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The regulation of fear memories is critical for adaptive behaviors and

dysregulation of these processes is implicated in trauma- and stress-related

disorders. Treatments for these disorders include pharmacological interventions

as well as exposure-based therapies, which rely upon extinction learning.

Considerable attention has been directed toward elucidating the neural

mechanisms underlying fear and extinction learning. In this review, we will

discuss historic discoveries and emerging evidence on the neural mechanisms of

the adaptive regulation of fear and extinction memories. We will focus on neural

circuits regulating the acquisition and extinction of Pavlovian fear conditioning

in rodent models, particularly the role of the medial prefrontal cortex and

hippocampus in the contextual control of extinguished fear memories. We will

also consider new work revealing an important role for the thalamic nucleus

reuniens in the modulation of prefrontal-hippocampal interactions in extinction

learning and memory. Finally, we will explore the effects of stress on this circuit

and the clinical implications of these findings.
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1 Introduction

Understanding the neural mechanisms mediating fear and extinction learning is vital
for the development of novel therapeutics for fear and anxiety-related disorders such
as phobias, post-traumatic stress disorder (PTSD), and obsessive-compulsive disorder.
Exposure-based therapies are commonly used for treating these disorders and extinction
learning is the underlying mechanism. Critically, patients undergoing such therapies
are vulnerable to relapse because extinction memories fade with time and are context-
dependent (Maren et al., 2013; Bouton et al., 2021). Given the prevalence of these disorders
and the limitations of exposure-based therapies, it is essential to understand the neural
mechanisms of these disorders.

An important behavioral model for this work is Pavlovian fear conditioning, in which
a conditioned stimulus (CS) is paired with an aversive unconditioned stimulus (US) (e.g.,
footshock), ultimately leading to a conditioned response (CR), such as freezing behavior.
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After conditioning, CRs can be extinguished by repeatedly exposing
rats to the CS in the absence of the US. This procedure
reliably suppresses the magnitude and probability of fear CRs,
but this outcome is fragile. Extinction is highly vulnerable to
several forms of relapse such as renewal, reinstatement, and
spontaneous recovery (Bouton et al., 2021). In this review, we will
review decades of work revealing a critical role of the amygdala,
hippocampus (HPC) and medial prefrontal cortex (mPFC) in
the acquisition, expression, and retrieval of fear. Additionally, we
will explore the role of the HPC and its interactions with the
infralimbic cortex in the acquisition and expression of extinction
memories. Importantly, we will address the critical point that
extinction learning does not erase original fear memories but
creates a competing extinction memory. From this perspective, the
inhibition of fear after extinction requires the suppression of the
fear memory in addition to the retrieval of the extinction memory.
This process is mediated by prefrontal-hippocampal interactions
that are coordinated by the thalamic nucleus reuniens (RE). Finally,
we will discuss the vulnerability of these processes to stress and how
this contributes to PTSD-like phenotypes.

2 Neural circuits for the acquisition
of fear memory

Decades of work assessing the neural circuitry of fear learning
point to the amygdala as a critical neural substrate of aversive
learning and memory. The amygdala is an almond shaped structure
located in the temporal lobe that is essential for the acquisition and
expression of conditioned fear. During fear conditioning, sensory
inputs converge in the basolateral amygdala (BLA) (LeDoux et al.,
1990; Romanski et al., 1993), driving plastic changes and allowing
for long-term associations to be formed (Rogan et al., 1997; Quirk
et al., 1995). Primary sensory information about unimodal CSs
reaches the BLA through both thalamic and cortical projections,
whereas multimodal information about the context is conveyed
by the HPC and entorhinal cortex (Maren, 2001). Information
about aversive (e.g., shock) USs appears to involve projections
from the parabrachial nucleus (Bernard et al., 1993; Davis et al.,
1994). The long-term synaptic changes in the BLA that underlie
fear conditioning are mediated by N-methyl-D-aspartate receptors
(NMDAR) (Maren et al., 1996; Fendt, 2001; Rodrigues et al.,
2001; Goosens and Maren, 2004). Projections from the BLA to
the central nucleus of the amygdala (CeA) drive the expression of
conditioned fear responses (Goosens and Maren, 2001; Jimenez and
Maren, 2009; Ciocchi et al., 2010; Duvarci et al., 2011) through
projections to different hypothalamic and brainstem structures,
including projections to the periaqueductal gray for the freezing
CR (LeDoux, 2000; Paré et al., 2004). The CeA also plays a role
in the acquisition of conditional fear (Goosens and Maren, 2001,
2003; Wilensky et al., 2006; Ciocchi et al., 2010; Duvarci et al., 2011;
Li et al., 2013).

The HPC plays a critical role in encoding contextual stimuli
during fear conditioning. Hippocampal contextual representations
are communicated to the BLA which then projects to the CeA
for CRs (LeDoux, 2000; Maren, 2001; Kim and Cho, 2020). Early
studies examining the dorsal HPC (dHPC) found that electrolytic
lesions prevent the acquisition and expression of contextual fear,

but not fear conditioning to auditory CSs (Kim and Fanselow,
1992; Phillips and LeDoux, 1992). In line with these findings,
NMDAR antagonism in the dHPC yields similar results, suggesting
that hippocampal NMDARs are involved in context conditioning
(Young et al., 1994). Subsequent work revealed that dHPC lesions
are most effective when made after fear conditioning (Maren
et al., 1997), indicating that animals can acquire contextual fear
conditioning using multiple strategies. In the absence of the dHPC,
an elemental (rather than configural) representation of context may
be sufficient to support contextual learning (Maren et al., 1997).
The role of the HPC in contextual learning is confirmed by more
recent studies using modern techniques such as optogenetics and
engram tagging methods. For example, Kheirbek et al. (2013),
use optogenetic approaches to demonstrate that the dorsal, but
not ventral, dentate gyrus (DG) is required for the encoding of
contextual fear memories. This work was expanded on by Bernier
et al. (2017), who showed that optogenetically silencing the DG
during contextual fear conditioning impaired the acquisition of
contextual fear. In addition, optogenetic inhibition of the DG
impaired fear expression in the conditioning context when the
context was similar to a neutral context. On the other hand,
inhibition of the DG enhanced fear generalization to the neutral
context that was similar to the conditioning context. Collectively,
these data point toward a role for the DG in the acquisition
and recall of contextual fear (Bernier et al., 2017). Indeed, using
engram tagging methods, it is demonstrated that contextual fear
conditioning creates a memory trace in the dorsal DG and CA3
regions of the HPC (Denny et al., 2014; Cazzulino et al., 2016),
and silencing these neurons blocks fear memory expression (Denny
et al., 2014), while optogenetic activation of these engram cells in
the dorsal DG is sufficient to promote fear memory recall (Liu et al.,
2012; Kitamura et al., 2017). In addition to the role of the dorsal DG
and CA3, it was found that optogenetically silencing dorsal CA1
during a contextual fear recall test impairs both recent and remote
memory recall (Goshen et al., 2011). Silencing CA1 cells tagged
during contextual fear conditioning-tagged also impairs memory
retrieval (Tanaka et al., 2014). These studies further corroborate
earlier studies demonstrating a role for the dHPC in fear memory
acquisition and expression.

Contextual memories encoded by the HPC also involve the
RE, a midline thalamic nucleus that interconnects the HPC and
mPFC via bidirectional connections. Pharmacological inhibition
of the RE impairs the acquisition of contextual fear conditioning
and disrupts contextual discrimination (Xu and Südhof, 2013;
Ramanathan et al., 2018b; Troyner et al., 2018). Interestingly,
lost contextual memories can be restored by inactivating the RE
during retrieval testing. This suggests that contextual fear memories
learned when the RE is inactivated are state-dependent, and
can only be retrieved when the RE is offline. Indeed, although
contextual conditioning normally requires the dHPC, the dHPC
is not required to form contextual memories with the RE offline
(Ramanathan et al., 2018b).

The mPFC is also implicated in the acquisition and expression
of Pavlovian fear conditioning (Giustino and Maren, 2015). The
prevailing view is that the prelimbic (PL) and infralimbic (IL)
regions of the mPFC have opposing roles in the regulation of
fear (Quirk and Mueller, 2008). For instance, Corcoran and Quirk
(2007) found that the PL is necessary for the expression, but not
acquisition, of learned fear. Inactivation of the PL prior to fear
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extinction reduces fear expression but does not interfere with fear
extinction. In contrast, inactivation of the IL does not affect fear
expression but impairs extinction learning and retrieval (Sierra-
Mercado et al., 2011; Marek et al., 2018). In the following sections,
we will focus on the extinction of fear memories and the role of the
mPFC, HPC, and mPFC-HPC interactions in the acquisition and
retrieval of extinction memories (Figure 1).

3 Acquisition of extinction memory

Extinction of conditioned fear has generated considerable
interest because it is a fundamental behavioral process underlying
exposure therapy in humans. Extensive research has identified the

FIGURE 1

Neural circuits for extinction, retrieval and retrieval under stress.
During extinction the IL exerts inhibitory control over the BLA and
CeA, particularly through its inputs into the ITCs, thus suppressing
the expression of the conditioned fear response. Concurrently, the
HPC is encoding a configural representation of the extinction
context, allowing for the contextual regulation of extinction
learning and retrieval. Under retrieval conditions, the RE facilitates
information flow from the mPFC to the HPC so that the mPFC can
exert top-down control of the HPC, allowing for suppression of
context inappropriate memories and retrieval of context appropriate
memories. The IL also exerts inhibitory control of the BLA and CeA,
suppressing the conditioned fear response. However, stress can
impact these processes, resulting in impaired extinction retrieval. In
the case of the immediate extinction deficit (IED), stress engages
the LC-NE system, which excites the BLA through activation of
β-adrenergic receptors. IL projecting BLA neurons drive
feedforward inhibition of the IL through synapses on parvalbumin
INT of the IL, impairing extinction retrieval. Other models of stress
have demonstrated a role for the HPC in stress-induced extinction
retrieval deficits, although the mechanisms and projections are not
as clear. mPFC, Medial prefrontal cortex; PL, prelimbic; IL,
infralimbic; INT, interneurons; BLA, basolateral amygdala; CeA,
central amygdala; ITC, intercalated cells; RE, nucleus reuniens; HPC,
hippocampus; LC, locus coeruleus. Created with BioRender.com.

amygdala as a key substrate in both acquisition and extinction of
fear memories (LeDoux, 1995; Maren, 2001). In addition, the mPFC
plays a critical role in extinction learning and the regulation of
fear (Gilmartin et al., 2014; Giustino and Maren, 2015; Quirk and
Mueller, 2008). Within the mPFC, the PL and IL are key players
in these processes. Inputs to the IL and PL include excitatory
projections from structures such as the HPC, BLA, midline
thalamus, and contralateral mPFC (Krettek and Price, 1977). Most
important for this current review are the projections from the
HPC (Swanson, 1981; Jay et al., 1989). These projections are
believed to transmit contextual information to the mPFC, which is
critical for directing memory retrieval processes that guide context-
appropriate behavioral responses (Preston and Eichenbaum, 2013).
mPFC outputs include robust glutamatergic projections to the
BLA, midline thalamus, and dorsomedial striatum (DeFelipe and
Fariñas, 1992; Pinto and Sesack, 2000, 2008; Xu and Südhof, 2013).
Despite several structural and connective similarities, a dichotomy
has emerged in the functionality of the IL and PL in fear expression.

3.1 Infralimbic cortex is essential for
extinction learning and memory

Considerable work has revealed that while the PL is involved
in the production of conditioned fear responses, the IL serves to
inhibit these responses after extinction training (Sotres-Bayon and
Quirk, 2010). For example, lesions of the IL spare the acquisition
of extinction (indexed by within-session reductions in fear CRs)
but impair the subsequent retrieval of extinction memories
(Quirk et al., 2000). Temporary pharmacological inactivation
of the IL reduces both the acquisition and later retrieval of
extinction memory (Sierra-Mercado et al., 2006, 2011; Laurent
and Westbrook, 2009; Marek et al., 2018). Pharmacological
manipulations of the IL immediately after extinction training, such
as protein synthesis inhibition (Santini et al., 2004) or NMDAR
antagonism (Sotres-Bayon et al., 2009), also impair extinction
retrieval. Conversely, enhancing IL activity immediately after
extinction training facilitates extinction retrieval (Santini et al.,
2012). Chang and Maren (2011) also found that IL activation via
application of a GABAA antagonist or an NMDAR partial agonist
immediately prior to extinction training reduces conditioned
freezing and enhances extinction acquisition and retrieval. These
studies suggest that IL participates in the acquisition, consolidation,
and expression of extinction memories (Figure 1).

More recent work implicates IL principal cells and their
projections in these processes. For example, optogenetic activation
of IL pyramidal cells (Do-Monte et al., 2015) or their terminals
in the amygdala (Bukalo et al., 2015) during extinction training
facilitates later extinction retrieval. In contrast, optogenetically
silencing IL pyramidal cells or IL-amygdala projection during
extinction retrieval did not attenuate the extinction retrieval
(Bukalo et al., 2015; Do-Monte et al., 2015). Though it is
important to appreciate that the extinction retrieval tests in these
studies were conducted with a limited number of trials. This
may have promoted spontaneous recovery, a type of fear relapse
that can emerge with mere passage of time, to occlude the
effects of the manipulations. With extended retrieval tests, other
studies have found that IL neurons are critical for extinction
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retrieval (Laurent and Westbrook, 2009; Kim et al., 2016;
Marek et al., 2018).

3.2 Hippocampal involvement in
extinction learning guides adaptive
behavioral responses

Extinction memories are highly context dependent (Maren
et al., 2013; Bouton et al., 2021) making them vulnerable to
relapse and limiting the success of exposure-based therapies that
are used to treat fear, anxiety, and trauma- and stressor-related
disorders, such as PTSD. Once extinction of a trauma-related cue
is attained, patients can lose the ability to regulate fear with the
simple passage of time, through exposure to stressors, or exposure
to the cue outside of the exposure-based therapy setting. These
forms of recovery of fear or relapse can be modeled in Pavlovian
fear conditioning and include spontaneous recovery in which fear
re-emerges with mere passage of time (Pavlov, 1927; Rescorla,
2004), reacquisition refers to re-exposure to the CS-US pairing
after extinction (Napier et al., 1992; Kehoe and Macrae, 1997;
Rescorla, 2001; Bouton, 2002), and reinstatement which consists
of exposure to US after extinction (Bouton, 2000, 2002, 2004;
Maren et al., 2013; Goode and Maren, 2014; Chen et al., 2019).
A fourth form of fear relapse known as renewal happens when
the CS is encountered outside of the extinction context. This can
occur in either the conditioning (ABA renewal) or a novel (ABC
renewal) context (Boschen et al., 2009; for a review see Gunther
et al., 1998; Vervliet et al., 2013; Goode and Maren, 2014; Bouton
et al., 2021). Therefore, extinction memories are specific to the
context in which they are acquired, and retrieval of these extinction
memories requires context information. In other words, context
serves as a cue to retrieve the appropriate memory associated with
it (Bouton, 1993; Bouton and Ricker, 1994; Corcoran et al., 2005;
Orsini and Maren, 2012). The fragility of the extinction memory
when compared with the conditioning memory it competes with
strongly suggests that extinction is not an erasure or modification
of fear, but rather a separate memory that inhibits the conditioning
memory during successful extinction retrieval (Bouton et al., 2006b;
Vervliet et al., 2013).

Considerable work indicates that the context-dependence of
extinction is mediated by the HPC (Orsini and Maren, 2012;
Maren et al., 2013). The involvement of the HPC in the
context-dependence of extinction is not surprising insofar as
many studies in both humans and rodents have shown that the
HPC is essential for contextual learning and memory (Kim and
Fanselow, 1992; Maren et al., 1997; Anagnostaras et al., 1999;
Lang et al., 2009; Poppenk et al., 2013). Numerous studies suggest
that the HPC encodes configural representations of context in
which several discrete sensory elements are assembled into a
unified representation or a “gestalt-like” memory (Fanselow, 2000;
Maren and Fanselow, 1995; Rudy and Sutherland, 1995). During
extinction learning, there is evidence that NMDAR activation
and de novo protein synthesis in the dHPC are required for the
consolidation of extinction memories (Vianna et al., 2001, 2003).
Similarly, dorsal hippocampal inactivation impairs acquisition of
extinction (Corcoran et al., 2005). These findings suggest that
the HPC is required for both the encoding and consolidation

of extinction memories (Figure 1). Recent work with neuronal
capture techniques has shown that distinct ensembles of dorsal
hippocampal neurons or “engrams” can encode both fear and
extinction memories (Lacagnina et al., 2019). These engrams are
reactivated during memory retrieval and can either promote or
attenuate conditional fear. We have recently shown, for example,
that the retrieval of a contextual fear memory reactivates dorsal
hippocampal ensembles active during fear conditioning. Fear
memory ensembles captured during memory retrieval promote
freezing behavior when chemogenetically reactivated (Ressler et al.,
2021). Together, these studies suggest that hippocampal ensembles
encode contextual representations that can both promote and
attenuate conditional fear under different circumstances.

Once extinction is acquired, the expression of conditional
fear is highly context-dependent (Maren et al., 2013; Bouton
et al., 2021). For example, an extinguished CS elicits little freezing
behavior in the extinction context, but the same CS will produce
robust freezing in any other context. This relapse or “renewal” of
extinguished fear depends on the HPC. Early studies showed that
pharmacological inactivation of the dHPC prevents fear renewal
(Corcoran and Maren, 2001; Hobin et al., 2006) and dampens
the relapse-associated increases in the lateral amygdala activity
that accompany renewal (Maren and Hobin, 2007). Renewal
is associated with increased expression of the immediate early
gene protein Fos in the ventral HPC (vHPC), particularly in
neurons that project to the basal amygdala and PL (Orsini et al.,
2011; Jin and Maren, 2015a; Wang et al., 2016). Disconnection
of these projections (Orsini et al., 2011) attenuated renewal.
Projections from the vHPC to the IL are particularly important
for renewal (Marek et al., 2018). Chemogenetically activating these
projections drives relapse of extinguished fear in the extinction
context, whereas silencing these projections attenuated renewal
outside the extinction context. These outcomes are paradoxical
given the strong glutamatergic projection of the vHPC to IL—a
projection one might imagine would suppress freezing by driving
IL neurons that project to and inhibit the amygdala. However, it
has been shown that ventral hippocampal neurons exert strong
feed-forward inhibition on IL principal cells via parvalbumin
(PV)-positive interneurons. Thus, renewal of extinguished fear
results from hippocampal inhibition of mPFC circuits involved in
the suppression of fear. When an extinguished CS is presented
outside the extinction context, the expectation of safety is violated
(Maren, 2014) and animals mount an adaptive fear response. The
HPC is required for this process; encountering an extinguished
CS in a novel context (or the conditioning context) restores
the conditioning memory and drives hippocampal-prefrontal
projections to attenuate extinction retrieval.

Ultimately, interactions between the HPC and mPFC are
crucial for cognitive and emotional processes that underlie
acquisition and expression of extinction memories (Figure 1). The
mPFC is crucial for encoding and retrieval of extinction memories,
relying on contextual information that is conveyed by the HPC to
adjust behavior adaptively. Indeed, the mPFC and HPC are thought
to be a part of a network of structures involved in encoding of
information and contextual regulation of extinction learning and
retrieval (Maren et al., 2013). The process by which the mPFC and
HPC communicate during the retrieval of extinction memories is
covered in the following section.
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4 Retrieval of extinction memory
and suppression of fear

4.1 Prefrontal-amygdala circuits
mediating acquisition of fear extinction

Because extinction memories must compete with their
associated conditioning memories, a degree of top-down control is
necessary to determine when to suppress fear. Indeed, the mPFC,
which exerts top-down control over multiple structures in the
brain, is a major regulator of fear expression (Morgan et al., 1993;
Quirk and Beer, 2006; Kim et al., 2010; Maren and Holmes, 2016).
Traditional accounts of fear extinction address the projections from
the mPFC to the BLA, with PL and IL showing differential control
over fear expression. As mentioned above, PL drives fear expression
(Corcoran and Quirk, 2007; Sierra-Mercado et al., 2011) and its
activity is correlated with activity in the BLA, which is reactive to
fearful stimuli (Tye et al., 2011) (Figure 1). The PL is also associated
with context-dependent renewal of fear (Sharpe and Killcross, 2015;
Vasquez et al., 2019). IL, conversely, drives fear inhibition during
extinction acquisition by interacting with the inhibitory cells in the
BLA (Milad and Quirk, 2002; Vertes, 2004; Sierra-Mercado et al.,
2011), primarily through intercalated cell masses (ITC)s (Likhtik
et al., 2008; Sotres-Bayon and Quirk, 2010) (Figure 1).

Studies exploring the role of IL in extinction retrieval
have yielded inconsistent results (Arruda-Carvalho and Clem,
2015; Giustino and Maren, 2015; Kim et al., 2016), presumably
due to the differences in techniques and their spatiotemporal
precision, targets (e.g., IL-only vs. IL and PL), species, and
behavioral paradigms (e.g., number of trials). Recently, several
optogenetics studies sought to examine the role of the IL in
extinction retrieval. In a series of studies, Do-Monte et al. (2015)
used Pavlovian auditory fear conditioning paradigm in rats in
combination with optogenetic manipulations to examine the role
of the IL in extinction retrieval. They expressed the excitatory
opsin channelrhodopsin (ChR2) in IL pyramidal neurons and
stimulated this neuronal population during CSs in extinction
training. Stimulation caused lower freezing during extinction
and facilitated extinction retrieval in a light-free test next day.
Conversely, silencing IL pyramidal neurons during extinction
did not affect freezing during extinction but impaired extinction
retrieval the following day. Silencing IL during extinction retrieval
did not have an impact on freezing, suggesting that IL activity
is not necessary for extinction retrieval (Do-Monte et al.,
2015). Kim et al. (2016), on the other hand, showed that a
similar photoinhibition of IL in mice during extinction retrieval
CSs impairs extinction retrieval and increases freezing levels,
indicating that IL is necessary to suppress fear expression after
extinction (Kim et al., 2016). Pharmacological inhibition of IL
also impairs extinction retrieval (Laurent and Westbrook, 2009;
Marek et al., 2018).

Bukalo et al. (2015) examined the role of mPFC to
amygdala pathway in the acquisition and retrieval of extinction
using a similar auditory fear conditioning paradigm. They
optogenetically stimulated ventromedial PFC (vmPFC) terminals
in the amygdala during a partial extinction procedure. Although
stimulation did not facilitate the within-session extinction,
stimulated animals exhibited enhanced extinction retrieval the

following day. In contrast, silencing vmPFC terminals during
extinction impaired extinction retrieval the next day. Stimulating
or silencing this projection during the extinction retrieval
test did not affect conditioned freezing. These results suggest
that vmPFC → amygdala projections are crucial for encoding
extinction memories.

4.2 Prefrontal-hippocampal circuits in
extinction retrieval and relapse

Despite the well-known role of the IL to amygdala projection
in extinction learning, this pathway seems to be an incomplete
account for the retrieval of extinction memories−specifically, it
does not address the context-specificity of extinction memories.
As explained above, extinction memories are highly context-
dependent (Bouton, 2004; Bouton et al., 2021; Maren et al., 2013),
and therefore, retrieval of extinction memories requires context
information. The mPFC has connections with many other brain
regions, including the HPC, which plays a crucial role in the
encoding of context information, but the HPC also appears to play a
role in representing extinction learning. Fear acquisition memories
and extinction memories are represented in part by the dorsal DG
of the HPC, and unique ensembles of DG cells represent acquisition
of extinction memories (Lacagnina et al., 2019). DG activity is
necessary for the expression of an extinction memory (Denny et al.,
2014; Bernier et al., 2017; Lacagnina et al., 2019) and is encoded
through distinct ensembles of cells that fire concurrently during
extinction retrieval.

It is well established that the HPC is important for the
contextual specificity of extinction and that it is in turn responsible
for low levels of freezing when retrieval occurs in the extinction
context, but at the same time, promotes renewal of extinguished
fear (Corcoran and Maren, 2001; Hobin et al., 2006; Zelikowsky
et al., 2013; Jin and Maren, 2015b; for a review see Bouton et al.,
2006a). As mentioned above, vHPC preferentially sends strong
projections to PV-expressing inhibitory interneurons in the IL,
thus promoting fear renewal through feedforward inhibition of
IL principal cells (Marek et al., 2018). On the other hand, there
is evidence that ventral hippocampal projections release brain-
derived neurotrophic factor (BDNF) in the IL, which appears to be
sufficient for extinction learning (Peters et al., 2010; Rosas-Vidal
et al., 2014), suggesting that hippocampal modulation of the IL
is dynamic, and its behavioral effects can vary depending on the
neuronal subtype and whether extinction has already taken place
or not (Figure 1).

Considering the context-dependence of extinction memories
(Maren et al., 2013; Bouton et al., 2021), extinction retrieval may
involve mPFC-HPC communication. HPC-dependent episodic
memories might require mPFC-dependent rules, executive
function, and outcome expectancies for successful memory
retrieval (Dolleman-van der Weel et al., 2019). Indeed, it is
proposed that mPFC exerts a top-down control on HPC during
retrieval of episodic memories by suppressing competing context-
inappropriate memories and retrieving the context-appropriate
one (Eichenbaum, 2017). This would imply that the retrieval of
extinction requires both the suppression of the CS memory from
the conditioning context (Context A) and the retrieval of the CS

Frontiers in Behavioral Neuroscience 05 frontiersin.org

https://doi.org/10.3389/fnbeh.2024.1352797
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/


fnbeh-18-1352797 January 31, 2024 Time: 12:0 # 6

Plas et al. 10.3389/fnbeh.2024.1352797

memory from the extinction context (Context B). This theory is
also consistent with the fact that extinction creates a new inhibitory
memory on top of conditioning memory that competes with the
conditioning memory to be retrieved (Quirk and Mueller, 2008;
Bouton et al., 2021).

4.3 Thalamic nucleus reuniens mediates
extinction encoding and retrieval

Although the mPFC interacts with the HPC during extinction
retrieval, there are no direct projections from the mPFC to
HPC (but see Malik et al., 2022). However, there is considerable
data revealing bidirectional projections of the midline thalamic
RE with both the mPFC and HPC (Vertes, 2006; Padilla-
Coreano et al., 2012; Anderson et al., 2016; Place et al., 2016;
Eichenbaum, 2017; Ramanathan et al., 2018a; Dolleman-van der
Weel et al., 2019; Vertes et al., 2022). In addition to the mPFC
and HPC, the RE receives input from a diverse set of regions
including the hypothalamus, amygdala, basal forebrain, and the
brainstem (McKenna and Vertes, 2004). However, its projections
are limited to limbic cortical areas (Vertes, 2006; Vertes et al.,
2006). Importantly, the bidirectional connections RE has with
both mPFC and HPC (Vertes, 2006; Vertes et al., 2022) positions
it to coordinate information flow between the two. In addition,
∼5–10% of RE cells project to both mPFC and HPC via axonal
collaterals (Hoover and Vertes, 2012). Vertes et al. (2007) combined
anterograde and retrograde tracing methods to decipher mPFC-
RE-HPC projections and showed that mPFC fibers form excitatory
synapses on proximal dendrites of RE cells that project to the
CA1 of HPC. It is known that glutamate is the primary excitatory
neurotransmitter in the RE (Bokor et al., 2002), and that there
are no GABAergic inhibitory interneurons (Ottersen and Storm-
Mathisen, 1984). However, GABA receptors are present in the
RE (Hallock et al., 2016; Walsh et al., 2017; Viena et al., 2018)
and there are robust GABAergic projections from the RE to the
zona incerta, for example (Yang et al., 2022). It should also be
noted that RE predominantly projects to vHPC compared to dHPC
(Su and Bentivoglio, 1990; Dolleman-Van Der Weel and Witter,
1996; Hoover and Vertes, 2012). Hauer et al. (2019) demonstrated
that paired-pulse stimulation of mPFC or optogenetic activation
of RE causes evoked potentials in the CA1 region of HPC.
Evoked potentials following mPFC stimulation had longer latency
compared to those following RE activation and stimulating mPFC
caused orthodromic excitation in RE units. Moreover, stimulating
mPFC and chemogenetically silencing RE at the same time
abolished evoked potentials in HPC, supporting that RE is an
intermediary structure for mPFC → HPC information flow
(Hauer et al., 2019).

Evidence describing the dense projections between the mPFC,
RE, and HPC paved the way for investigations of the role of the
RE in the acquisition and retrieval of extinction. In a series of
experiments, Ramanathan et al. (2018a) used the GABAA receptor
agonist muscimol to reversibly inhibit the RE prior to various
stages of auditory fear conditioning, extinction, and extinction
retrieval. Local muscimol infusions into the RE prior to extinction
training impaired acquisition of extinction, and the same rats
tested off-drug showed a deficit in extinction retrieval. Similarly,

rats that received muscimol in RE after extinction training and
immediately prior to extinction retrieval showed increased CS-
induced freezing. However, when rats were tested for renewal in
the conditioning context, freezing was unaffected. In addition,
extinction retrieval increased Fos expression in RE compared to
home-cage controls, and single-unit recordings from RE neurons
during retrieval and renewal revealed increased CS-evoked firing
during extinction retrieval but not renewal. These results suggest
that RE has a role in inhibiting conditioned fear during extinction
and extinction retrieval (Figure 1). However, the RE appears to
have negligible effect on the consolidation or reconsolidation of
extinction memories (Vasudevan et al., 2022). Vasudevan et al.
(2022) showed that muscimol infusions in RE immediately after
extinction training do not impair consolidation of extinction.
Likewise, RE muscimol infusions immediately after the reactivation
of the extinction memory did not impair reconsolidation of
extinction. Overall, these findings suggest a selective role of the RE
in encoding and retrieval processes that are involved in extinction
memories.

The neural projections mediating this effect originate in the
mPFC. Using an intersectional method to manipulate mPFC
neurons projecting to the RE, Ramanathan et al. (2018a) found
that chemogenetic silencing of RE-projecting mPFC neurons also
produced an extinction retrieval deficit. Using a complementary
approach, it was found that chemogenetic silencing of mPFC
terminals in the RE led to a similar extinction retrieval impairment.
This work suggests that mPFC to RE projections are, in part,
responsible for modulating the expression of extinction memories
and that the mPFC mediates top-down control for fear inhibition
via the RE (Ramanathan et al., 2018a).

More recently, Ratigan et al. (2023) demonstrated that silencing
projections from RE to dorsal CA1 also impaired the extinction
of contextual fear conditioning in head-fixed mice. Two-photon
imaging of RE terminals in CA1 revealed an increase in calcium
activity during bouts of freezing and a decrease in activity
during running. Collectively, this work suggests that the RE may
serve as a hub interconnecting the mPFC and HPC to regulate
the suppression of context-inappropriate memories (i.e., retrieval
suppression) (Figure 1). This is consistent with work in humans
suggesting that tasks that require participants to actively suppress
memory (e.g., think-no think) result in increased activity in the PFC
and reduced activity in the HPC (Anderson and Floresco, 2022).
Indeed, we have recently found that RE coordinates oscillatory
synchrony in the mPFC and HPC during extinction retrieval, and
that recruiting this activity can prevent relapse (Totty et al., 2023).
Recently, Malik et al. (2022) also revealed a monosynaptic long-
range inhibitory projection from mPFC to dHPC though the role
of this projection in extinction retrieval has not been explored.

Notably, recent work suggests that projections from RE to the
BLA may underlie the extinction of remote fear memories. Silva
et al. (2021) found that the extinction of 30-day old fear memories,
but not 1-day old memories, recruited RE → BLA projections.
Calcium imaging experiments revealed that RE activity and the
activity of RE → BLA projections were both highly correlated
with freezing behavior and increases in RE activity anticipate the
cessation of freezing behavior. Closed-loop inhibition of the RE
at the beginning of a freezing bout prolonged freezing behavior
suggesting that RE normally contributes to the cessation of freezing
behavior and may signal safety to the BLA (Silva et al., 2021).
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In contrast, two-photon recordings from RE terminals in dorsal
CA1 showed the opposite pattern of activity during the retrieval
of a contextual fear memory: RE terminals showed increases in
activity during freezing and a decrease in activity during running
(Ratigan et al., 2023). These authors concluded that the RE-CA1
projection suppresses fear by disrupting hippocampal contextual
fear memory. Moscarello (2020) proposed a similar role for
vmPFC-RE projection in freezing suppression following signaled
active avoidance training, facilitating adaptive proactive coping
behavior.

4.4 Thalamic modulation of mPFC-HPC
communication during extinction
retrieval

Several models have been put forward regarding the role of
RE in modulating mPFC-HPC communication. Dolleman-van der
Weel et al. (2019) propose that the RE may facilitate mPFC-HPC
coordination via its collateralized axons targeting both mPFC and
HPC. In addition, RE may integrate mPFC and other inputs to later
project to HPC. This way, mPFC control over HPC processes might
be exerted to regulate the retrieval of specific HPC-dependent
memories. In addition, RE may gate HPC projections to mPFC and
control the flow of contextual information to the mPFC (Dolleman-
van der Weel et al., 2019). According to the model put forward by
Eichenbaum (2017), contextual cues are delivered to mPFC directly
from vHPC with RE facilitating synchrony between the two. When
a specific memory is to be retrieved using these contextual cues, RE
synchronizes information flow from mPFC to HPC. The mPFC, in
turn, exerts top-down control over HPC and suppresses context-
inappropriate HPC representations.

One way the RE may facilitate information exchange between
the mPFC and HPC is via oscillatory synchrony (Ferraris et al.,
2018; Hauer et al., 2019, 2021; Angulo-Garcia et al., 2020; Cassel
et al., 2021). Oscillations enable communication between brain
regions by synchronizing their activity (Fries, 2015; Totty and
Maren, 2022). For example, theta oscillations (4–12 Hz) in the
amygdala are known to couple with mPFC and HPC during the
retrieval of conditioned fear memories (Seidenbecher et al., 2003;
Lesting et al., 2011; Likhtik et al., 2014; Stujenske et al., 2014;
Davis et al., 2017; Ozawa et al., 2020). However, not much is
known about the oscillatory correlates of extinction and extinction
retrieval (Lesting et al., 2013; Trenado et al., 2018; Totty and Maren,
2022). There is some evidence that disrupting hippocampal theta
oscillations impairs memory retrieval (Shirvalkar et al., 2010; Etter
et al., 2023). Many studies also showed that mPFC and HPC are
coupled to each other at theta frequencies during different memory
tasks (Jones and Wilson, 2005; Siapas et al., 2005; Hyman et al.,
2010; Colgin, 2011; Lesting et al., 2011, 2013; O’Neill et al., 2013;
Totty and Maren, 2022; Stout et al., 2023; Totty et al., 2023).
Importantly, Lesting et al. (2011) showed that IL synchronizes with
dHPC at theta frequencies during extinction retrieval in mice. They
further showed that IL theta leads HPC theta during extinction
retrieval but not after extinction training. Moreover, during
extinction retrieval, there is no significant lead/lag relationship in
oscillations between HPC-lateral amygdala and IL-lateral amygdala
pairs (Lesting et al., 2013), supporting the idea that mPFC-HPC

theta coupling, with mPFC leading HPC, might underlie extinction
retrieval. Totty et al. (2023) similarly demonstrated mPFC-dHPC
theta coupling (6–8 Hz) in the rat during the retrieval of extinction
memories. This coupling was observed for both PL-HPC and
IL-HPC pairs.

Based on these results, theta oscillations might facilitate
inter-regional communication during the retrieval of extinction
memories. Consistent with this, compelling data from Hallock et al.
(2016) showed a causal role of RE in driving mPFC-HPC oscillatory
synchrony during a working memory task. They observed mPFC-
dHPC oscillatory synchrony during a spatial working memory task
in rats, which was abolished with muscimol infusions in the RE.
Kafetzopoulos et al. (2018) recorded local field potentials (LFPs)
from PL and CA1 of the vHPC in RE-lesioned or sham-operated
anesthetized rats. Although RE lesion did not reduce activity in
the mPFC and the vHPC, it decreased mPFC-vHPC coupling
in delta and theta bands compared to sham-operated rats. Totty
et al. (2023) more directly showed theta-range oscillations in the
RE by recording LFPs from the RE during extinction training.
Moreover, pharmacological inactivation of the RE impaired both
mPFC-dHPC theta coupling and extinction retrieval.

However, some studies contradict the findings described above.
Roy et al. (2017) recorded LFPs from PFC, HPC, and RE in
anesthetized rats. Pharmacologically inactivating RE had minimal
effects on PFC-HPC theta coherence. This led authors to conclude
that RE has no role in transmitting theta oscillations between
PFC and HPC (Roy et al., 2017). Jayachandran et al. (2023)
showed mPFC-HPC coherence in the beta band (15–30 Hz)
during a non-spatial sequence memory task, while theta coherence
was observed during non-memory-related running. Activating
RE increased mPFC-HPC beta coherence while decreasing theta
coherence (Jayachandran et al., 2023). It should be noted that these
studies differ in both the behavioral tasks and recording methods
(e.g., awake vs. anesthetized animals) used in the work. More work
is needed to clarify the role of the RE in mPFC-HPC oscillatory
coupling and how this might facilitate extinction retrieval.

In short, RE appears to contribute to mPFC top-down control
of HPC-dependent memory retrieval, and this may be central
to the suppression of fear during extinction retrieval. There is
considerable evidence that the thalamic RE is an important hub
between the mPFC and HPC and is required for the acquisition
and retrieval of extinction memories (Figure 1). Whether the
RE facilitates the mPFC-HPC communication through oscillatory
synchrony during extinction retrieval should be examined in depth.

5 Stress-induced impairments in
extinction acquisition

Successfully encoding and retrieving extinction memories is
critical not only for the adaptive regulation of fear, but also for
therapeutic interventions in patients with stress- and trauma-
related disorders, such as PTSD. Work over the past two decades
has revealed that extinction learning and memory are highly
sensitive to stress (Maren and Holmes, 2016). When experienced
before extinction, stress undermines extinction learning and causes
poor long-term extinction memory. When experienced after
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extinction learning, stress drives the relapse of fear and impairs
extinction retrieval (Maren and Holmes, 2016).

A wide variety of acute and chronic stressors including
electric shock, restraint, social defeat, immobilization, and predator
exposure impair extinction learning and retrieval. Additionally,
there are stress models, such as the immediate-extinction deficit
(IED) (Maren and Chang, 2006), stress-enhanced fear learning
(SEFL) (Rau et al., 2005), and single prolonged stress (SPS)
(Liberzon et al., 1997) that recapitulate physiological and behavioral
changes seen in patients with PTSD. In the remaining sections,
we will discuss the effects of these stressors and stress models
on the mPFC, HPC, and their interaction during the regulation
of fear.

5.1 Role of the mPFC in stress-induced
extinction impairments

Substantial data indicate that the mPFC is central to the
pathophysiology of PTSD (for a review see Liberzon and Sripada,
2008). This has been modeled in rodents using procedures such as
SPS, in which rats experience a 2-h restraint period followed by a
20-min forced swim, exposure to ether until loss of consciousness,
and then a 7-day quiescent period (Liberzon et al., 1997). After this
7-day quiescent period, SPS rats show deficits in extinction retrieval
that are analogous to deficits seen in patients with PTSD (Knox
et al., 2012). Considerable work has found that SPS causes lasting
hypofunction in IL (Knox et al., 2010; Lim et al., 2017; Piggott et al.,
2019; Nawreen et al., 2021), and this is associated with extinction
retrieval deficits (Canto-de-Souza et al., 2021; Omura et al., 2021).

The IED demonstrates stress-induced deficits in extinction
learning which occur when extinction learning takes place
immediately after conditioning. This deficit does not seem
to emerge during the extinction sessions as within-session
decrement in freezing is similar between groups undergoing
extinction immediately (15-min) or 24 h after conditioning
(Maren and Chang, 2006). However, when rodents are tested for
extinction retrieval, those submitted to extinction immediately
after conditioning exhibit robust deficits in extinction retrieval.
Although the mechanisms are not completely understood, evidence
points to the importance of footshock-induced stress associated
with Pavlovian fear conditioning (Maren, 2014, 2022). Indeed, we
have demonstrated that fear conditioning (5 shock-tone pairings)
causes a substantial, but short-lived, increase in spontaneous
firing rates of neurons in the PL and IL. Immediately after fear
conditioning, however, the increase in IL neuronal activity is
followed by a sustained suppression of spontaneous firing rate
for roughly 30 min after the last CS-US pairing−which includes
the time window in which immediate extinction training begins
(Fitzgerald et al., 2015; Giustino et al., 2016a, 2019).

The locus coeruleus-norepinephrine (LC-NE) system is
implicated in stress-induced hyperarousal and sensitization of
this system is linked to PTSD (Southwick et al., 1997, 1999;
Geracioti et al., 2001). Propranolol, a non-selective β-adrenergic
receptor antagonist, has been used to prevent or treat symptoms
of PTSD, such as hyperarousal (Southwick et al., 1999; Giustino
et al., 2016b) and may promote extinction. Consistent with this,
systemic propranolol administration attenuates shock-induced

changes in mPFC spike firing and prevents the IED (Fitzgerald
et al., 2015). Interestingly, propranolol attenuated the IED when
infused into to the BLA, but not the IL, suggesting that heightened
NE signaling in the BLA is a critical substrate of the IED (Giustino
et al., 2017). Consistent with this, Giustino et al. (2020) discovered
that fear conditioning (and the stress it engenders) produced a
prolonged increase in BLA spontaneous firing that was blocked
by systemic propranolol. Basolateral amygdala hyperexcitability
and the IED were enabled by chemogenetic activation of the LC
and these effects were blocked by propranolol (Giustino et al.,
2020). Collectively, these results support the hypothesis that
noradrenergic LC-BLA signaling in the BLA underlies the IED.
Stress-induced activation of LC-NE system and resultant increases
in BLA activity may strengthen BLA-mediated suppression of
the IL, causing impairments in extinction learning (Maren, 2022)
(Figure 1).

One possible mechanism in which the BLA may drive stress-
induced IL neuronal activity decrease is through the activation of
inhibitory interneurons. Indeed, PV+ interneurons provide fast-
spiking inhibitory signals to mPFC neurons (Tremblay et al.,
2016), constituting a possible target of acute stress effect. Page
et al. (2019) showed that chronic stress increases the activity of
prefrontal PV+ cells and that the chemogenetic activation of these
cells is involved in anxiety-like behavior. We have recently shown
that chemogenetic excitation of IL PV+ neurons during delayed
extinction (24 h after fear conditioning) induces extinction learning
impairments (Binette et al., 2023). Chemogenetic excitation of IL
PV+ neurons may mimic the conditions associated with shock-
induced suppression of IL activity, thereby causing extinction
learning impairments. In support of this hypothesis, chemogenetic
inhibition of IL PV+ neurons attenuated the IED in male rats
(though female rats did not show an attenuated IED) (Binette
et al., 2023). Moreover, chemogenetic inhibition of BLA neurons
projecting to the IL prevented the IED in male rats, suggesting
that the BLA may drive feed forward inhibition of the IL through
its connections to IL PV + interneurons (Binette et al., 2023).
Taken together, these data point to a broader circuit model in
which stress induces activation of LC-NE projections to the BLA,
enhancing BLA-mediated feedforward inhibition of the IL through
activation of the IL PV + interneurons, ultimately leading to deficits
in extinction learning (Maren, 2022) (Figure 1).

5.2 Role of the HPC in stress-induced
extinction impairments

The discovery of steroid hormone receptors in HPC
neurons (McEwen et al., 1968), especially mineralocorticoid
and glucocorticoid receptors (MR and GR, respectively) in the
HPC (de Kloet et al., 1996, 1998) suggest that they play a critical
role in stress effects on memory (for a review see Kim and
Diamond, 2002). The HPC receives inputs from sensory and
association areas, and its outputs innervate cortical and subcortical
areas involved in cognitive, affective, and behavioral functions
(Bienkowski et al., 2018). It is therefore a critical hub for processing
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interoceptive and exteroceptive contexts and regulating affective
behavior (Maren et al., 2013). HPC neurons are highly plastic and
vulnerable to stress. For example, stressors have been demonstrated
to suppress adult neurogenesis, inhibit the survival of newborn
cells, and induce atrophy within the HPC (McEwen, 1999; Vyas
et al., 2002; Krugers et al., 2010). These stress-induced adaptations
may be due to glucocorticoid-glutamatergic interactions (Karst and
Joëls, 2003, 2005; Olijslagers et al., 2008). Indeed, SPS induces an
upregulation of GRs and alterations in NMDAR mRNA in the
HPC, both effects that are thought to mediate the stress-induced
extinction retrieval deficit. Two hours of acute restraint stress
promotes fear extinction deficits in a contextual fear conditioning
paradigm and AMPA-GluA1 phosphorylation in HPC neurons
after 10 days of incubation (Novaes et al., 2021). These data suggest
an important stress effect on HPC neurons with implications for
the fear extinction process, however, more work needs to be done
to determine the exact role of the HPC in stress-induced extinction
deficits (Figure 1).

As discussed previously, the communication between mPFC
and HPC is fundamental for fear learning and extinction.
Knowing that both structures are sensitive to stress-induced
plastic effects with important implications in the fear extinction
process, it is important to understand whether stress-induced fear
extinction impairments are correlated with alterations in mPFC-
HPC interactions. Chronic stress is known to block long-term
potentiation (LTP) on the vHPC-mPFC pathway (Cerqueira et al.,
2007), whereas blocking extinction-induced LTP by low-frequency
stimulation of vHPC neurons after extinction training disrupts
the recall of extinction memory (Hugues and Garcia, 2007).
Indeed, Garcia et al. (2008) showed that chronic stress disrupts
the extinction memory recall by blocking the extinction-induced
HPC-mPFC pathway LTP. Although the mechanisms through
which stress induces changes in mPFC-HPC communication are
not completely understood, evidence points to a stress-induced
decrease in BDNF release in mPFC and HPC (Solomon et al., 2019).
These results demonstrate that blockade of extinction-induced LTP
in HPC-mPFC pathway and the decrease of BDNF release in both
structures are pieces of the mechanism through which chronic
stress induces fear extinction recall impairments. Understanding
how stress induces changes in neurobiological substrates of
extinction acquisition, such as HPC and mPFC, is fundamental to
develop future therapies to stress-related psychiatric disorders.

6 Summary

Understanding the underlying brain circuitry in fear and
extinction memory is key for increasing treatment efficiency
for people with fear, anxiety, and trauma and stressor-related
disorders. Considerable work reveals that the conditioning and
extinction of fear requires a neural circuit involving the HPC,
mPFC, and amygdala. The reviewed literature suggests that the
inhibition of conditioned fear after extinction is mediated by the
suppression of HPC-dependent fear memories. This is mediated by
medial prefrontal cortical regulation of hippocampal fear memory
retrieval, a process that is coordinated by the midline thalamic RE
(Figure 1).

Successful extinction learning and retrieval is fundamental to
cognitive-behavioral interventions for disorders including PTSD.
A major challenge to these therapies is relapse, in which
extinguished fear returns under many conditions. Psychological
stress is a major contributor to relapse insofar as stress undermines
both extinction learning and retrieval. Stress-induced extinction
impairments appear to involve several neuromodulatory pathways,
and recent work suggests that stress-induced noradrenergic
hyperarousal plays a central role. Stress-induced activation of
the locus coeruleus leads to amygdala hyperexcitability which, in
turn, dysregulates medial prefrontal cortical circuits necessary for
extinction learning (Figure 1).

Collectively, decades of research have now revealed discrete
neural circuits that are central to fear conditioning and extinction.
This work is opening new avenues of research to inform
how failures of extinction learning and memory contribute to
pathological disorders, such as PTSD.
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