the larger (or smaller) stimulus. 
In our model this is captured by the parameter ϕ0 in Eq. 4. In the 
absence of bias, ϕ0 equals 0.5. The greater the preference toward the 
bigger choice, the closer to 1 ϕ0 will be.

We set a vector of initial conditions φ φE T TE E=( ) = ( )1 0,  for 
each trial within episode TE. To quantify ϕ0, we selected the first 3 
episodes for each participant, and calculated the frequency f with 
which the larger stimulus was selected. The parameter ϕ0 functions as 
an initial condition for the intended decision process (see Eq. 2). In 
agreement with the attractor dynamics, if the initial condition 
coincides with one of the basins of attraction, the system will be locked 
in that state. To prevent this (since ϕ0 should only be an initial bias), 
we rescaled the frequency of the selected choices f to make the value 
closer to 0.5, i.e., φ0 1 3= +( )f /  (other rescaling factors could be used 
and would not change the results). Figure  9B shows the values 
obtained for ϕ0 for each trial within episode TE. Note that we have 
selected one block from nH  = 2 for participant 2 and nH  = 1 for 
the others.

2.5.3 Learning rate
Finally, to fit the remaining parameter k to each participant’s 

data, we ran the model using the previously established parameters 
(τ, β, and ϕ0) and fit the resulting performance to that of each 
participant. For each k, we ran 50 simulations and extracted the 
performance mean and standard deviation. To compare model and 
participant performances, we considered different metrics such as 
maximum likelihood, Bayesian (BIC) and Akaike information 
criterions (AIC) (Smirnov, 1948; Stephens, 1974; Huber-Carol et al., 
2002, 2017; Nikulin and Chimitova, 2017). While these are common 
metrics for model comparison, they disregard the specific time 
dependency throughout each block, which is a key factor to 
characterize the learning process of the participant. Classical 
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maximum likelihood, for example, would be strongly affected by 
trials exhibiting low performance due to participant fatigue or 
distraction. This renders the metric unsuitable for our purpose. 
Recently, more complex methods have been developed to overcome 
this issue, such as in (Boelts et al., 2022). Nevertheless, we do not 
require such complex metrics since our goal is to show that the 
model can fit the full range of the participants’ data, not to compare 
goodness of fit to other models. To this end, we designed an ad-hoc 
metric consisting of two components to determine goodness of fit. 
The first component is the initial condition, obtained by calculating 
the mean-square error of the performance between the model and 
the data during the first five episodes. By minimizing the mean-
square error, we ensured that the learning process began under 
similar conditions for the model and for the participant. The second 
factor is the time required to learn the strategy. As already outlined 
in the Behavioral Results section, we defined the time at which the 

strategy was learned as the moment after which the optimal strategy 
was employed in at least 9 out of the following 10 episodes, and 75% 
of the remaining episodes until the end of the block. To ensure that 
a low success rate was not due to errors caused by visual 
discrimination, we excluded the episodes with ΔS = 0.01 from this 
part of the fit. In summary, by combining the results for the initial 
conditions (I) and the learning time (L), we could extrapolate the 
best fit for k by minimizing the linear combination L I+ 0 1. . .

Figure 9C shows the participants’ performance (red marks) as well 
as the associated best-fit model performance (the blue line is the mean, 
and the colored area is the 95% confidence interval). The top part of the 
plots depicts the learning time (tL) calculated for the participant (red 
mark) as well as for the best fit model simulations (blue error-bar). 
Table 1 shows the best-fit parameter values per participant.

All participants except one learned the strategy yielding 
maximum reward value. Participant 1 learned very quickly (in just 

FIGURE 9

Model fit to three sample participants’ behavioral metrics. Data used: one block of horizon 1. The specific parameter values of the fit are displayed in 
Table 1. (A) Cumulative distribution function (CDF) of the reaction times (RT) for the participant data (solid red) and model simulation (dashed blue). 
(B) Initial bias ϕ0 of the participant at the beginning of the block for each trial within episode (TE). The more the preferred choice tends toward 
choosing the larger (smaller) stimulus, the bigger (smaller) ϕ0 is. (C) Bottom: Performance of the participant (red crosses) and of the model’s 
simulations (blue line: mean, shaded area: confidence interval). Top: Learning time for the participant (red dot) and model simulations (blue error 
bar). (D) Goodness of fit (GF) for three metrics: reaction time (RT), initial performance (PFi), and learning time (tL). Goodness of fit is calculated as 
follows: RT = 1-Kolmogorov–Smirnov distance between CDF, PFi = 1- mean square error, tL: 1- difference between learning times of participant and 
model’s mean divided by the total number of episodes.

https://doi.org/10.3389/fnbeh.2024.1399394
https://www.frontiersin.org/behavioral-neuroscience
https://www.frontiersin.org


Cecchini et al. 10.3389/fnbeh.2024.1399394

Frontiers in Behavioral Neuroscience 14 frontiersin.org

8 episodes). The model fit to participant 1 yielded the highest 
learning rate (k = 2.6). Interestingly, even though participant 3 did 
not learn the correct strategy, the parameters obtained from the fit 
still indicated some learning (k = 0.2). Note that, though participant 
2 learned the strategy fairly quickly (after only 15 episodes), 
participant 2’s learning rate was only slightly greater than participant 
3’s despite participant 3 never learning the optimal strategy. The 
reason the learning rates for these two participants are similar, even 
though they reflect two distinct strategies, lies in the initial 
condition. Namely, participant 3 began the task with a stronger bias 
toward choosing the larger stimulus (φ0 0 67 0 67TE( ) = { }. , .  vs. 
0 56 0 67. , .{ } for participant 2). Such disadvantageous initial 

conditions combined with a weak learning rate was not enough for 
the strategy to be learned in a block of 50 episodes.

Figure 9D shows the goodness of fit for the two main behavioral 
metrics we aimed to reproduce: the reaction time (RT) and the 
performance in terms of initial performance (PFi) and learning 
time (tL). To measure the goodness of fit while remaining consistent 
with our fitting procedure, we used the following metrics: KSD for 
RT, mean-square error for PFi, and the difference between the 
participant’s data and the model’s mean divided by the total 
number of episodes for tL.

To summarize, we first found the best fit for the RT and VD by 
varying τ and β in Eq. 3. Then, we calculated the subjective initial bias 
ϕ0. Finally, while holding the aforementioned parameters fixed, 
we found the best fit for the learning rate k.

To illustrate that the model can capture the full range of 
behavior, Figure  10 shows the goodness of fit for the RT, initial 
performance PFi, and learning time tL for all 28 participants. For all 
three metrics, we show the scatter plot including each participant, 
the respective distribution, and the boxplot depicting the median 
and the 25th/75th percentiles. For reference, we superposed colored 
markers to indicate three sample participants shown in the 
previous figure.

In summary, we  fit the model to each of the participant’s 
behavioral metrics. We first used the RT distribution and VD of each 
participant to fit the parameters in Eq. 3. Once these parameters were 
fixed, we  moved on to calculate the initial bias before running 
simulations of the model. Finally, we  compared the results of the 
simulations with the performance of the participants and found the 
best fit for the behavioral parameters, i.e., the learning rate and 
decisional uncertainty.

3 Discussion

In this study we analyzed how the consideration of consequence 
influences learning in value-based decision-making, and provided an 

account of the underlying neural processes. To this end, we examined 
how human participants learned to make sequences of decisions 
between value-based stimuli in the consequential task. This is a novel 
experimental task in which initial knowledge about environment was 
minimal, and explicit performance cues were absent. Consequence 
refers to the effect choices exert on the value of stimuli in the next trial. 
This was designed to promote small value choices during the early 
trials of each episode, and a large value one in the last trial. The 
instruction to each participant was to explore and to find the strategy 
leading to the highest cumulative reward value. The absence of explicit 
performance cues was meant to promote the development of a 
subjective assessment of performance based on relating the size of the 
stimuli in the current trial to the choice in the previous one. Our 
results show that decisions involving the computation of future 
consequence took longer to perform than those with no further 
consequence (i.e., the last choice of each episode), suggesting a more 
involved decision-making process when future consequence is to 
taken into account. Most participants eventually learned the optimal 
strategy, although with significant differences in their learning times.

Based on these observations and on previous evidence, 
we introduced a mathematical model of a set of plausible cognitive 
processes for consequence-based decision-making. The model is 
organized in three layers. The bottom layer describes the average 
dynamics of two neural populations representing the preference for 
each option. The populations compete against each other until their 
difference in activity crosses a threshold. The middle layer illustrates 
the participant’s preference for choosing the bigger or smaller 
stimulus at each trial (the so-called intended decision). The top layer 
describes the strategy learning process which oversees the model’s 
performance, adapts by reinforcement to maximize the cumulative 
reward value, and drives the intended decision layer. This oversight 
mechanism, combined with the modulation of preference, accurately 
reproduced an internal process of consequence assessment and 
subsequent policy update. The model was validated by fitting its 
parameters to reproduce each participant’s behavioral data (i.e., 
reaction time distribution, visual discrimination, initial bias, and 
performance). The model faithfully reproduced the participants’ 
behavior despite its varied nature. Importantly, this model also 
provides a plausible account of the neural processes required for 
gauging options as a function of their associated consequence 
(measured in terms of reward), and of how these processes are 
involved in decision-making.

3.1 Justification of the consequential task

Real world decisions are rarely accompanied by immediate 
feedback, there is often a conflict between short and long-term 
reward, consequences are often long-lasting, reward is often difficult 
to quantify, and state-action spaces often require exploration to 
define (as opposed to being known a priori). Several of these 
characteristics generate uncertainty and complicate performance 
assessment. The consequential task combined features common to 
both hierarchical decision-making (Lorteije et al., 2015; Zylberberg 
et al., 2017; Zylberberg, 2022) and delay discounting paradigms 
(Hayden and Platt, 2007; Kim et  al., 2008; Hwang et  al., 2009; 
Alexander and Brown, 2010; Hayden, 2016) to examine how this 
kind of decision-making unfolds. Moreover, the absence of cued 

TABLE 1 Parameter values obtained when fitting data from 1 block for 
each of the 3 participants.

P. GF (RT, PFi, tL) tL k τ β ϕ0 (TE)

1 {0.91,0.96,1} 8 2.8 67 0.057 {0.67,0.56}

2 {0.87,0.62,0.97} 14 0.5 60 0.051 {0.56,0.67}

3 {0.85,0.93,1} – 0.4 67 0.045 {0.67,0.67}

The parameters τ and β refer to Eq. 3; ϕ0 and k belong to Eq. 4. The learning time (tL) and the 
goodness of fit (GF) are shown in the first 2 columns.
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performance feedback during the task made our paradigm 
particularly suitable for studying how learning optimal strategies 
may extend from immediate perceptual decision-making to a more 
complex process involving predictions of future states. Unlike 
standard hierarchical decision-making and partially observable 
Markov decision processes (Smallwood and Sondik, 1973; Kaelbling 
et al., 1998), participants in the consequential task were not aware 
of the underlying relationship between actions and their 
consequences. Participants were told only that the choice they made 
in one trial might influence the next. In this way, participants had 
to explore and observe the consequences of their choices to deduce 
that an inter-trial dependence existed. Moreover, participants could 
never be certain if they found the optimal solution, i.e., picked the 
correct sequence of decisions to maximize cumulative reward value. 
This is in sharp contrast to delay discounting tasks which largely 
focus on the principle of inhibitory short-term control where the 
presence of explicit cues helps overcome impulsive behavior, such 
as in the farming on Mars task (Gureckis and Love, 2009) 
(see below).

3.2 Cognitive hypothesis based on 
behavioral results

The purpose of our study was to understand how participants learned 
how their choices influenced the decision context, as opposed to assessing 
whether reward value varied with time. In other words, the absence of 
explicit cues was intended to force the participants to rely on their own 
subjective assessment to infer the delayed consequence of their decisions 
across groups of successive trials, and whether their strategy was being 
successful. This inner assessment had to be driven by the participant’s 
probing of patterns of action/decision effects. Complementary to this, 
we  believe that participants had to go through a hypothesis testing 
process, until the eureka moment of realizing that one specific strategy 
was better than the others. Consequently, to find the optimal strategy, 
participants had to first realize that choosing the smaller option lead to 
more rewarding options (the eureka moment). Explicitly, this implies 
identifying the specific feature of the stimuli to be considered, having 

nothing else than the observance of their choice/action effects on the 
environment (the stimuli in the next trial). Then, they had to confirm 
their criterion based on the global effect of their choices on the stimuli size 
across episodes.

3.3 Rule-based vs. Far-sighted assessment 
of consequence

The strategy to attain the highest possible cumulative reward value 
may be operationalized as a sequence of decision rules: choose small, 
then big in horizon 1 episodes; choose small, then small, then big, in 
horizon 2 episodes. Though we expected the participants’ choices to 
abide by these rules once the learning was complete and the optimal 
decision strategy was established, the focus of this study is on how 
consequence-based assessment forms and influences the learning of 
that optimal strategy. Because of this, it was crucial that the 
consequential task were devoid of any cued performance feedback, 
which could potentially inform the participant of his/her performance 
after each episode and, ultimately, promote a rule-based strategy.

For the same purpose, and to promote exploration, the 
participants were left with the uncertainty of neither having a criterion 
to follow to make decisions nor the knowledge about which aspect of 
the stimuli to attend to while making decisions. Note that, in addition 
to the bar heights (proportional to reward value), the stimuli at each 
trial were presented on the right and left of the screen, they were 
shown sequentially, randomly alternating their order of presentation 
across trials. Both the position and order of presentation of the stimuli 
increased the uncertainty with respect to the relevant stimuli 
dimensions. Under these conditions, participants had to perceive the 
relationship between their choices and the values of the stimuli 
presented in subsequent trials. If noticed, this observation could then 
be used to predict the consequence associated with choosing each 
option at each trial within episode. In other words, participants had 
to identify the relevant aspects of the stimuli for the goal at hand and 
rely on their own subjective perception of performance. This derived 
from their observations of the stimuli presented after each decision 
and by their own internal assessment criterion which itself was based 

FIGURE 10

Goodness of fit. For RT we calculated KSD, for PFi we evaluated the mean-square error, and for tL we took the difference between the participant’s data 
and the model’s mean divided by the total number of episodes. For all three metrics, we show the scatter plot of each single participant, the 
corresponding distribution, and the boxplot depicting the median and the 25/75 percentiles. For reference, the superposed colored markers indicate 
the three participants shown in the previous figure.
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on their ability to estimate the sum of water (reward value) throughout 
the trials of each episode.

To summarize, cued performance feedback could have reduced 
task to simple rule-based learning. Although the optimal strategy 
consists of a rule-based sequence, the crucial element of the task is that 
the participant must undergo a phase of exploration in which learning 
is driven by exploration and assessment of the reward-based 
consequence associated with each option.

3.4 Computational model of consequence

Drift-diffusion models (DDM) have been used to describe how 
sensory decisions unfold as a function of evidence accumulation 
(Ratcliff and McKoon, 2008). Likewise, urgency-gating model (Cisek 
et al., 2009) emphasize the contribution of the passage of time to make 
sensory based decisions in dynamic environments. Extended versions 
of the DDM have also been used to describe how evidence relates to 
value-based decisions via informative saccades (Krajbich et al., 2010; 
Krajbich and Rangel, 2011), extending into hybrid models that can 
adapt their parameters over time (Fontanesi et al., 2019; Boelts et al., 
2022) via reinforcement learning (Sutton and Barto, 1981). However, 
these formulations fall short to describe the complexity of brain 
population dynamics during decision-making and of inhibitory 
processes therein. Furthermore, they do not capture how action effects 
and rewards are subjectively perceived and merged in contexts in 
which these are delayed and must be first perceived and learned, as it 
occurs in the consequential task. In brief, here we  intended a 
formalization of the neural processes underlying reward-driven, 
delayed-value, multi-step decisions in a context in which attaining 
reward is contingent on learning the covert effect of actions on the 
environment. In this way, learning must operate in the absence of 
explicit performance feedback, and in the absence of knowledge of the 
target strategy itself, which is unlike previous RL-based formulations. 
By contrast, if the purpose of the present study were to merely provide 
an estimate of the participants’ decisions and learning process, an RL 
formulation could have been used to solve the credit assignment 
problem (Minsky, 1961) and learn the behavioral strategy. However, 
these models fall short of the aforementioned aspects of neuronal 
dynamics, competition and inhibition that we targeted in this study.

Learning in our model is operationalized by a reinforcement 
comparison algorithm (Amari, 1998; Brunel and Wang, 2001; Roxin 
and Ledberg, 2008; Krajbich et al., 2010; Cos et al., 2013; Shahar et al., 
2019), scaled by the difference between predicted vs. obtained reward 
value (Sutton and Barto, 1981; Dayan, 1992), measured accordingly to 
the participant’s subjectively perceived scale. For simplicity, 
we assumed a fixed function across participants to quantify reward 
value [R(T) function in Eq. 4]. Furthermore, to provide the necessary 
flexibility for the model to capture the full range of participants’ 
learning dynamics, the model included two free parameters, the 
learning rate and the decisional uncertainty, to be  fit to each 
participant’s behavior. The result is a model that could faithfully 
reproduce the full range of behaviors of each participant: RT 
distribution, pattern of decision-making, and learning time.

The model is organized in three layers. The lower neural 
dynamics layer represents the average activity of two neural 
populations competing for selection, each sensitive to one of the 
two stimuli at each trial. The commitment for an option is made 

when the difference in firing rate between the two populations 
crosses a given threshold (Amari, 1998; Brunel and Wang, 2001; 
Marcos et al., 2013). A similar architecture, with small variations, 
has been used to model decision-making in a broad set of tasks 
(Wong and Wang, 2006; Marcos et al., 2013; Marcos and Genovesio, 
2016; Lam et al., 2022) and can describe most types of single-trial, 
binary decision-making, including value-based and perceptual 
paradigms. Importantly, our model does not provide a clear 
delineation between deliberation and commitment as DDMs do, 
but rather a neuron-like unselective ramp-up representation of 
options that diverge until a commitment is made. Like 
accumulation-to-bound models, attractor-based models can also 
account for speed-accuracy trade-offs during decision-making. 
We chose this kind of formalism because attractor models are more 
biologically realistic than the abstract accumulation-to-bound ones, 
and possibly provide a more promising avenue for unifying theories 
of brain and behavior. This was necessary for our model to provide 
a plausible explanation for the neural competition and inhibition 
known to operate in premotor and prefrontal cortical areas. 
Moreover, our model weighs inputs with recurrent activity during 
sequences of decisions and projects this formulation for a neighbor 
neurophysiological study. Note that this layer of the model can 
be derived analytically from a network of spiking neurons used for 
making binary decisions (Wang, 2002). Beyond the scope of this 
study, this model could also subserve probing into working memory 
(Deco and Rolls, 2005; Wong and Wang, 2006); a transient input 
could bring the system from the resting state to one of the two 
stimulus-selective persistent activity states, to be  internally 
maintained across a delay period.

In addition to binary population competition, we  claim that 
modeling consequence-based decision-making requires at least two 
additional mechanisms. The first one is needed to prioritize a specific 
policy to guide the decisions; the second one to create an internal 
mechanism of performance to evaluate these criteria, based on the 
difference between predicted and obtained reward value. Accordingly, 
the role of the middle layer (intended decision) is to implement those 
criteria which in our case depend on the relative value of the stimuli 
and on the number of trial within episode. Finally, the top layer 
(strategy learning) carries out learning by reinforcement comparison 
(Sutton and Barto, 2018) and temporal difference (Sutton and Barto, 
1981; Houk et al., 1995).

Altogether, our model introduces a plausible implementation of 
the neurocognitive processes involved in consequence-based 
decision-making. Each part of the model is essential to describe 
decision-making, inhibition, and learning. For the neural dynamics 
layer, the set of equations corresponds to the most simplified 
version of a network of brain neurons during binary decision-
making (Wong and Wang, 2006); it makes use of only two 
populations of neurons and a minimal set of parameters. The 
middle layer consists of one equation (with only one free parameter) 
and makes use of the simplest possible form of a two-attractor 
dynamical system (with the addition of a noise component). Finally, 
the top layer follows a reinforcement comparison algorithm, and 
adds a single free parameter to the model: the learning rate. Each of 
these elements is indispensable for a biologically plausible 
theoretical formalization of consequence-based decision-making. 
Without the first layer we would not have a biologically plausible 
decision-making model, without the middle layer we could not 
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describe policy changes, and without the top layer we would not 
have learning.

Previous research describes models of learning processes during 
decision-making, for the most part implemented via RL (Sutton and 
Barto, 2018). Although our paradigm could also be modeled with RL, 
the clear advantage of our model is that it does not only describe the 
behavioral patterns of learning for each individual participant, but 
provides a biophysically plausible description of the underlying brain 
processes when predicting RTs. Moreover, our model is directly 
grounded on the neural substrate dynamics, since the mean-field 
approximation has been derived analytically from networks of spiking 
neurons (Wang, 2002).

The results and predictions depicted in the model show that the 
dynamics of the three layers combined can accurately reproduce the 
behavior of each single participant, including those who did not attain the 
optimal strategy. The low number (4) of equations in the model, together 
with the low number of free parameters (7, of which only 3 are used for 
fitting), makes this model a simple, yet powerful tool able to reproduce a 
large variety of behaviors. Moreover, unlike the basic RL agents or models 
for evidence accumulation, our model is biologically plausible and 
predicting individual behavioral metrics, such as RT, initial bias, and 
visual discrimination. Note that, for the behavioral part of the model, only 
one free parameter is used, i.e., learning rate. A larger number of free 
parameters (at least 3) is needed for classical reinforcement learning 
algorithms, e.g., Q-learning.

The comprehensive formulation of the model makes it possible to 
explain and fit various scenarios. We have already mentioned the 
differences in learning speeds, and that the model could fit any of 
them, even when there was no learning. Another example is the 
difference in the order of execution of the blocks. Namely, most 
participant were able to take the optimal strategy learned in one 
horizon and generalize it to the other horizon block, making the 
learning much faster (see Supplementary materials). In our model, 
this is captured mainly by the initial bias which is calculated for each 
block individually. As third example, potentially, a characteristic that 
our model could fit is the difference in RT between trials within 
episodes and horizons (see Figure  2F). In this manuscript, for 
simplicity, we decided to perform a single fit for the neural dynamics’ 
equations, finding one set of parameters per participants. To explain 
the differences between horizons and trials within episodes, the same 
fit should be done for each condition. Moreover, even if it is not the 
case of this specific task, the model is able to adapt in case of a sudden 
change of strategy. Nevertheless, if this would be the case, it would 
be advisable to adopt a more realistic adaptation mechanism. Namely, 
it seems reasonable to assume that, after learning, once a participant 
realizes that the optimal strategy used so far is not working anymore, 
he would reset his strategy instead of gradually change it. However, 
even though it is an interesting topic, this is work for 
future investigation.

4 Conclusion and future work

In this manuscript we have introduced a minimalistic formalism 
of the brain dynamics of consequence-based decision-making and its 
associated learning process. We validated this formalism with the 
behavioral data gathered from 28 human participants, which the 
model could accurately reproduce. By extending classic, single-trial 

binary decision-making, we designed a oversight mechanism based 
on the assessment of the effect of decisions on subsequent stimuli, and 
a reinforcement rule to modify behavioral preferences. We  also 
designed the consequential task, an experimental framework in which 
acquiring the most reward value required learning to assess the 
consequence associated with each option during the decision-making 
process. Both the experimental results and the model predictions 
describe consequence-based decision-making as an extended version 
of value-based decision-making in which the computation of 
predicted reward value may extend over several trials. The formalism 
introduces the necessary notions of oversight of the current strategy 
and of adaptive reinforcement, as the minimal requirements to learn 
consequence-based decision-making.

Although our model has been designed and tested in the 
consequential task described here, we argue that its generalization to 
similar paradigms in which optimal decisions require assessing the 
consequence associated to the presented options, or sequences of multiple 
decisions, may be relatively straightforward. Specifically, we envision three 
possible future extensions to facilitate its generalization. First, the model 
could incorporate several preference criteria (either simultaneously or 
combinations thereof) into the intended decision layer: left vs. right or 
first vs. second, instead of small vs. big, to be determined in a dynamical 
fashion. This could be achieved with a multi-dimensional attractor model, 
with as many basins of attraction as the number of preference criteria to 
be considered.

The second future extension is the re-definition of the reward 
function R(T) according to the subjective criterion of preference. Namely, 
a reward value can be perceived differently by different participants, i.e., 
people operate optimally according to their own subjective perception of 
the reward value. Because of this, a possible extension is to incorporate an 
individual reward value function per participant (R(T) in Eq. 4). For 
simplicity, in this manuscript we  set R(T) to be  fixed and to be  the 
objective reward value function. In case a participant did not perceive 
what was the optimal reward value, he/she performed sub-optimally 
according to objective reward function, and the model responded by 
allowing the learning constant k to be zero. This holds since the optimal 
strategy was never reached, and the fitting of the participant’s performance 
was correct. Nevertheless, it remains a standing work of significant 
interest to investigate different subjective reward mechanisms and their 
implementation in the model.

Finally, the third enhancement we  propose for our model is 
making the learning rate time dependent, i.e., k(E). This would 
facilitate reproducing learning processes starting at different times 
throughout the session. For example, it is possible that participants 
initiate the session having in mind a possible (incorrect) strategy and 
they stick to it without looking for clues, and therefore without 
learning the optimal policy. Nevertheless, after many trials they may 
change their mind and begin to explore different strategies. In this 
case, the learning rate k(E) would be set to zero for all the initial trials 
when indeed there is no learning.

Again, we want to emphasize that even if this model is built for the 
consequential task, it contains all the elements and processes to 
reproduce behavior from other tasks involving sequential 
consequence-based decision-making. Note that the strategy learning 
mechanism is already general enough to adapt to tasks where the 
optimal policy is not fixed throughout the experiment. In the case of 
a policy reversal, for example, the learning mechanism would be able 
to detect a change and adapt accordingly. Finally, we want to stress that 
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our model could be applied to other decision-making paradigms, such 
as a version of the consequential random-dot task (Britten et al., 1993) 
or other multiple-option paradigms.

5 Materials and methods

5.1 Participants

A total of 28 participants (15 males, 13 females; age range 
18–30 years; all right hand dominant) participated in the 
experimental task. All participants were neurologically healthy, 
had normal or corrected to normal vision, were naive as to the 
purpose of the study, and gave informed consent before 
participating. The study was approved by the local Clinical 
Research Ethics Committee (CEIm Ref. #2021/9743/I) and was 
conducted in accordance with relevant guidelines and regulations. 
Participants were paid a €10 show-up fee.

5.2 Experimental setup

Participants were situated in the laboratory room at the Facultat 
de Matemàtiques i Informàtica, Universitat de Barcelona, where the 
task was performed. The participants were seated in a chair, facing the 
experimental table, with their chest approximately 10 cm from the 
table edge and their right arm resting on its surface. The table defined 
the plane where reaching movements were to be performed by sliding 
a light computer mouse (Logitech Inc). On the table, approximately 
60 cm away from the participant’s sitting position, we  placed a 
vertically-oriented, 24” Acer G245HQ computer screen (1920×1080). 
This monitor was connected to an Intel i5 (3.20GHz, 64-bit OS, 8 GB 
RAM) portable computer that ran custom-made scripts, programmed 
in MATLAB with the help of the MonkeyLogic toolbox, to control 
task flow (NIMH MonkeyLogic, NIH, United  States; https://
monkeylogic.nimh.nih.gov). The screen was used to show the stimuli 
at each trial and the position of the mouse in real time.

As part of the experiment, the participants had to respond by 
performing overt movements with their arm along the table plane 
while holding the computer mouse. Their movements were recorded 
with a Mouse (Logitech, Inc), sampled at 1 kHz, which we used to 
track hand position. Given that the monitor was placed upright on 
the table and movements were performed on the table plane 
(horizontally, approximately from the center of the table to the left or 
right target side), the plane of movement was perpendicular to that 
of the screen, where the stimuli and finger trajectories were presented. 
Data analyses were performed with custom-built MATLAB scripts 
(The Mathworks, Natick, MA), licensed to the Universitat 
de Barcelona.

5.3 Consequential decision-making task

This section describes the consequential decision-making task, 
designed to assess the role of consequence on decision-making while 
promoting prefrontal inhibitory control (Wessel and Aron, 2017). 
Since consequence depends on a predictive evaluation of future 
contexts, we designed a task in which trials were grouped together into 

episodes (groups of one, two or three consecutive trials), establishing 
the horizon of consequence for the decision-making problem within 
that block of trials.

The number of trials per episode equals the horizon nH plus 1. In 
brief, within an episode, a decision in the initial trial influences the 
stimuli to be  shown in the next trial(s) in a specific fashion, 
unbeknown to our participants. Although a reward value is gained 
by selecting one of the stimuli presented in each trial, the goal is not 
to gain the largest amount as possible per trial, but rather per episode.

Each participant performed 100 episodes for each horizon 
nH = 0, 1, and 2. In the interest of comparing results, we  have 
generated a list of stimuli for each nH and used it for all participants. 
To avoid fatigue and keep the participants focused, we divided the 
experiment into 6 blocks, to be performed on the same day, each 
consisting of approximately 100 trials. More specifically, there was 
1 block of nH = 0 with 100 trials, 2 blocks of nH = 1 each with 100 
trials, and 3 blocks of nH = 2 with two of them of 105 trials and one 
of 90. Finally, we have randomized the order in which participants 
performed the horizons.

Figure 1 shows the timeline of one nH = 1 episode (2 consecutive 
trials). The episode consists of two dependent trials. At the beginning 
of the trial, the participant was required to move the cursor onto a 
central target. After a fixation time (500 ms), the two target boxes were 
shown one after the other (for 500 ms each) to the left and right of the 
screen, in a random order. Targets were rectangles filled in blue by a 
percentage corresponding to the reward value associated with each 
stimulus (analogous to water containers). Next, both targets were 
presented together. This served as the GO signal for the participant to 
choose one of them (within an interval of 4 s). Participants had to 
report their choice by making a reaching movement with the computer 
mouse from the central target to the target of their choice (right or left 
container). If the participant did not make a choice within 4 s, the trial 
was marked as an error trial. Once one of the targets had been reached 
for and the participant had held that position (500 ms), the selection 
was recorded, and a yellow dot appeared above the selected target, 
indicating successful selection and reward value acquisition. In case of 
horizons larger than 0, the second trial started following the same 
pattern, although with a set of stimuli that depended on the previous 
decision (see next section). A progress bar at the bottom of the screen 
indicates the current trial within the episode (for nH = 1, 50% during 
the first trial, 100% during the second trial).

At the beginning of the session, participants were given 
instructions on how to perform the task. Specifically, using some 
sample trials, we  demonstrated them how to select a stimulus by 
moving the mouse. Step by step we showed that a target appears in the 
center of the screen indicating the start of an episode. We told them 
that they had 4 s to move the cursor to the central cross. After moving 
the cursor to the central cross, two bars appear, one after the other, 
and once both appear together/simultaneously, they had 4 s to make 
their decision by moving the cursor over one of the two bars. At that 
point a yellow dot appears over the bar indicating their selection. After 
that, the central target appears again indicating the beginning of a new 
trial. After explaining how to technically execute the task, we focused 
on explaining the task goal. We showed them a schematic of the task, 
much like the one in Figure 1A illustrating the structure of trials and 
episodes. We told them that the goal is to get as much reward (water) 
as possible in each episode, and that for episodes with more than 1 
trial each, the choice in a trial may have an effect on what appears in 
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the next trial in the same episode. We encouraged them to explore in 
order to try to figure out what that effect might be, while keeping in 
mind that their goal is always to maximize the total reward in each 
episode. Finally, we told them that they will be presented with a series 
of episodes in a row, each episode is independent, meaning that their 
decisions in one episode have no effect on subsequent ones.

5.4 Episode structure

The participants were instructed to maximize the cumulative 
reward value throughout each episode, namely the sum of water 
contained by the selected targets across the trials of the episode. If 
trials within an episode were independent, the optimal choice 
would be to always choose the largest stimulus. Since one of the 
major goals of our study was to investigate delayed consequence 
assessment involving adaptive choices, we  deliberately created 
dependent trial contexts in which making incentive decisions 
(selecting the larger stimulus) would not lead to the most 
cumulative reward value within episode.

To promote inhibitory choices, the inter-trial relationship was 
designed such that selecting the small (large) stimulus in a trial, 
yielded an increase (decrease) in the mean value of the options 
presented in the next trial. As explained below, because of the 
parameters choice we made, always choosing the larger stimulus did 
not maximize cumulative reward value for nH = 1, 2.

Trials were generated according to 3 parameters: horizon’s depth 
nH, perceptual discrimination (in terms of difference S∆  between the 
stimuli), and the gain/loss G in mean size of stimuli for successive 

trials. The stimuli s1 2,  presented on the screen could take values 
ranging from 0 to 1. Trials were divided into five difficulty levels by 
setting the difference between stimuli ∆S∈{ }0 01 0 05 0 1 0 15 0 2. , . , . , . , . .

For horizon nH = 0, for each trial the stimuli s1 2,  are generated as 
to have mean M and difference d between them, i.e., s M S1 2 2, /= ± ∆
. To have stimuli ranging from 0 to 1, the mean M is randomly 
generated using a uniform distribution with bounds 
∆ ∆S Smax max/ /2 1 2, −[ ], where ∆Smax .= 0 2 is the maximum ΔS. In 

horizon nH  = 1, each episode consists of 2 dependent trials. 
Specifically, the stimuli presented in the second trial depend on the 
selection reported in the previous trial of that same episode. More 
specifically, the rule is such that if the choice of the first trial is the 
smaller/larger stimulus, the mean of the pair of stimuli in the second 
trial will be increased/decreased by a specific gain G. In practice, the 
first trial of an nH = 1 episode is generated in the same way as for 
horizon nH  = 0, i.e., the two stimuli equal s M S1 2 2, /= ± ∆ . The 
stimuli in the second trial within the same episode could be either 
s M G S1 2 2, /= + ± ∆  or s M G S1 2 2, /= − ± ∆ , depending on the 
previous decision. Note that the difficulty of the trial remains constant 
within episode. A schematic for the trial structure is shown in 
Figure 1. Again, to have stimuli ranging from 0 to 1, the mean M is 
randomly generated using a uniform distribution with bounds 
G S G S+ − −[ ]∆ ∆max max/ /2 1 2, . In horizon nH = 2, episodes consist 

of three trials. The trial generation is structured as for horizon nH = 1. 
Namely, the first trial has stimuli s M S1 2 2, /= ± ∆ , the second 
s M G S1 2 2, /= ± ± ∆ , and the third s M G G S1 2 2, /= ± ± ± ∆ .  
To have stimuli ranging from 0 to 1, the mean M is randomly 
generated from a uniform distribution with bounds 
2 21 2 2G S G S+ − −[ ]∆ ∆max max/ /, . We set the gain/loss parameter 

TABLE 2 Linear mixed effects model for the percentage of optimal choices selected Poc and for the reaction time RT .

P L E L S L n T E poc H E~ · · · · )+ + +∆ ( | RT L E L S L n T E pH E~ · · · · )+ + +∆ ( |

F-stat. 175 205.9

p-value 0 0

Fixed 
effects

Estimate SE t Stat p Val Lower Upper Estimate SE t Stat p Val Lower Upper

Intercept 6.35 0.40 15.6 10−54 5.55 7.15 0.75 0.15 4.95 10−07 0.456 1.05

TE 4.38 0.26 −16.9 10−64 −3.88 4.89 −0.58 0.08 −7.04 10−12 −0.75 −0.42

nH −1.55 0.18 −8.35 10−17 −1.92 −1.18 −0.48 0.06 −8.36 10−17 −0.60 −0.37

E −0.001 0.003 −0.40 0.69 −0.01 0.01 −0.05 0.04 −1.21 0.23 −0.13 0.03

S∆ −1.10 0.67 −1.65 0.10 −2.40 0.21 −0.24 0.02 −15.78 10−55 −0.27 −0.21

L1 −2.31 0.47 −4.90 10−7 −3.23 −1.39 −1.45 0.17 −8.42 10−17 −1.79 −1.11

T nE H: −1.21 0.14 8.52 10−17 −1.49 −0.93 0.36 0.04 8.21 10−16 0.28 0.45

T LE : 1 −2.05 0.29 6.97 10−12 −2.63 −1.47 1.11 0.09 11.89 10−32 0.93 1.30

n LH : 1 −0.08 0.21 −0.37 0.71 −0.51 0.35 0.62 0.07 9.48 10−21 0.49 0.75

E L: 1 0.02 0.003 4.88 10−6 0.01 0.02 −0.02 0.04 −0.49 0.62 −0.11 0.07

: 1S L∆
8.61 0.78 11.08 10−28 7.08 10.13 −0.06 0.02 −3.42 10−3 −0.09 −0.02

T n LE H: : 1
−0.22 0.16 −1.40 0.16 −0.54 0.09 −0.51 0.05 −10.31 10−25 −0.61 −0.42

The independent variables for the fixed effects are horizon nH, trial within episode TE , and the passage of time expressed as episodes E, and ΔS. We set the random effects for the intercept and 
the episodes grouped by participant p.
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to G = 0.3 and G = 0.19 for horizon nH = 1 and nH = 2, respectively. Our 
choice was motivated by the fact that G should be big enough to have 
a deterministic optimal strategy, i.e., always choosing the smaller 
reward value apart from the last trial within episode. In other words, 
choosing the bigger stimulus never compensates for the loss given by 
G. Moreover, G should be big enough to let the participants perceive 
the gain/loss between trials, while simultaneously allowing some 
variability for the randomly generated means M.

5.5 Statistical analysis

The dependency of PF and RT on VD together with the other 
variables must be established statistically. To assess the learning process, 
we quantified the relationship of PF and RT with horizon nH, trial within 
episode TE, and episode E. To obtain consistent results, we adjusted 
these variables as follows. In the calculation, the trial within episode is 
reversed, from last to first, because the optimal choice for the last TE 
(large) is the same regardless of the horizon number. Furthermore, 
regarding the model for PF, to consider trials within episode 
independently, we adapted the notion of PF (defined as a summary 
measure per episode) to an equivalent of PF per trial, i.e., the probability 
of choosing the optimal choice Poc. Finally, to assess the difference 
between learning groups, we introduce the categorical variable L that 
identifies the group of participants that learned the optimal strategy and 
the ones who did not, according to Figure  2A. We  then used a 
generalized linear mixed effects model (Verbeke and Molenberghs, 
2009; Gałecki and Burzykowski, 2013) to predict PF and RT. The 
independent variables for the fixed effects are horizon nH, trial within 
episode TE, and the passage of time expressed in terms of episodes E, 
and ΔS. We set the random effects for the intercept and the episodes 
grouped by participant p; we write the random effects as ( |E p). The 
resulting models are: P L E L S L n T E poc H E~ · · · · )+ + +∆ ( |  and 
RT L E L S L n T E pH E~ · · · · )+ + +∆ ( | . The results of the statistical 
analysis are reported in Table 2. The regression coefficients, with their 
respective group significance, are shown in Figures 2E,F.
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