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Introduction: Sustaining attention is a notoriously di�cult task as shown in

a recent experiment where reaction times (RTs) and pupillometry data were

recorded from 350 subjects in a 30-min vigilance task. Subjects were also

presented with di�erent types of goal, feedback, and reward.

Methods: In this study, we revisit this experimental data and solve three families

of machine learning problems: (i) RT-regression problems, to predict subjects’

RTs using all available data, (ii) RT-classification problems, to classify responses

more broadly as attentive, semi-attentive, and inattentive, and (iii) to predict the

subjects’ experimental conditions from physiological data.

Results: After establishing that regressing RTs is in general a di�cult task,

we achieve better results classifying them in broader categories. We also

successfully disambiguate subjects who received goals and rewards from those

who did not. Finally, we quantify changes in accuracy when coarser features

(averaged throughoutmultiple trials) are used. Interestingly, themachine learning

pipeline selects di�erent features depending on their resolution, suggesting that

predictive physiological features are also resolution-specific.

Discussion: These findings highlight the potential of machine learning to

advance research on sustained attention and behavior, particularly in studies

incorporating pupillometry or other physiological measurements, o�ering new

avenues for understanding and analysis.

KEYWORDS

sustained attention, pupillometry data, reward, reaction time, machine learning,

classification, regression, feature selection

1 Introduction

1.1 Background

Sustained attention is an umbrella term used in the field of cognitive psychology

generally referring to a subject’s readiness to detect unpredictably occurring signals over

prolonged periods (Sarter et al., 2001). Studies dating back from over a century have

addressed the difficulties of remaining vigilant when performing trivial or repetitive tasks

(Bills, 1931a,b; Thorndike, 1912). Since then, several authors have explored the pitfalls of

human inattentiveness in a variety of contexts, from driving accidents (National Highway

Traffic Safety Administration, 2020) to in-class pedagogical activities (Bligh, 2000; Wang

et al., 2021). This remains an active research topic in experimental psychology, with

ongoing efforts to identify effective strategies to mitigate decrements in vigilance and task

engagement (Massar et al., 2016; Hopstaken et al., 2015a,b; Esterman et al., 2016).

In a recent study, Robison et al. (2021) examined the specific effects of goal-setting,

feedback, and incentives to counter attention deficits in a psychomotor vigilance task.

Although some of the experimental manipulations were effective in mitigating slower

Reaction Times (RTs) at later trials, none eliminated it. Specifically, both providing
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participants with a specific goal to strive toward and giving

them performance feedback mitigated the a worsening of

task performance across time. Further, participants in these

conditions self-reported feeling more motivated and exhibited

greater evoked pupillary responses. Traditionally, pupil diameter

has been used as a measure of attentional effort (Beatty,

1982). In recent years, pupillometry has become an increasingly

common psychophysiological tool, as we learn more about its

neurobiological derivations and the psychological processes it

accompanies. For example, it has been demonstrated that the

pupil is sensitive to cognitive conflict (van der Wel and van

Steenbergen, 2018), momentary lapses of attention (Unsworth and

Robison, 2016, 2018), successful/unsuccessful memory retrieval

(Papesh et al., 2012; Goldinger and Papesh, 2012), and can even be

used to determine whether or not an individual is mind-wandering

(Franklin et al., 2013; Mittner et al., 2016). Further, eye-gaze based

detection of mind-wandering has been successfully employed while

people read (Foulsham et al., 2013), watch films and video lectures

(Mills et al., 2016; Hutt et al., 2017) and engage with online learning

systems (Hutt et al., 2019). Therefore, we had reason to believe we

could leverage state-of-the-art machine learning tools to predict an

individual’s psychological state, momentary level of attentiveness,

and behavior via pupillometry and gaze positions during a simple

sustained attention task.

1.2 Objectives

The objective of this work is to revisit the extensive

pupillometry and reaction time (RT) data collected in Robison et al.

(2021) and create new predictive models of attentiveness using a

modern machine learning (ML) framework. In ML, a typical model

(estimator) starts with a set of preprocessed features (explanatory

variables) and is trained to predict a target variable from these

features. If the target variable is continuous, the task is considered

a regression problem. If the target variable is categorical, the task is

a classification problem. The richness of the original study allows

us to propose multiple ML problems of interest by varying the

corresponding target variable and the composition of the feature

set. We will solve:

1. RT-regression problems: for these models, the target variable is

the continuous, raw RT value. The differences in problems arise

from the initial feature list, which can vary in size from 12 to 360

features.

2. RT-classification problems: for these models, each RT value is

categorized into attentive, semi-attentive, or inattentive. Broadly

classifying responses in this manner is more feasible than

predicting exact RT values. In thesemodels, the number of initial

features can vary from 7 to 12.

3. EC-classification problems: for this third family of problems, we

propose a radically different approach. In the previous problems,

the experimental conditions (EC) were used as explanatory

variables. However, in these problems, the ECs become the

target variables. For instance, we study whether it is possible

to predict, based on the RTs, whether a subject received an

incentive or not.

RT predictions similar to the first family of problems were

attempted in Robison et al. (2021). However, here we explore

various initial feature lists and regressors available in scikit-

learn. The last two families of ML problems have not been

explored yet. The outline of the paper is as follows: First, we

review the experimental setup of the psychomotor vigilance task

from Robison et al. (2021), describing how eye measurements

were collected throughout the trials and detailing the various

experimental manipulations that subjects underwent, which could

impact their motivation and, consequently, their RTs. Next, we

explain our pipeline for pre-processing the features that will be used

in the subsequent models and carefully define the three families

of machine learning problems investigated in our study. Third, we

describe the feature matrices and pipelines used in each case. In the

results section, we summarize the balanced accuracy scores and R-

squared values for all classification and regression problems, along

with a ranking of features according to their importance. Finally, we

discuss and interpret our results in light of modern psychological

theories.

2 Methods

2.1 Psychomotor vigilance task

Figure 1 illustrates the psychomotor vigilance task described in

Robison et al. (2021). Briefly, subjects (N = 353) in a dark room

stare at a blank screen that is first replaced by a fixation screen and

then by a screen that displays zeroes for a random interval between

2–10 s. After this delay, the zeroes begin counting forward like a

stopwatch. Subjects were instructed to press the space bar as soon

as the stopwatch starts (timer phase). Once pressed, the counting

stops, the screen freezes for 1 s (in some cases displaying a feedback

screen), the RT is recorded, the screen resets, and a new trial begins.

The subject’s eye movements (diameter of left/right pupils and their

gaze positions) are recorded throughout the process (140 trials).

As listed in Table 1 (top left), the experimental conditions

varied among subjects in terms of the type of goal (easy, hard, or

none), feedback (yes/no), and reward conditions (time incentive,

cash incentive, or none). Subjects in group G0 were asked to

respond to the cue as quickly as possible. For subjects in group G1,

the average reaction time (RT) was provided every 28 trials. Subjects

in group G2 were asked to keep their RT below 800 ms (easy goal).

Subjects in groups G3 and G4 were asked to keep their RT below

300 ms (hard goal), with G4 subjects receiving the same feedback as

those in G1. Subjects in group G5 were told they could leave early

if they met the goal, while group G6 subjects were promised $10

upon reaching the goal. In reality, all groups completed the same

number of trials, regardless of performance. Table 1 (right) lists

all measurements collected during the experiment and the derived

features used in our study.

2.2 Description of the problems

In our study, we solve three families of machine learning

problems: (i) four RT-regression problems at the population

level, (ii) three RT-classification problems at both individual

and population levels, and (iii) six Experimental Condition (EC)

classification problems at group levels. See Table 2 for details.
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FIGURE 1

Schematics of the Psychomotor vigilance task. Screen undergoes di�erent phases, changing from fixation, zeroes, timer, to feedback. The zeroes

phase consists of a random interval of 2–10 s. Subjects were asked to press the space bar as soon as the stopwatch starts and have their Reaction

Time (RT) recorded for that trial. See Robison et al. (2021) and text for details.

2.2.1 RT-regression problems R
pop

RT
[1, . . . , 4]

For task (i), we regress reaction times at the population level

using the experimental conditions and pupillometry data collected

during the fixation phase. As shown in Table 2, the initial feature

list varies between problems 1–4, containing 349, 355, 360, and 12

features respectively. This is a challenging ML task because we do

not use eye measurements collected during the random interval (2–

10 s) between the fixation phase and the start of the stopwatch that

records the RT for the trial.

2.2.2 RT-classification problems C
pop

RT
[1, 2, 3] and

Cind
RT

[1, 2, 3]
For (ii), we classify RT responses into three classes: attentive,

semi- attentive, and inattentive using three labeling methods listed

in Table 1: Gaussian Mixture Model (GMM), K-Nearest Neighbors

(KNN), and the naive method (see Supplementary material for

details). This can be viewed as a coarser reformulation of the

regression problems, where instead of predicting the exact RT

values we try to predict broader RT categories. These classification

problem are solved both at the population (pop) level and at

the individual (ind) level. Here again, we do not utilize any eye

measurements collected during the zeroes phase.

2.2.3 EC-classification problems C
group

EC
[1, . . . , 6]

For (iii), we classify subjects according to labels given by

experimental conditions. We use pupillometry data collected

throughout the entire experiment as well as RTs as features to

predict the label. The labels are based on the subject’s group and the

classification problem that we solve. For some binary classification

problems, for example, we merge two groups into one label. See

Table 2 for details.

2.3 Machine-learning pipelines

Figure 2 depicts the seven key steps in the general pipeline

used in the regression and classification problems: data curation,

feature engineering, data imputation, data standardization, feature

selection, model selection, and hyper parameter tuning. See the

paragraphs below for some details.

2.3.1 Data curation and feature engineering
We curate the data by (i) removing subjects 1,041, 1,191, 1,192,

and 1,205 who lacked eye-related measurements. (ii) by capping RT

values at 3,000 ms to avoid outlying RTs from having an outsized

influence on the results. To avoid redundancies in the feature

list, we disregard the left-pupil measurements as they are highly

correlated with the right-pupil ones. See the pairwise correlation

matrix between the original features in Supplementary Figure 8.

We also combine the eye gazes in the x − y directions (capped at

10 mm) to create an overall deviation feature denoting how much

they deviate from the center of the screen located at (0.5, 0.5):

Deviation =

√

(Gaze x − 0.5)2 + (Gaze y − 0.5)2 (1)

The eye-tracker used in this study (Tobii T300) reports the

position of visual gaze using a coordinate system where (0.5, 0.5)

represents the center of the screen (half the screen width, half the

screen height). Since numerical values are standardized later in

the pipeline, this choice of coordinate system does not affect the
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TABLE 1 Subject groups, reaction-time labels, and (derived) features.

Group Goal Feedback Reward Subjects Measurement Features Description

Exp. conditions G0 No No No 68 Subject IDs Subject IDs 348 categorical variables

to encode different IDs

Data

G1 No Yes No 34 Trial number Trial number Integers ranging from

1–140

G2 Easy No No 34 Pupil diameter Time series recording of

right eye’s pupil diameter

(in mm) throughout trial

G3 Hard No No 70 Mean_DIAM Mean of the right pupil

diameter.

G4 Hard Yes No 71 Var_DIAM Var. of the right pupil

diameter.

G5 Hard Yes Time 35 Left-eye Gaze Time series recording of

left eye’s gaze in x− y

directions

G6 Hard Yes Cash 37 Mean_LDEV Mean of left eye’s

deviation

Var_LDEV Variance of left eye’s

deviation.

Right-eye Gaze Time series recording of

right eye’s gaze in x− y

directions

Problem Clustering
Method

Attentive
(Att.)

Semi-
Attentive
(semi-Att.)

Inattentive
(Inatt.)

mean_LDEV Mean of right eye’s

deviation.

RTs labels C
pop
RT [1] GMM 83.3%

RT<441

15.7%

441<RT<769

0.01%

RT>769

var_LDEV Variance of right eye’s

deviation.

C
pop
RT [2] KNN 84.1%

RT<445

15.6%

445<RT<1,207

0.003%

RT<1,207

Exp. Conditions Goal (3), Feedback (2),

Reward (3)

C
pop
RT [3] Naive 33.4%

RT<330

33.3%

330<RT<386

33.2%

RT<386

Dummy_vars 5 categorical variables to

encode different ECs

(Left top) Experimental Conditions (EC) varied from subject to subject, giving rise to seven different patient EC groups (G0, . . .G6). (Left bottom) Reaction Time (RT) responses were labeled as attentive, semi-attentive or inattentive according to three methods

(GMM, KNN and Naive method). The RT range for the labels are also presented (see text for details). (Right) Measurements and derived features used in all regression and classification problems are also described.
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TABLE 2 Description of the machine learning problems.

Problem Label Comparisons Features Initial feature list

RT regression R
pop
RT [1] – – 349 348 subject IDsa + trial no.

R
pop
RT [2] – – 355 348 subject IDs + trial no. + 6 eye features.

R
pop
RT [3] - – 360 as above + 5 EC variables.b

R
pop
RT [4] – – 12 trial no. + 6 eye features + 5 EC variables.

RT three-way

classification

C
pop
RT [1] via GMM [Att.]× [Semi-att.]× [Inatt.] 12 trial no. + 6 eye features + 5 EC variables.

C
pop
RT [2] via KNN [Att.]× [Semi-att.]× [Inatt.] 12 Trial no. + 6 eye features + 5 EC variables.

C
pop
RT [3] Naive [Att.]× [Semi-att.]× [Inatt.] 12 Trial no. + 6 eye features + 5 EC variables.

Cind
RT [1] via GMM [Att.]× [Semi-att.]× [Inatt.] 7 Trial no. + 6 eye features.

Cind
RT [2] via KNN [Att.]× [Semi-att.]× [Inatt.] 7 Trial no. + 6 eye features.

Cind
RT [3] Naive [Att.]× [Semi-att.]× [Inatt.] 7 Trial no. + 6 eye features.

EC classification C
group
EC [1] Binary Goal [G0] x [G2 + G3] 980 [RT + 6 eye features] x 140 trials

C
group
EC [2] Binary feedback [G0]× [G1] 980 [RT + 6 eye features]× 140 trials

C
group
EC [3] Binary reward [G4]× [G5 + G6] 980 [RT + 6 eye features]× 140 trials

C
group
EC [4] Tertiary goal [G0]× [G2]× [G3] 980 [RT + 6 eye features]× 140 trials

C
group
EC [5] Tertiary reward [G4]× [G5]× [G6] 980 [RT + 6 eye features]× 140 trials

C
group
EC [6] All seven subgroups [G0]× [G1]× ...× [G6] 980 [RT + 6 eye features]× 140 trials

For RT regression and RT three-way classification problems we use data collected in fixation phase only. For EC classification problems we use the data from the full trial. In our notation, R and

C stand for Regression and Classification problems respectively. The subscripts RT and EC indicate if the goal of the problem is predict the Reaction Time or the experimental conditions used

to classify the subjects into their groups. Finally, the superscripts pop, ind, and group stand for population, individual or group levels respectively.
aSubject ID’s are dummy variables.
bEC variables are dummy variables.

FIGURE 2

Overview of the machine learning pipeline. We tailor this general outline for the RT-regression problems, for the RT three-way classification

problems, and for the EC-classification problems. See text for details.

results. For each subject, we calculate the means and variances of

all eye-derived features throughout trials.

2.3.2 Data imputation and standardization
The filling of missing eye data is done using sklearn’s k-

neighbors imputer, and values are subsequently standardized

(individually) to stay within a 0–1 range via min-max scaler.

2.3.3 Inclusion of categorical data in feature list
We use dummy encoding to account for categorical data

(subject IDs and experimental conditions) in the RT-regression

and classification problems. This is not necessary for the EC-

classification problems as they only consider numerical features.

2.3.4 Wrapper for multiple classifiers and
regressors

There are numerous models to solve classification and

regression problems. Instead of manually implementing each

model, we use a wrapper called lazy predict (Pandala, 2021) that

automatically tests 42 regressors or 32 classifiers available in scikit-

learn (Pedregosa et al., 2011) to your data. This allows us to

automatically get R-squared values or balanced accuracy scores

for all listed models. We adjust the original wrapper to also

return the Akaike Information Criterion (AIC) values to help
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TABLE 3 Summary of results for regression and classification problems.

Problem Labels Initial
Features

Selected
No.

of Features

Class./Reg.
Method

R2 Balanced
Accuracy

Random
Guess

AIC Cross
Vals.

RT regression R
pop
RT [1] – 349 232 MLPRegressor 0.24 - - 273083 6

R
pop
RT [2] – 355 237 MLPRegressor 0.25 – – 272,620 6

R
pop
RT [3] – 360 343 MLPRegressor 0.25 – – 272,888 6

R
pop
RT [4] – 12 9 MLPRegressor 0.04 – – 279,952 6

RT three-way

classification

C
pop
RT [1] via GMM 12 7 Nearest centroid – 0.42 0.33 –121,941 20

C
pop
RT [2] via KNN 12 7 Nearest centroid – 0.44 0.33 –121,998 20

C
pop
RT [3] Naive 12 10 Linear Dis.

analysis

– 0.42 0.33 –116,086 20

Cind
RT [1] via GMM 7 3 Nearest centroid – 0.7 0.33 – 5

Cind
RT [2] via KNN 7 3 Adaboost

classifier

– 0.58 0.33 – 5

Cind
RT [3] Naive 7 2 Adaboost

classifier

– 0.49 0.33 – 5

EC classification C
group
EC [1] [G0]× [G2 + G3] 980 8 SGD classifier – 0.69 0.5 –665 400

C
group
EC [2] [G0]× [G1] 980 3 Linear dis. anaysis – 0.64 0.5 –406 400

C
group
EC [3] [G4]× [G5 + G6] 980 5 Calibrated class.

cv

– 0.7 0.5 –549 400

C
group
EC [4] [G0]× [G2]×

[G3]

980 8 Ridge classifier - 0.51 0.33 –616 400

C
group
EC [5] [G4]× [G5]×

[G6]

980 8 Linear SVC – 0.48 0.33 –499 400

C
group
EC [6] [G0]× [G1]× ...

× [G6]

980 13 Linear SVC – 0.24 0.14 –1,069 400

All classification problems beat the random guess. The feature selection method for RT regression and RT three-way classification problems is stepwise-backward. LASSO lars and Ridge regression are used for EC classification problems. For problems, Cind
RT [1, . . . , 3]

selected number of features and the balanced accuracy values are averaged across individuals. The classifier method for these problems is the classifiers that provided the highest median balanced accuracy for the majority of the individuals.
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us select the most informative models. Since the wrapper results

may vary depending on the splitting of the train/test subsets,

we perform five-fold cross-validation and consider the mean of

the results.

2.3.5 Hyperparameter tuning
Once we identify the best model using the lazy wrapper,

we further optimize all parameters used by the chosen regressor

or classifier to improve the results. We report our final R-

squared and balanced accuracy scores for five-fold (stratified)

cross validations.

2.3.6 Pipeline adjustments for RT-problems
We use step-wise backward regression in our feature selection

step for problems R
pop
RT [1, . . . , 3], C

pop
RT [1, 2, 3], and Cind

RT [1, 2, 3].

These problems have initially fewer features compared to the

EC-classification problems, and this choice provides us with a

reasonable number of features to work with. R
pop
RT [1, 2, 4] problems

use p-value = 0.05, but R
pop
RT [3] uses p-value = 0.9 as the algorithm

fails to converge at lower values. We use a more stringent p-value

of 0.01 for C
pop
RT [1, . . . , 3]. For the individual level classification

problems, we start with a p-value = 0.05, but we relax this

value (up to 50%) for three subjects who did not have any

features selected.

2.3.7 Pipeline adjustments for EC-problems
Problems C

group
EC [1, . . . , 6] have initially a large number

of features (n = 980), which we first reduce and sort

using a combination of LASSO lars and Ridge regression. See

Supplementary material for details. We run the wrapper five times

(with different train/test splittings of the data) for every subset of

features. We select the classifier that provides the highest (mean)

balanced accuracy and lowest (mean) AIC to avoid overfitting,

3 Results

3.1 Summary of results

Table 3 summarizes the results for the three families of

machine learning problems that we solve: (i) four RT-regression

problems at the population level R
pop
RT [1, . . . , 4], (ii) six RT-

classification problems C
pop
RT [1, 2, 3] and Cind

RT [1, 2, 3], and (iii) six

experimental Condition (EC) classification problems at group

levels C
group
EC [1, . . . , 6]. We list the number of features before and

after feature selection, the best classifier or regressor for each

problem, and the corresponding balanced accuracy or R-squared

score. We favor balanced accuracy scores over (simple) accuracy

for all classification problems to account for differences in group

sizes for the different labels. Note that the scores for all classification

problems surpass random guessing by a significant margin.

FIGURE 3

Regression results. Box plots depicting mean, median, and standard

deviation of R2 values in cross validations for R
pop

RT [1, . . . , 4]

regression problems.

3.2 Subject ID as key regressor for
predicting RTs at population level

The box-plots in Figure 3 depicts R-squared values over 400

cross-validations for problems R
pop
RT [1, . . . , 4] using our top model,

the Multi-layer Perceptron regressor (MLP regressor). Problems

R
pop
RT [1, 2, 3] include 348 subject IDs in the initial feature list, and

their mean R-squared are 0.25 ± 0.03, 0.25 ± 0.03, 0.24 ± 0.03

respectively. Contrasting, the mean R-squared for problem R
pop
RT [4]

(that does not include subject IDs) is 0.04 ± 0.01, demonstrating

the importance of IDs as RT predictors. Interestingly, the addition

of categorical variables encoding experimental conditions (problem

R
pop
RT [2] vs. R

pop
RT [3]) did not lead to any improvement in the

predictions.

3.3 Results for RT-classification problems

Table 4 lists the selected features for problems C
pop
RT [1, 2, 3].

Note that the trial number and the categorical variable encoding

the presence of a goal were selected by all problems. All problems

select at least one of the pupillometry features and an experimental

condition, with the Nearest centroid classifier being the best

method for problems C
pop
RT [1, 2]. Many classifiers provide similar

balanced accuracy scores for C
pop
RT [3] (adaboost, label propagation,

linear discriminant, LGBM, random forest, SVC), so we chose

linear discriminant as it is simpler to hyper-tune. We run five

cross-validations with the wrapper (testing all methods) and 20

cross-validations for the best one.

We solve the RT-classification problems also at the individual

level, i.e., trying to classify RT responses as attentive, semi-attentive,

and inattentive for each subject in turn. For these problems

(Cind
RT [1, 2, 3]), the experimental conditions are not included in

the feature list. Table 3 shows the mean of the balanced accuracy
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TABLE 4 Selected features for classification problems.

Trial Mean Var. Mean Var. Mean Var. Feed- Goal Goal Reward
no. Diam. Diam. LDEV LDEV RDEV RDEV back 1 2 1

GMM X X X X X X X

KNN X X X X X X X

Naive X X X X X X X X X X

List of selected features for problems C
pop
RT [1, . . . , 4] with p-value ≤ 0.01 in stepwise regression for the three labeling methods. None of the methods selected the dummy variable Reward 2.

FIGURE 4

Frequency of features for individual, RT-classification problems Cind
RT [1, 2, 3] under each clustering method. Majority of the individuals selected less

than three out of the seven features.

scores (using the best method) over all subjects. We run five cross-

validations with the wrapper (testing all methods) and rank the

methods according to the median of the balanced accuracy scores.

Figure 4 shows histograms for the frequency of selected features

for problem Cind
RT [1, 2, 3]. Similar to the results obtained at the

population level, the trial number was also the most frequently

selected feature for most subjects.

3.4 Identifying experimental conditions
from physiological data

The last family of machine learning problems examined in

this study is significantly different from the other two; while

R
pop
RT [1, . . . , 4] and C

pop
RT [1, 2, 3] try to predict or categorize RT

responses, problems C
group
EC [1, . . . , 6] try to disambiguate subjects

exposed to different experimental conditions. As shown in Table 1,

subjects were binned into groups G0, . . . ,G6 depending on the

presented type of goal (easy, hard, or none), feedback (yes/no),

and reward (time incentive, cash incentive, or none). For these

problems, experimental conditions are no longer features used to

predict RTs. In fact, RTs are now themselves features used in the six

n-way classification tasks (see label type in Table 2). Also, the eye-

derived features are no longer collected solely at the fixation phase

of the experiment, but instead, throughout the entire trial.

With this different setup, we can now investigate if differences

in experimental conditions imprint noticeable changes in

the collected physiological data. In problem C
group
EC [1], for

example, we combine subjects who received either easy or

hard goals into a single group [G2 + G3] and compare

them with those who received none [G0]. This leads to a

binary classification problem, [G0] × [G2 + G3]. In problem

C
group
EC [4], we keep G2 and G3 separate, which lead to a three-

way classification problem instead, [G0] × [G2] × [G3]. The

setup for the other C
group
EC problems follows the same rationale,

and our best classification results are listed in the bottom part

of Table 3.

Problems C
group
EC [1, 2, 3] consist of binary classification

tasks for one type of experimental condition (vs. control

group). Top balanced accuracy scores for the presence of goal,

feedback, and reward are 0.69, 0.70, and 0.64 respectively.

Problems C
group
EC [4, 5] consist of three-way classification tasks

for goal and reward with top scores of 0.51 and 0.48. Finally,

C
group
EC [6] is a seven-way classification task for all groups, for

which we achieve a 0.24 score. All scores surpass random

guessing by a significant margin, and in all problems except

C
group
EC [4], the most accurate model was also the most informative

(using AIC).

Figure 5 depicts the selected features for problems

C
group
EC [1, . . . , 6]. Since their initial feature list is very large (with 980

features), it is expected that in some cases, the pipeline’s original

feature-selection step might provide sub-optimal solutions. In an

effort to improve our results, we empirically complemented the

list of selected features of some problems with features selected by

others. Specifically, C
group
EC [4] improved when we added features

from C
group
EC [1], C

group
EC [5] improved when we added features from
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FIGURE 5

Features selected for the six classification problems. There were common features among the binary and three-way problems of goal and reward

experimental conditions. The binary classification problems are on the top row. The three-way problems for goal and reward are placed under their

respective binary problems.

C
group
EC [2], and C

group
EC [6] improved when we added features from

C
group
EC [2, 5]. As expected, the number of features is proportional

to the complexity of the task, with significant overlap between

the corresponding binary and three-way tasks (C
group
EC [1, 4] and

C
group
EC [3, 5]).

3.5 Accuracy vs. feature resolution for
EC-classification problems

The initial feature list for problems C
group
EC [1, . . . , 6] is large

because we collect six pupillometry features along with the RT per

trial (7 × 140 = 980). In what follows, we investigate how well

can we classify subjects using coarser measurements. Instead of

collecting features at every trial, we average them over 10, 20, and 35

trials, thus obtaining physiological data with decreasing resolution.

We use the same feature sorting and selection methods used in the

original C
group
EC [1, . . . , 6] problems.

Figure 6 displays the mean of the balanced accuracy scores

over 400 cross-validations (repeated stratified k fold with 20 splits

and 20 repeats) for the best method found by the wrapper. In

general, scores tend to slowly decrease as we average features over

more trials. Problems C
group
EC [1, . . . , 5] have similar decay rates in

balanced accuracy (≈ −0.005), while C
group
EC [6] is slightly more

robust (≈ −0.002). We report the number of selected features,

the exact scores, the standard deviations, the best classifiers, and

the AIC values for all problems (at different resolutions) in the

Supplementary material.

FIGURE 6

Balanced accuracy for problems at di�erent resolutions. Average

balanced accuracy for problems C
group

EC [1, . . . , 6] at di�erent

resolution levels (1, 10, 20, and 35). We used repeated Stratified

K-Fold with 20 folds and 20 repeats totaling 400 cross-validations.

Best fit lines are given by y1 = −0.006x + 0.69, y2 = −0.005x + 0.67,

y3 = −0.005x + 0.66, y4 = −0.004x+ 0.47, y5 = −0.005x + 0.46 and

y6 = –0.002x + 0.24 respectively.

Figure 7 shows the important features for problems

C
group
EC [1, . . . , 6], with green/blue blocks representing features

selected once/twice under any resolution level. Moreover, if a

selected feature is averaged over k trials, we color all corresponding

k trials in the matrix plot. Note that there are no overlaps for more

than two resolution levels, indicating that predictive features at the

highest resolution level are not optimal at the lower ones.
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FIGURE 7

Key features selected for each problem under di�erent resolutions. If a feature was selected for a combined trial (10, 20, and 35), then the whole

block was colored. The dark green color indicated overlaps in features in di�erent resolutions.

4 Discussion

Sustaining attention is difficult, and it has been made

perhaps more difficult by the dynamic environments in which

we live and work. As people complete their daily tasks,

they experience failures of sustained attention, caused by both

internal (e.g., mind-wandering) and external distraction (e.g., from

smartphone notifications). Many situations, like driving a car,

learning in a classroom, and screening baggage for dangerous

items, require sustained attention. Cognitive psychologistsv and

cognitive neuroscientists still do not have a firm grasp on

precisely why humans find sustaining attention so challenging.

Modern machine learning methods may reveal, via data-driven

approaches, moment-to-moment psychological and physiological

features that are indicative of greater versus letter attentiveness.

Our goal here was to determine whether we could categorize

attentiveness using both psychological (i.e., goal state, feedback

presence, reward) and physiological (i.e., eye-tracking) features

of individuals.

Specifically, we revisit the psychomotor vigilance experiment

from Robison et al. (2021) through the lens of modern machine

learning techniques. Specifically, we solve three families of

machine learning problems: (i) four RT-regression problems at

the population level R
pop
RT [1, . . . , 4], (ii) three RT-classification

problems C
pop
RT [1, 2, 3] at the population level and Cind

RT [1, 2, 3] at

the individual level, and (iii) six Experimental Condition (EC)

classification problems at group levels C
group
EC [1, . . . , 6].

In (i), we find that predicting RTs is a notoriously difficult task

(R-squared ≈ 0.24, see Table 3). The best models for R
pop
RT [1, . . . , 4]

did not select any eye-related features from the fixation phase as

predictors, instead choosing a combination of subject IDs, trial

number, and experimental conditions. During the experiment,

subjects first stared at a blank screen, followed by a fixation

screen, and then a screen displaying zeroes for a random interval

between 2–10 s. After this delay, the zeroes began counting forward

like a stopwatch, and subjects pressed the space bar as soon as

the stopwatch started (timer phase). Our analysis utilized eye-

derived features from the fixation phase, where subjects could

still be attentive and preparing for the task ahead. Any signs of

inattention may not have developed yet. In contrast, during the

random interval, subjects might experience a drop in attentiveness

or their eyes might wander off the screen, which could be more

predictive of slower RTs. This interval represents a period of waiting

and uncertainty, potentially leading to lapses in attention that

could be more indicative of the subject’s state and performance.

Therefore, future analyses might benefit from incorporating eye-

derived features from this interval to improve RT predictions.

We also note that including Subject ID in the RT-regression

model significantly improved its performance, underscoring the

importance of individual differences in experiments on sustained

attention using RT measures. This finding aligns with existing

literature, which shows that these are nested observations, and RTs

naturally cluster within individuals, as some people tend to respond

faster than others (Unsworth and Robison, 2018).

In (ii), instead of trying to predict exact RT values, we settle

for a less ambitious classification of RT-responses as attentive,

semi-attentive, and inattentive. We use four different clustering

methods to define these broader categories, which lead to balanced

accuracy scores of ≈ 0.43 at the population level and ≈ 0.6

at the individual level. The trial number feature was the most

frequently-selected feature across all problems (see Figure 4),

which is compatible with the natural, growing inattentiveness

reported in Robison et al. (2021). The analysis also revealed

that pupil and eye-tracking measures were not key predictors
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of RT in both RT-regression and RT-classification models. This

could be due to the restricted time period of eye measures or

because RT and pupil measures index different aspects of attention.

Existing literature supports the latter possibility, suggesting that

post-stimulus dilations and RT have different sensitivities to task

demands (Hershman and Henik, 2019; Richer and Beatty, 1987).

Therefore, including wider windows of pupil data may not have

straightforwardly predicted RTs.

In (iii), we solve a much different type of machine learning

problem. Instead of trying to categorize or predict RTs, we try to

classify subjects that exposed to different experimental conditions,

such as the presence of a goal, feedback, and reward. This led to

the six n-way classification problems C
group
EC [1, . . . , 6]. Contrary to

the previous problems, RTs are now themselves features and eye-

measurements are no longer restricted to the fixation phase (they

are averaged throughout the entire trial). Our good classification

scores (see Table 3) suggest that manipulations in experimental

conditions do imprint noticeable changes in the recorded

physiological data, although predictors may vary according to the

resolution of the features (see Figures 6, 7). The analysis showed

that pupil measures are key predictors of task type in the EC-

classification problem, with prediction accuracy decreasing when

measures are averaged across trials rather than using individual

trial-level data. This suggests that while broad pupil/eye data can

indicate the overall arousal or attentional state of participants, trial-

level data offers a weaker prediction with temporal resolution. We

believe this finding may help guide future research methodology

in cognitive psychology, reinforcing the importance of maintaining

data resolution throughout the experiment.

Overall, our machine-leaning approach indicates that the

behavioral and physiological measures we used accurately predicted

the experimental conditions, demonstrating that global, qualitative

changes in attentional state are detectable. In this design,

participants were assigned to various conditions, and it is plausible

that similar techniques could predict natural states of extreme

stress, anxiety, fatigue, or their opposites like contentment, calm,

and alertness. These states would manifest as distinct patterns in

eye movements, pupillary dynamics, and behavior. However, the

same model might be less effective in predicting specific moments

of stress or fatigue, as evidenced by our lower success rate in

predicting specific RTs.

4.1 Outlook

The application of ML to analyze sustained attention data

presents significant theoretical, analytical, and practical benefits.

Theoretically, ML allows us to identify complex patterns and

relationships within the data, enhancing our understanding of

cognitive processes in sustained attention. This analytical approach

is particularly valuable in behavioral neuroscience and psychology,

providing deeper insights into complex behaviors.

Analytically, ML offers robust and flexible tools to handle high-

dimensional data, enabling the development of predictive models

with high accuracy and generalizability. Our study demonstrates

the potential of these models to classify attentional states and

predict RTs. The experimental setup led to multiple ML problems,

highlighting the importance of carefully defining problems, as

the initial feature list and target variable may change. For

the same setup, we proposed three families of ML problems.

However, predicting human responses remains challenging, even

in controlled setups, illustrating the necessity of sophisticated

ML pipelines.

Practically, predicting and understanding attentiveness

through ML has far-reaching implications. In education, predictive

models can inform personalized learning strategies to maintain

engagement. In occupational health, these models can monitor

and enhance productivity and safety by identifying periods of low

attentiveness and implementing timely interventions. Additionally,

adaptive user interfaces and assistive technologies can respond

to users’ attentional states, improving overall user experience

and performance.

The present results are a first step toward leveraging

pupil diameter and gaze position data to predict moments of

inattentiveness. Recent work has pursued similar goals with more

dynamic environments and additional data (e.g., body movement,

blinking) (D’Mello et al., 2022; Bosch and D’Mello, 2022). In

future work, we aim to design tasks that produce robust indices

of inattentiveness using eye data and additional sensors for

multidimensional data collection. Ultimately, our goal is to build

a reproducible and generalizable model that detects attentional

lapses in real time, mitigating failures of sustained attention.

Portable and accurate wearable eye-tracking technology could be

especially useful in air traffic control, baggage screening, life-

guarding, and others.
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