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Adaptation of the inferior 
temporal neurons and efficient 
visual processing
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Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, 
Okinawa, Japan

Numerous studies examining the responses of individual neurons in the 
inferior temporal (IT) cortex have revealed their characteristics such as two-
dimensional or three-dimensional shape tuning, objects, or category selectivity. 
While these basic selectivities have been studied assuming that their response 
to stimuli is relatively stable, physiological experiments have revealed that the 
responsiveness of IT neurons also depends on visual experience. The activity 
changes of IT neurons occur over various time ranges; among these, repetition 
suppression (RS), in particular, is robustly observed in IT neurons without any 
behavioral or task constraints. I observed a similar phenomenon in the ventral 
visual neurons in macaque monkeys while they engaged in free viewing and 
actively fixated on one consistent object multiple times. This observation 
indicates that the phenomenon also occurs in natural situations during which 
the subject actively views stimuli without forced fixation, suggesting that this 
phenomenon is an everyday occurrence and widespread across regions of the 
visual system, making it a default process for visual neurons. Such short-term 
activity modulation may be a key to understanding the visual system; however, 
the circuit mechanism and the biological significance of RS remain unclear. Thus, 
in this review, I summarize the observed modulation types in IT neurons and the 
known properties of RS. Subsequently, I discuss adaptation in vision, including 
concepts such as efficient and predictive coding, as well as the relationship 
between adaptation and psychophysical aftereffects. Finally, I  discuss some 
conceptual implications of this phenomenon as well as the circuit mechanisms 
and the models that may explain adaptation as a fundamental aspect of visual 
processing.
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1 Introduction

The inferior temporal (IT) cortex occupies a later stage in the ventral visual pathway and 
is responsible for object recognition. Compared to the lower visual areas such as the primary 
or secondary visual areas (V1 and V2) which have small receptive fields and relatively faithful 
responses to low-level image features or intensity, neurons in the IT cortex are characterized 
by their large receptive field, sensitivity to complex shapes, object images or categories, and 
invariance to substantial changes in the pixel values caused by resizing, rotation, or shading 
(Ito et al., 1995; Logothetis et al., 1995). Output from the IT neurons innervates various areas 
such as the rhinal cortex, amygdala, striatum, and prefrontal cortex (Kravitz et al., 2013). 
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Thus, throughout the ventral visual pathway, information dealt within 
the corresponding area seems to drastically change from the one 
strongly related to the outside environment and input image statistics 
to the one advantageous for understanding the surrounding 
environment, memorizing, associating important items with values, 
or performing tasks that may have considerable consistency with our 
thoughts and languages.

Numerous studies examining the responses of individual IT 
neurons have revealed interesting characteristics such as two- or 
three-dimensional shape tunings (Op de Beeck et al., 2001; Brincat 
and Connor, 2004; Yamane et al., 2008; Hung et al., 2012), objects or 
their category selectivity (Hung et al., 2005; Kiani et al., 2007), as well 
as faces (Gross, 2008) or scenes (Vaziri et al., 2014). While these basic 
selectivities have been studied assuming that their response to the 
stimuli is relatively stable (Op de Beeck et al., 2001; Srihasam et al., 
2014), physiological experiments have revealed that the responsiveness 
of IT neurons is also dependent on visual experience (Tovee et al., 
1996; Kobatake et al., 1998; Li and DiCarlo, 2010; Meyer and Olson, 
2011; Woloszyn and Sheinberg, 2012; Vogels, 2016). The time required 
to evoke changes in responsiveness ranges from within 1 s such as 
repeated presentations to months or years of exposure. Some of these 
changes occur without task demands such as remembering or 
attending to the image; however, simply viewing the object stimuli in 
a particular order or frequency is sufficient to evoke changes. There 
are questions regarding what significance those changes hold for 
visual processing, how they impact coding by population neurons, and 
how a dynamic response can be compatible with stable coding. In the 
following sections, I summarize various modulation types observed 
in the IT neurons. Among these, I particularly focuse on repetition 
suppression (RS), where the responses of IT neurons to stimuli that 
are the same or similar to the preceding stimulus are attenuated 
(Desimone, 1996). The more widespread word, sensory adaptation, is 
also used in other visual areas. Although adaptation and RS are often 
used interchangeably, especially in visual processing in the ventral 
stream, I  will refer to the (mainly suppressive) modulation of IT 
neurons as RS and modulation of other areas as adaptation here. 
I discuss the properties of RS and introduce a study on adaptation in 
the lower visual areas and its implications. Additionally, the discussion 
extends to aftereffects, context modulation, and efficient coding. 
I  argue that the RS and adaptation are closely related to visual 
information processing, and finally, discuss some computational 
models including efficient coding and excitation/inhibition (E/I) 
balanced networks, that possibly connect hierarchical visual 
processing as inference and adaptation.

2 Types of changes of the IT neural 
activity by experience

2.1 Task-driven modulations

Several studies have shown that experience modulates the activity 
of the IT neurons. Task-dependent and -independent modulations 
and changes in activity have been reported. In the research on task-
dependent modulation, the underlying concept revolves around 
examining how feature selectivity of the IT neurons is influenced by 
learning in adults achieving proficiency in tasks such as discrimination 
and categorization. For instance, Kobatake et  al. (1998) subjected 

monkeys to a shape discrimination task, comparing the responses of 
the IT neurons to stimuli used in the discrimination task and those 
not used in the task. Neurons exhibiting strong responses to stimuli 
used in the discrimination task were more prevalent in the trained 
monkeys. In this experiment, animals were anesthetized during neural 
recording, eliminating considerations for factors such as attention or 
reward influences. Moreover, in experiments involving a categorization 
task (Sigala and Logothetis, 2002), visual features crucial for 
categorization were reported to exhibit sharper selectivity than 
irrelevant features after learning. These studies suggest that the 
representations of visual features relevant to the task undergo selective 
changes during month-long training sessions. Additionally, the IT 
neurons modulate their responses through association learning. The 
learned association between two stimuli enables the IT neurons to 
respond to the pair of associated stimuli through collaboration with 
the memory system, as revealed in a series of studies (Miyashita and 
Hayashi, 2000; Miyashita, 2004; Hirabayashi and Miyashita, 2014).

2.2 Long-term visual experience causes 
modulations

In addition to task-driven modulation, changes solely caused by 
visual experience have been widely reported. For instance, after 
months of passive exposure to specific stimuli without any task 
demanding memory or discrimination, IT neuronal responses differed 
between familiar (exposed) and novel stimuli in animals (Anderson 
et  al., 2008; Woloszyn and Sheinberg., 2012). Woloszyn et  al. 
demonstrated that for familiar stimuli, responses in the majority of 
neurons decreased; however, within them, the selectivity of putative 
excitatory neurons responding to familiar stimuli increased. 
Furthermore, in addition to stimuli familiarity, passive viewing with 
a consistent stimuli sequence (in which one specific stimulus is always 
followed by another, whereas the order of other stimuli is randomly 
shuffled) can implicitly be associated with stimuli (statistical learning), 
inducing changes in the IT neuronal activity (Meyer and Olson, 2011; 
Meyer et al., 2014; Ramachandran et al., 2016, 2017; Kaposvari et al., 
2018; Esmailpour et al., 2023). These studies revealed that expected 
stimuli led to a decrease in the firing rate and violating the presentation 
order of the stimuli led to an increase in the firing rates, indicating 
compatibility with predictive coding (Rao and Ballard, 1999). The 
relationship between expectation-related modulation and predictive 
coding has been the focus of much attention, leading to various 
experimental investigations across different task paradigms 
(Feuerriegel et  al., 2021). The concept of “predictive coding” is 
revisited later in this manuscript.

Thus, presenting stimuli with controlled statistical properties for 
relatively extended periods such as weeks or months can modulate IT 
responses with the consistent stimuli sequence. Notably, IT neurons 
do not distinguish triplets (the order of three consecutive stimuli) or 
higher orders even though they are referred to as “sequences” (Meyer 
et al., 2014). This emphasizes the importance of temporal proximity 
in inducing changes in the IT neurons. Indeed, temporal proximity is 
a characteristic of the usual input to the visual system (i.e., temporal 
continuity: objects do not abruptly appear or disappear), and it is 
conceivable that such statistical properties of the external world 
influence object representations in the IT cortex. Stimuli repeatedly 
presented with temporal closeness have been demonstrated to produce 
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more similar representations in single neurons (Li and DiCarlo, 2010; 
Jia et al., 2021).

2.3 Short-term modulation

IT neuronal activity can be  modulated without long-term 
exposure. Attention can increase the activity of single IT neurons 
(Moran and Desimone, 1985) and change the population 
representation of objects (Sereno and Lehky, 2018). Sereno et  al. 
examined the discriminability of stimulus shape identity by IT 
neuronal population when recorded while the subject is attending to 
shape or to location. They found that the discriminability is higher 
during attention to shape. The effect of attention is thought to originate 
from the frontal cortex (Ramezanpour and Fallah, 2022), and the IT 
cortex is suggested to be  involved in an object-based attention 
network. RS is another modulation type. Responses to stimuli that are 
the same or similar to the immediately preceding stimulus are 
attenuated. The RS has been extensively studied since it was reported 
[Response reduction by stimulus repetition was first reported by 
Brown et al. (1987) and Baylis and Rolls (1987). The name ‘RS’ was 
used in a later paper (Desimone, 1996)]. Initially, it was suggested that 
the IT neurons may be  the filter to pass new, unexpected stimuli 
(Miller et al., 1991), or that RS may be important to discriminate novel 
objects (Ringo, 1996), or that RS is a neural correlate of the 
psychological phenomenon of priming in which once an image is 
presented, psychophysical discriminability is increased (Wiggs and 
Martin, 1998). The phenomenon where the neural response to the 
same stimulus changes is generally called sensory adaptation, and it is 
common across different sensory areas [ex., olfactory bulb (Scott, 
1977), barrel cortex (Khatri et  al., 2004), and auditory cortex 
(Ulanovsky et  al., 2003)]. Adaptation-like modulation has been 
observed in the visual neurons of lower and higher orders, including 
V1 (Müller et al., 1999; Patterson et al., 2013), V4 (Wang et al., 2011), 
MT (Kohn and Movshon, 2004; Patterson et al., 2014), MST (Price 
and Born, 2013), and IT (Baylis and Rolls, 1987; Brown et al., 1987). 
Some psychological phenomena have been associated with visual 
neuronal adaptations, and various mechanisms have been proposed. 
Despite the relatively large amount of literature and observation 
throughout ventral visual areas, its significance in visual processing is 
yet to be completely elucidated. The following sections will provide 
various discussions regarding the properties of RS in IT and adaptation 
in other visual areas and topics related to adaptation in the visual 
system, including the possible interpretation and mechanism 
of adaptation.

3 Properties of repetition suppression 
in IT neurons

3.1 General property

While reduction of response to a similar stimulus is observed 
throughout the ventral visual pathway, it appears to be most prominent 
in the IT neurons when compared using the same stimuli across areas 
(Yamane et al., 2023). An interesting property of this suppression in 
IT is that the extent of the suppression induced by repeated stimuli 
depends on the combination of the stimulus used and the recorded 

neuron. In other words, even if two different stimuli evoke similar 
response strengths, the magnitude of the RS effect (suppression) 
induced by the two stimuli differs for each neuron (Sawamura et al., 
2006; Liu et al., 2009; De Baene and Vogels, 2010). Additionally, RS 
can be induced invariantly in position or size (De Baene and Vogels, 
2010), demonstrating similarity to general stimulus selectivity in 
individual IT neurons. The reduction of the response cannot 
be explained by attention reduction. De Baene and Vogels (2010) 
compared RS during an attention-demanding task and a passive 
fixation task to explore the interaction between attention and RS in 
IT. The results showed that the strength of RS did not differ between 
the attended and non-attended conditions. This lack of difference 
suggests that there is likely no strong interaction between attention 
and RS. This finding contrasts with expectation suppression discussed 
in the later section, which often requires attention. RS-like suppression 
occurs even during free viewing. Repeated fixations on the images of 
the same object evoke suppression of the response of IT neurons 
(Yamane et al., 2023). Therefore, it is a phenomenon that occurs both 
under limited (fixation task) conditions and under relatively free 
conditions that allow free viewing.

RS is closely related to the stimulus selectivity of individual IT 
neurons and cannot be  merely explained by stimulus-nonspecific 
neuronal fatigue. Following this notion, a comparison of IT excitability 
before and after direct (without using visual stimuli) photostimulation 
of IT neurons demonstrated sufficient responses even after 
photostimulation, contradicting the theory of fatigue in IT neurons 
themselves (Fabbrini et al., 2019). Thus, changes in input (which may 
separately vary with each stimulus) such as synaptic depression are 
suggested to be involved in stimulus-dependent RS (Vogels, 2016). 
Examining the relationship between neuronal selectivity and 
suppression in the IT neurons is extremely challenging, primarily 
because of the multidimensional and complex nature of selectivity in 
the IT neurons.

3.2 Adaptation of dorsal stream neurons

In the middle temporal (MT) area, adaptation has been studied 
using moving gratings, and it has been reported that motion direction 
tuning becomes sharper due to adaptation (Kohn and Movshon, 
2004). For such simple stimuli, it has been shown that inherited input 
from V1 plays a significant role (Kohn and Movshon, 2003). 
Adaptation to more complex stimuli, such as plaids, can also 
be explained by pooling the changes in V1 input (Patterson et al., 
2014). However, in the case of dot stimuli, there is a report that 
direction tuning does not change after adaptation, but speed 
preference does (Yang and Lisberger, 2009). Therefore, the type of 
stimulus can be  an important factor. However, in general, the 
selectivity of MT cells is easier to parameterize than that of IT cells, 
making it easier to examine the effects of adaptation to the tuning. In 
addition, a notable feature of adaptation in MT is that there are a 
significant number of cells that are not suppressed but enhanced. This 
enhancement occurs because MT cells are enhanced by motion 
stimuli in the direction opposite to that of the adaptors’ motion. Such 
a feature is not observed in RS in IT. This difference is thought to 
be due to the distinct computations performed in each area—motion 
direction extraction in MT and complex feature extraction in IT (Kar 
and Krekelberg, 2016).
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4 Studies in the lower visual areas and 
their implication in the RS of IT 
neurons

Insights into the nature, mechanism, and implication of the visual 
computation of adaptation in the lower visual neurons with relatively 
(though not absolutely) simple stimulus selectivity and known circuits 
may help understand and allow for specification of the RS mechanism 
and impact on the population activity of the IT neurons. I hypothesize 
that the underlying principle of the adaptation in IT is similar to the 
lower visual area and the empirical difference related to RS roots from 
the computations performed by the cell populations in both areas 
(e.g., contrast extraction or complex shapes). In V1, adaptation is 
discussed as the short-term modulation of neural activity influenced 
by previous stimuli; this includes suppression as well as enhancement.

Relatively few reports have examined adaptation via 
electrophysiological experiments in the intermediate areas of the 
ventral visual pathway such as visual areas V2 and V4 neurons (Tolias 
et  al., 2005; Crowder et  al., 2006; Wang et  al., 2011). However, a 
considerable amount of literature is available on the adaptation in the 
V1 neurons (see review; Kohn, 2007). I  focus on some intriguing 
topics in the experimental and theoretical fields concerning V1 
neuronal adaptation and attempt to extend the discussion to RS in the 
IT neurons. Repetition of the same or similar stimuli can be considered 
as the repeated presentation of redundant visual input, and reducing 
this redundancy in the neural code aligns naturally with efficient 
coding (Attneave, 1954; Barlow, 1961; Wainwright, 1999), where 
sensory circuits encode maximal information about their inputs, 
reducing redundancy. Here, I  explore the discussion related to 
information maximization conveyed by neurons through redundancy 
reduction and consider experimental results that support and argue 
for this notion. Additionally, the discussion includes the tilt aftereffect, 
a well-known psychological phenomenon, and its neuroscientific 
underpinnings. These topics are interrelated.

4.1 Efficient coding and adaptation

The concept of efficient coding has evolved since it was first 
proposed in the field of neuroscience (Attneave, 1954; Barlow, 1961) 
and has been used to explain various experimental results (Simoncelli 
and Olshausen, 2001; Chalk et al., 2018; Price and Gavornik, 2022). In 
vision specifically, efficient coding often refers to reducing redundant 
information and maximizing the information content when visual 
images are coded. For instance, contrast adaptation is known to exist in 
the retina and V1 neurons, which involves the strength of the response 
adaptively changes based on the history of past stimulus contrasts 
(mean and std), thereby maximizing the information conveyed in the 
current stimulus distribution. Such adaptive changes are observed in 
the motion-selective neurons of flies (Brenner et al., 2000; Fairhall et al., 
2001) and the auditory cortex of songbirds (Nagel and Doupe, 2006), 
suggesting a mechanism shared among different animals and across 
different sensory modalities. However, adaptation extends beyond 
these primary statistical measures even at the early visual stages. In the 
retinas of salamanders and rabbits, different adaptations occur for 
stimuli with the same contrast and luminance but with different 
stimulus patterns (Hosoya et al., 2005). In V1 neurons, receptive fields 
(RF) have been demonstrated to differently adapt to artificial (noise 

images) and natural images to maximize the information content that 
is specific to adapted images (Sharpee et al., 2006). In their study, the 
visual system adjusted the output of the V1 neurons to efficiently 
account for the characteristics of natural images, where low-frequency 
components had a higher probability of occurrence.

The aforementioned examples reveal that given its limited 
resources, the neural system can adapt to maximize the information 
relevant to the processing stage. The importance of the lower visual 
features such as contrast, orientation, and frequency in areas such as 
the retina and V1 neurons is unquestionably important. However, 
confirming whether information is processed more efficiently becomes 
more complex as the visual hierarchy ascends. We must consider the 
relevance of the information in the processing stage, which is directly 
related to neural coding. In cases higher than V1, what specific 
information the neurons are attentive to or extracting is not always clear.

Nonetheless, psychophysical experiments have provided the 
statistical feature that is important for perceptual judgment and 
guided the analysis of efficient coding in V2. Hermundstad et  al. 
(2014) carefully identified the statistical properties of natural images 
and identified those most variable and thus the least predictable and, 
therefore, the most informative statistical feature. Based on the 
identified features, Yu et  al. (2015) examined the type of efficient 
coding at V2. In subsequent recordings of V1 and V2 neurons from 
macaque monkeys, they demonstrated the emergence of the response 
dependency in V2 neurons on the identified informative feature. This 
result indicates that the constraint on efficiency in V2 originates from 
input sampling— in other words, the relevance of information of input 
to behavior— not output capacity, as the original efficient coding 
suggested. Thus, the result demonstrates that different types of 
efficiency are optimized in different areas.

In addition to the difficulty in identifying relevant information, a 
population’s amount of encodable information can vary depending on 
the strength of correlations between the cells in the population 
(Moreno-Bote et  al., 2014; Shamir, 2014). Therefore, concluding 
whether changes due to adaptation in single cell response make 
population coding more efficient is not straightforward. Simulations 
of the V1 population indicate that coding accuracy can increase or 
decrease depending on the adaptation mechanism and stimulus 
(Cortes et al., 2012). Consequently, whether the information coded by 
the population is genuinely improved and becomes efficient through 
adaptation, even in V1, remains unclear.

In addition to the challenge mentioned earlier in evaluating 
efficiency, several potential conflicting issues exist that may prevent 
encoding efficiency such as limitation of resources or sampling, or, 
more importantly, constraints from decordability. Even though highly 
efficient encoding is possible, it can be  challenging to decode in 
downstream areas and thus can be not helpful for behavior (Tesileanu 
et al., 2022). Furthermore, the behaviors in which the ventral visual 
system is engaged may be diverse. Task information reformatting, 
rather than maximization (Gaspar et al., 2019), is also an essential 
direction that needs to be considered, especially when considering 
coding efficiency in the IT cortex.

4.2 Aftereffects and adaptation

The tilt aftereffect is a well-studied intriguing psychophysical 
adaptation phenomenon (Gibson and Radner, 1937). It refers to a 
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systematic bias in the perception of the orientation after exposure to 
a grating with a particular orientation. The difference between adaptor 
and test stimulus orientations determines the perception of tilt 
direction. Interestingly, aftereffects occur also with more complex 
stimuli. For example, the difference in the three-dimensional 
viewpoint of a face image evokes bias in viewpoint (Fang and He, 
2005). Some properties of face angle aftereffect are similar to the tilt 
aftereffect in oriented gratings. For example, the angular tuning 
function of the face viewpoint aftereffect is similar to the angular 
tuning function of the tilt aftereffect (Chen et al., 2010), indicating a 
common process across extensive regions of the visual pathway, 
including the IT cortex (Leopold et al., 2001).

One interesting hypothesis suggests that the mechanism (or 
principle) underlying the occurrence of the tilt aftereffect and the tilt 
illusion may be the same (Schwartz et al., 2007; Clifford, 2014). In tilt 
illusion, spatially separated adapters and stimuli are presented 
simultaneously. The oriented grating shown in the center is perceived 
as tilted in the opposite direction to the orientation of the surround. 
Tilt aftereffects and tilt illusions share common psychophysical 
properties such as the relationship between the tilt angles of the 
stimuli and the evoked biases (Schwartz et al., 2007; Clifford, 2014). 
Our visual environment shares statistical redundancy as a common 
property across time and space. Under the efficient coding hypothesis, 
coding should be  adjusted to reduce redundancy. Thus, both 
phenomena may be  illusions related to the same redundancy-
reduction process. Mechanisms involving adaptive gain control such 
as divisive normalization (Heeger, 1992) are speculated to be crucial 
for the tilt illusion and the tilt aftereffect. A more recent study 
suggested that the statistical similarity between the center and 
surrounding stimuli gates the surround suppression in the cortical 
neurons (Coen-Cagli et al., 2009, 2015). The following study revealed 
that short-term temporal regularities (e.g., stability of temporal input 
within one fixation) are learned and may explain the adaptation in the 
V1 neurons (Snow et al., 2017). However, no canonical model has ever 
simultaneously explained the multiple psychophysical phenomena, 
including tilt aftereffect and tilt illusion (Sanchez-Giraldo et al., 2019; 
Northoff and Mushiake, 2020).

The circuit responsible for surround modulation includes 
feedforward, feedback across areas, and lateral connections within an 
area (Angelucci et al., 2017). Feedforward connections contribute to 
a temporally fast and untuned component of surround modulation 
near the classical receptive field and emerge first in layer 4 in cats and 
primates in V1. Feedback connections contribute spatially extensive, 
and tuned components to surround modulation and are generated 
outside layer 4 (Angelucci et al., 2017). In V1, the target of feedback 
connection is both excitatory and inhibitory neurons (Gonchar and 
Burkhalter, 2003; Anderson and Martin, 2009). Horizontal 
connections are most prominent in layers 2/3 and contribute to a 
spatially extensive and tuned component and the modulation includes 
suppression and facilitation. The target of horizontal connections are 
excitatory and inhibitory neurons of similar orientation preferences at 
least in layers 2/3 (McGuire et al., 1991; Ko et al., 2011). To examine 
the effect of adaptation to the surround modulation, adaptation 
properties of the V1 neurons to simple artificial stimuli have been 
investigated. Multiple modulation patterns including enhancement, 
suppression, and change in tuning by adaptation have been observed 
(Wissig and Kohn, 2012; Patterson et al., 2013). One explanation for 
these multiple modulation types is the balance between the 

feedforward driving input, suppressive surrounding input, and 
divisive normalization (Dhruv et al., 2011; Solomon and Kohn, 2014). 
One of the speculated roles of these modulation types is to achieve a 
higher discriminability via the sharpening of tuning. However, the 
experimental results varied and were inconclusive, and even if 
sharpening was observed, whether it leads to an increase in 
discrimination accuracy by the neural populations remains unclear 
(Kohn, 2007; Cortes et al., 2012; Solomon and Kohn, 2014).

4.3 Gamma oscillations

Gamma frequency oscillations have been hypothesized to play a 
role in the relationship between the classical receptive field and the 
surround (Vinck and Bosman, 2016). In this section, I discuss gamma 
oscillations and adaptation. Gamma frequency oscillations are 
hypothesized to play a fundamental role in cortical processes such as 
attention (Fries et al., 2001; Fries, 2009). Another view is that gamma 
oscillations are reflections of the underlying cortical processing 
involving excitation-inhibition interactions and helpful indicators to 
detect such interactions (Ray and Maunsell, 2015; Bartoli et al., 2020; 
Ray, 2022). Reports have indicated that gamma oscillations increase 
in the supragranular layer of V1 neurons under repeated stimulus 
conditions (Hansen and Dragoi, 2011; Brunet et al., 2014). A study 
using laminar recordings and examining changes in the information 
flow due to stimulus repetition through current source density 
demonstrated that the effects of stimulus repetition (firing reduction) 
occurring in the supragranular layer due to adaptation subsequently 
propagated to other layers (Westerberg et  al., 2019). This study 
suggests that the primary origin of repetition-related response 
modulation in V1 neurons is linked to intracortical processing within 
the supragranular layers. This does not necessarily exclude the 
inherited influences of suppression occur in retina. Some of the 
reduction in firing rate is likely due to a reduction in retinal input 
(Solomon et  al., 2004). Thus, at least some of the modulation is 
speculated to originate from supragranular layers. In V1 neurons, the 
horizontal connections are prominent in layers 2/3 (Rockland and 
Lund, 1983; Lund et al., 1993; Angelucci et al., 2002) and I discussed 
that one of the circuit responsible for surround modulation is 
horizontal connections in the previous section. Horizontal 
connections are patchily distributed in the surrounding functional 
columns. These observations may suggest that interactions between 
neurons such as excitation-inhibition leading to gamma oscillations 
also relate to adaptation and occur primarily in layers 2/3.

As they progress to higher visual areas, gamma oscillations tend 
to decrease in power (Vinck and Bosman, 2016). The proportion of 
different inhibitory neuronal types differs across the visual areas 
(Kondo et al., 1994; Defelipe et al., 1999). Parvalbumin-GABAergic 
interneurons have been suggested to be involved in the generation of 
gamma oscillations and are abundant in layers 2/3 (Bartos et al., 2007; 
Tiesinga and Sejnowski, 2010). Furthermore, the lateral connections 
in layer 2/3 of the IT cortex exhibit a patchy pattern similar to those 
in the V1 cortex. However, unlike the V1 neurons, these connections 
do not decrease with distance, and the patch positions are more 
random in IT than in V1 (Fujita and Fujita, 1996; Tanigawa et al., 
1998; Fujita, 2002). Thus, these differences in the connection patterns 
might explain the difference between the empirical gamma oscillation 
and the effect of adaptation across areas such as V1 (Hansen and 
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Dragoi, 2011; Brunet et al., 2014), V4 (Wang et al., 2011), and IT (De 
Baene and Vogels, 2010). Generating gamma oscillations requires a 
considerable number of neurons for close synchronization. 
Synchronization of widely dispersed cells may be  challenging to 
detect. While various insights into Gamma oscillation and adaptation 
in V1 are intriguing, anatomical circuit differences between V1 and 
IT may affect their experimental results and interpretation of RS in IT.

4.4 Adaptation in the lower visual area and 
RS in IT

In this section, I explored the existing hypotheses, experimental 
results, and implications obtained from the discussion of the 
adaptation in V1. This examination reveals a profound link 
between adaptation and context modulation, such as surround 
modulation. This possibly involves the interactions between 
inhibition and excitation from the observation of Gamma 
oscillation modulation in adaptation in V1 layer 2/3. As 
information processing transitions from V1 to IT, the represented 
information changes from the one strongly related to the outside 
environment, thus keeping the configuration of the input image to 
the one that is more behavior-relevant, abstract, and different from 
the input image. Thus, we do not have the strict equivalence of V1 
surround modulation in IT. Still, modulation mechanisms that 
exhibit suppression and enhancement, possibly from lateral and 
feedback connections might be  the important players in 
considering the mechanism of RS in IT.

As the adaptation occurs in the lower visual areas, the RS in the 
higher visual hierarchy of the IT may be influenced to some extent 
by the adaptation in the lower visual areas. The same stimuli were 
presented at non-overlapping locations to discriminate between 
inherited suppression and suppression occurring in IT (De Baene 
and Vogels, 2010). If adaptation in IT is inherited from earlier 
areas, adaptation would be absent when both the adapter and test 
stimuli do not fall within the same receptive fields at those earlier 
levels. The result showed suppression, indicating that suppression 
occurs within IT. However, the degree of suppression was less than 
at the same location, indicating some extent of suppression was 
inherited from earlier areas. Therefore, modulation occurs at each 
stage and is additive, with further modulation occurring in 
IT. Since modulation at each stage is dependent on the stimulus 
selectivity of the cells, the accumulated modulation in IT might 
be complex.

5 Predictive coding and RS

Predictive coding (Rao and Ballard, 1999; Friston, 2005; 
Spratling, 2008) is an influential proposal for visual processing that 
has evoked considerable discussion. In an original study (Rao and 
Ballard, 1999), a hierarchical neural network with neurons carrying 
prediction and error signals trained using natural images exhibited 
RF structures similar to those experimentally observed in the V1 
neurons. This suggests that the network learns the statistical 
regularities of the natural images and conveys the signal deviations 
between the sensory inputs and such regularities (the error) to 
higher processing hierarchies to update prediction. This processing 

reduces redundancy by eliminating the predictability of the input 
signal, and thus, this process is consistent with efficient coding. 
Additionally, their model can be  understood as a Bayesian 
framework of perception that assumes a generative model to infer 
the cause of the input. Several excellent and intuitive reviews on 
predictive coding are available (Kok and de Lange, 2015; Aitchison 
and Lengyel, 2017; Spratling, 2017; Keller and Mrsic-Flogel, 2018; 
Walsh et al., 2020; Shipp, 2024). This section will focus on RS and 
IT neurons in the context of predictive coding.

The most prominent characteristic of predictive coding is the 
presence of two neuronal types: neurons predicting sensory input 
and those coding prediction errors (the difference between 
predicted and observed sensory inputs) (Rao and Ballard, 1999; 
Friston, 2005; Bastos et al., 2012). The decrease in the response to 
repeated, thus redundant stimuli in the RS had been considered to 
be consistent with the behavior of error neurons (Auksztulewicz 
and Friston, 2016); however, closer examination speaks negatively 
about the presence of error neurons in the visual cortex of 
macaques, including the IT neurons (Kaliukhovich and Vogels, 
2011; Vinken et al., 2018; Solomon et al., 2021).

In IT studies, following the experimental paradigm of 
Summerfield et al. (2008) in which alterations in stimulus identity 
were expected in some blocks and repeats were expected in others, 
neuronal responses to the stimuli in the expected and unexpected 
condition were compared (i.e., alterations in repeat blocks or vice 
versa). The results demonstrated modulation dependent on the 
repeats, which is presumably RS, but did not show modulation due 
to expectation violations (Kaliukhovich and Vogels, 2011). 
However, if the animal was exposed to the fixed ordered stimuli for 
an extended period (they controlled the probability of the order of 
the stimulus), the neural response to the stimuli of expected order 
was shown to decrease (Meyer and Olson, 2011; Meyer et al., 2014; 
Kaposvari et al., 2018). Such a suppression caused by expectation 
is called expectation suppression (ES). These studies revealed that 
ES was observed when the animal is under some belief situations 
(they believe that a particular stimulus comes after a corresponding 
particular stimulus); however, RS was observed regardless of the 
belief, suggesting that different neural mechanisms drive the two 
phenomena (Vogels, 2016; Vinken et al., 2018). RS is suggested to 
be the result of relatively low-level automatic processes (Feuerriegel 
et al., 2021), which differs from ES.

Is RS in IT a process distinct from predictive coding? If 
predictive coding is the fundamental principle of visual 
computation, why can it not explain phenomena such as RS, which 
are broadly observed in the ventral visual area, regardless of 
additional constraints such as attention, awareness, or exposure 
time? Keller and Mrsic-Flogel (2018) highlighted the challenges in 
controlling the expectations of animals or systems and emphasized 
that researchers can access them at best through certain proxies for 
them. We lack direct access to elements such as “expectations” and 
“errors” within the visual hierarchy. It is highly likely that the 
neural correlate of these concepts is obscured in the complex visual 
system and not straightforward to comprehend. Another 
possibility, as highlighted by Cao (2020), is that the information 
processing structure might not essentially differ from the 
traditional scheme, where stimulus representation ascends across 
the hierarchy and is integrated through feedforward adjusted by 
feedback (Heeger, 2017), thus we may not need to choose or deny 
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either. Some predictive coding models are proposed that do not 
explicitly assume error neurons (Spratling, 2008; Sihn and Kim, 
2022). The evaluation of these models is intriguing. Without 
identifying specific circuits, the appropriate explanation (Shipp, 
2024) or whether they essentially express the same concept 
remains uncertain.

6 RS in fMRI study

In fMRI studies of visual object perception and recognition, 
research has been conducted on RS and adaptation from several 
different perspectives. In this section, I  discuss fMRI studies 
focusing on the property and mechanism of RS and adaptation in 
higher ventral visual areas such as fusiform face areas (FFA).

fMRI adaptation has been used to investigate area selectivity 
(Grill-Spector and Malach, 2001; Malach, 2012). The logic of the 
experiments is that the adaptation causes weakened responses to 
repeated or prolonged stimuli. If altering the properties of a 
stimulus causes fMRI responses to recover, this is evidence that a 
distinct population of neurons has been recruited by the stimulus 
manipulation. Equivalently, stimulus-specific adaptation effects on 
fMRI responses indicate the presence of neurons that are selective 
along the dimension of stimulus manipulation (Larsson et  al., 
2016). However, there is criticism that the fMRI method, which 
captures mass activity as changes in BOLD signals, makes it 
difficult to accurately infer the modulation of neuronal activity that 
varies in many ways, including increased and decreased activity, 
fatigue, sharpened tuning, response facilitation, and altered 
response dynamics (Larsson et  al., 2016). In addition, slow 
response obscures the difference between changes within the area 
and those coming from other areas.

In other studies, a relationship between Predictive Coding 
and RS has been investigated. Summerfield et  al. (2008) 
demonstrated that the BOLD signal in FFA is greater for 
unexpected face stimuli compared to expected face stimuli, 
suggesting that RS is related to expectation rather than 
adaptation, thereby supporting predictive coding. However, this 
type of expectation-related modulation requires attention, while 
RS occurs even in the absence of attention (Larsson and Smith, 
2012). Additionally, electrophysiology studies in monkey IT have 
shown that neural activity modulation related to expectation is 
not observed with such short exposures (Kaliukhovich and 
Vogels, 2011), providing negative evidence against this 
interpretation. However, by analyzing RS from the perspective of 
how inter-area relationships change, Ewbank et  al. (2013) 
demonstrated a connection with predictive coding. They 
recorded the BOLD responses of the FFA and OFA to face stimuli 
of the same or different sizes. They applied dynamic causal 
modeling to examine the effects of stimulus repetition. They 
reported that the repetition of the same face was associated with 
changes in forward (OFA-to-FFA) connectivity. In contrast, the 
repetition of a face of a different size was characterized by altered 
backward connectivity (FFA-to-OFA), insisting the finding is 
consistent with predictive coding. Another study showed that 
inter-regional (ACC-FFA) coupling of BOLD signal increases by 
stimulus repetition, indicating another explanation of the 
mechanism of RS, based on synchrony (Gotts et al., 2021).

7 Other computational implications 
for RS

So far, I have explored the neural processes and anatomical 
structures related to RS, drawing insights from lower visual areas. 
The RS appears to be intimately connected to the computations in 
the visual areas. Herein, I  further delve into the potential 
significance of RS in processing visual information in the brain. 
The models I  discuss in this section provide insights into 
RS. I discuss models that explore the dynamics of neural networks 
in response to changing inputs, focusing on the explanation of RS, 
or, in a broader sense, on the visual environment dynamics. The 
first model examines how neural networks with selective inhibitory 
connections can achieve inference-based visual processing, which 
explicitly uses prior and posterior probability, and explains RS 
(Lochmann et  al., 2012; Chalk et  al., 2018). The second model 
incorporates hierarchical processing while integrating efficient 
coding principles (Snow et al., 2017, Młynarski and Hermundstad, 
2018, Park and Pillow, 2024). The final discussion includes spiking 
neural networks that maintain a tight E/I balance and coding 
stability (Denève et al., 2017; Gutierrez and Denève, 2021). This 
network model shows how low energy, thus high-efficiency 
constraint, can achieve stable population coding.

7.1 Inhibitory connections

Numerous models that incorporate divisive normalization 
(Heeger, 1992) have been proposed given the wealth of 
experimental findings suggesting that divisive normalization forms 
the basis of rich contextual modulation (Northoff and Mushiake, 
2020). Among them, Lochmann et al.’s (2012) model distinguishes 
itself from other models for natural RS reproduction. Their spiking 
neural network model included feed-forward and competitive 
inhibitory lateral connections. In their study, the network was a 
generative model that inferred the probability of the existence of 
an object (or feature) in a visual image, and the inhibitory 
connections made the inference of different objects competitive. In 
repeated-stimulus conditions, the probability of the first object 
(adaptor stimulus) remains high in the period immediately 
following its disappearance because the probabilities are updated 
by the slow integration of the sensory input. This explains why the 
input of repeated stimuli results in a substantial reduction in the 
detector gain for that stimulus. Their model is not strictly mapped 
to real neural circuits but is intriguing in that it explains contextual 
modulation and RS not as a model describing the phenomenon 
itself, but as an ingredient for realizing the essential purpose of 
visual processing, which is the inference of the visual world. A 
subsequent study (Chalk et al., 2018) demonstrated noise-invariant 
output in the network that had input-targeted divisive inhibition 
but less constraint on the stimulus and their neural code than the 
previous one. Another group showed that the network model 
trained by natural movies learned the statistics of the movie, which 
exhibited a response similar to adaptation in V1 via divisive 
normalization over time (Snow et al., 2017). This model includes a 
modulation mechanism similar to the V1 surround modulation 
with divisive normalization, which functions as a statistical 
inference of the classical receptive field using the surrounding 
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information (Coen-Cagli et  al., 2015). The model divisively 
normalizes the present visual input using past visual inputs only to 
the extent that they are inferred to be statistically dependent. These 
models explain the role of inhibitory inputs in visual processing 
and suggest their potential to simultaneously account for RS.

7.2 Multiple aspects of efficiency

High-fidelity encodings in which precise reconstruction of 
coded information is possible can be  metabolically costly, but 
low-fidelity encodings can lead to errors in inference. The visual 
system may experience a tradeoff between these two efficiencies. A 
model based on input statistics was proposed to balance this 
tradeoff (Młynarski and Hermundstad, 2018). This model aims to 
maintain an accurate estimate at a minimal cost. Specifically, the 
current state (stimulus distribution) is estimated from the response 
as a firing rate, and this estimation, when fed back into the 
encoding scheme, adjusts the coding fidelity. In other words, the 
coding fidelity and metabolic costs are prioritized in situations 
with high uncertainty and certainty, respectively. A Bayesian 
observer was used to implement the model. They assumed a visual 
hierarchy as an encoder and observer being the V1 and V2 
neurons, respectively, and demonstrated changes in the firing rates 
depending on the two scenarios. Bursts occur when the statistical 
distribution of the stimulus (which is assumed to be coded by the 
V2 neurons) becomes more uncertain, resembling responses to 
breaking statistical regularities. Conversely, bursts did not occur 
when the stimulus distribution was similar to the previous one, 
qualitatively aligning with response suppression.

Park and Pillow (2024) proposed a framework that combines 
Bayesian inference and efficient coding (efficient Bayesian coding). 
The framework includes prior distribution, encoding model, 
capacity constraint, and loss function, making it possible to 
compare different types of loss function. The study demonstrates 
multiple cases suggesting that the original efficient coding 
(information maximization) may not be relevant. Although these 
models do not directly predict the underlying computation and a 
clear connection with the roles of different cells in specific circuits 
of the visual cortex, the perspective of optimizing multiple 
objectives may be crucial for comprehensively understanding the 
visual system and adaptation.

7.3 E/I balance

The final topic is the E/I-balanced network. Excitation and 
inhibition have been shown to be tightly balanced in the brain (ex. 
Xue et al., 2014). In the network model of Gutierrez and Denève 
(2021), the adaptation of the spike-frequency and E/I-balanced 
recurrent connectivity have emerged as solutions to the global 
cost-accuracy tradeoff. This network redistributes the sensory 
responses from highly excitable to less excitable neurons as the cost 
of neural activity increases. This change does not alter 
representation at the population level, despite dynamic changes in 
the individual neurons (Gutierrez and Denève, 2021). The idea of 
a trade-off between metabolic cost and coding accuracy is similar 
to that of the aforementioned models. This model is unique in that 

the conflict is solved using the circuit property of the E/I balancing 
network, which is a characteristic of the brain. In this model, an 
autoencoder is used, and the optimization of the coding accuracy 
involves directly representing the input as the output. Investigating 
how the hierarchy of visual processing and changes in coding are 
expressed within this context would be intriguing.

8 Discussion

RS or adaptation has been extensively investigated for a long 
time, and its significance has been debated across various 
perspectives. Surprisingly, there are still aspects that remain 
unclear. Considering the widespread observation of adaptation in 
visual processing, it is speculated to have deep implications for its 
computational principles of visual systems. Therefore, elucidating 
adaptation and RS might be intertwined with understanding the 
visual computational principles. Insights from electrophysiological 
studies, anatomical observations, and modeling need to 
be integrated for a comprehensive understanding beyond what is 
currently available.

Several studies showed that neurons in lower visual areas 
efficiently code visual stimuli by maximizing the information that 
can convey natural image inputs. In contrast, in middle and higher 
visual areas, optimization may not be for the efficient representation 
of the input image but for the representation of the output, i.e., 
various behaviors that can be realized. In the case of the IT cortex, 
which is closest to the output for behavior, this optimization may 
strongly depend on the behavior.

The computational principle of the visual system depends on 
the unique features of the visual system including 
two-dimensional spread, and the temporal dynamics of input 
resulting from frequent saccades and fixations. These factors may 
contribute to the specificity of the visual system, and fundamental 
commonalities with other modalities are possibly concealed. In 
recent years, research using optogenetics in rodents has 
expanded, providing valuable insights. While some findings may 
be translated, cautious interpretation is essential due to potential 
differences in the hierarchical structure and anatomical circuit 
between primates and rodents. Massive and hopefully 
comprehensive recordings of population activity are necessary to 
unveil the underlying principles.

In summary, IT neurons dynamically adapt their responses to 
visual stimuli based on experience, showing robust RS. As a neural 
activity modulation in which responses change upon repetition of 
the same stimulus, RS and adaptation is prevalent throughout the 
visual system and transcends hierarchical levels. RS in IT cannot 
be explained simply by fatigue as it selectively occurs in response 
to specific stimuli; instead, it is considered a phenomenon related 
to the fundamental aspects of visual processing. Insights from 
studies on similar phenomena in lower-order processing help 
speculate RS in IT neurons. Adaptation involves inhibitory 
contextual modulation, which may be  related to gamma 
synchronization. Explaining RS from the efficient or predictive 
coding perspective may be  possible; nevertheless, evaluating 
efficiency is not straightforward and must be carefully considered. 
Multiple types of efficiency including metabolic efficiency, read-out 
efficiency, or coding efficiency can contribute simultaneously to the 
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visual system. In addition, contributions can differ in the visual 
processing stages. The inhibitory neurons as well as excitatory and 
inhibitory balance may be critical players in adaptation. RS is an 
intriguing subject for understanding visual processing and 
connecting various hypotheses and psychological phenomena, and 
comparisons across different visual hierarchies and between 
different methods are essential to understanding its mechanism 
and role.
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