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Background: As machine learning technology continues to advance and 
the need for standardized behavioral quantification grows, commercial and 
open-source automated behavioral analysis tools are gaining prominence in 
behavioral neuroscience. We present a comparative analysis of three behavioral 
analysis pipelines—DeepLabCut (DLC) and Simple Behavioral Analysis (SimBA), 
HomeCageScan (HCS), and manual scoring—in measuring repetitive self-
grooming among mice.

Methods: Grooming behavior of mice was recorded at baseline and after water 
spray or restraint treatments. Videos were processed and analyzed in parallel 
using 3 methods (DLC/SimBA, HCS, and manual scoring), quantifying both total 
number of grooming bouts and total grooming duration.

Results: Both treatment conditions (water spray and restraint) resulted in 
significant elevation in both total grooming duration and number of grooming 
bouts. HCS measures of grooming duration were significantly elevated relative 
to those derived from manual scoring: specifically, HCS tended to overestimate 
duration at low levels of grooming. DLC/SimBA duration measurements were not 
significantly different than those derived from manual scoring. However, both 
SimBA and HCS measures of the number of grooming bouts were significantly 
different than those derived from manual scoring; the magnitude and direction 
of the difference depended on treatment condition.

Conclusion: DLC/SimBA provides a high-throughput pipeline for quantifying 
grooming duration that correlates well with manual scoring. However, grooming 
bout data derived from both DLC/SimBA and HCS did not reliably estimate 
measures obtained via manual scoring.
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Background

Behavioral studies of laboratory animal models are essential to neuroscience. Although 
behavioral data is relatively easily acquired, standardizing behavioral analyses across different 
laboratories poses a challenge (Sousa et al., 2006). Human observation with manual scoring 
of target behaviors is commonly used, but this method is time and labor intensive, 
unstandardized, and prone to inter-rater variability (von Ziegler et al., 2021). Observational 
quantification of behavior is particularly difficult for behaviors that occur rarely, that occur 
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over a long period of time, or that are not readily distilled into a simple 
parameter such as velocity, time, or frequency of occurrence (Spink 
et al., 2001).

One solution to these problems is automated analysis from video. 
Developments in machine learning—the process by which algorithms 
learn from data—have enabled high-throughput programs capable of 
handling large amounts of data (Deo, 2015; Yin et al., 2017). When 
compared to manual analysis by human experimenters, automated 
behavioral analysis has multiple advantages, including efficiency, 
standardization, and scalability. In response to the growing demand 
for high-validity, high-throughput automated behavioral analysis 
algorithms, the number of commercial and open-source machine 
learning programs dedicated to behavioral analysis continues to 
increase (Maekawa et al., 2020; Vonstad et al., 2020; Wiltschko et al., 
2020; Wotton et al., 2020; Hsu and Yttri, 2021; Lorsch et al., 2021; 
Luxem et al., 2022). These tools can be broadly divided into three 
classes: those for pose estimation, those for complex behavioral 
analysis, and those for both purposes. This paper will address one 
solution in each class: DeepLabCut (DLC), Simple Behavioral Analysis 
(SimBA), and HomeCageScan (HCS; CleverSys, Reston, VA).

Markerless pose estimation tools apply computer vision and 
machine learning algorithms to automatically detect key body parts 
across video frames rather than manually attaching visible tags that 
may fall off or influence natural behavior (Mathis et al., 2018; Vogt, 
2021). For example, DeepLabCut is trained by the user to build a 
model that can consistently recognize the nose, ears, limbs, etc. in 
frames from new videos by modeling their visual features such as 
shape, orientation, texture. The trained network then labels new 
footage by locating these learned body components in each frame, 
linking them together into pose skeletons depicting the animal’s 
movements and actions. To elaborate, DeepLabCut utilizes deep 
neural networks, structured in layered nodes mimicking biological 
brains, which requires relatively few training examples (~50–200 
frames) to achieve human-equivalent accuracy in labeling novel 
inputs (Mathis et al., 2018; Nath et al., 2019). DLC’s networks are 
trained by the user, teaching the system to accurately recognize target 
body parts from labeled frames. After the experimenter has trained 
the network, it can be reused to label novel behavioral data collected 
using the same experimental setup. Additionally, once customized on 
experiment videos, the network can reliably label new footage 
enabling efficient annotation supporting high-throughput analysis. 
DLC’s accessibility, including a graphical-user interface (GUI), Jupyter 
Notebook guidance, and Google Collab graphical processing unit 
(GPU), have all contributed to its popularity.

Following pose estimation with software such as DeepLabCut, 
programs like Simple Behavioral Analysis (SimBA) can use pose data 
to assess and label sequences of positional data as user-defined 
behavioral phenotypes. SimBA creates predictive classifiers of rodent 
behavior with millisecond resolution and accuracy that claims to 
outperform human observation. SimBA supports a four-step pipeline: 
(1) pre-processing videos, (2) managing pose-estimation data, (3) 
creating, performing, and analyzing behavioral classifications, and (4) 
visualizing results (Nilsson et al., 2020).

DLC and SimBA perform pose estimation and behavioral analysis 
separately. Commercial software packages such as HomeCageScan 
(HCS; CleverSys, Reston, VA) are dual-purpose, conducting both pose 
estimation and behavioral analysis. HCS developers state that it can 
quantify over 38 mouse behaviors, and that the program has been 

validated in quantifying behavior in healthy mice and in mice with 
neurodegenerative diseases (Steele et al., 2007).

Despite the advantages of automated analysis, no consensus has 
been reached as to which protocols should be followed, or on the 
comparative validity of these programs. Given the recent 
popularization of supervised machine learning tools and the sheer 
number of options available, assessing the efficacy of different 
programs is crucial.

One relevant application of machine-learning informed 
behavioral analysis is in the study of abnormal repetitive behaviors 
(ARBs); these are behaviors that are inappropriate, repetitive, and 
unvarying in goal or motor pattern (Garner, 2005). ARBs can occur 
and fluctuate over long time periods and are difficult to reduce to 
simple parameters, problematizing observational scoring (Spink et al., 
2001). ARBs have been associated with an array of human psychiatric 
disorders such as autism spectrum disorder (ASD), Tourette 
syndrome, obsessive compulsive disorder (OCD), Parkinson’s disease, 
and others, and are often reported in animal models that seek to 
capture the pathophysiology of these conditions (Silverman et al., 
2010; Muehlmann and Lewis, 2012; Gruner and Pittenger, 2017). The 
nature of ARBs—their frequency and variability—as well as their 
potential translational significance underscores the need for robust 
behavioral analysis, and makes them a target for testing automated, 
high-throughput strategies for quantification.

In mouse models, one prominent abnormal repetitive behavior is 
pathological self-grooming, a phenomenon that can be contrasted 
with the normal grooming behaviors extensively documented in rats 
by Bolles (1960) and shown to be an innate, repetitive behavior which 
does not require sensory input in mice by Fentress (1973). Self-
grooming encompasses a complex, sequential syntax critically 
involving corticostriatal control with additional integration across 
corticolimbic structures (Berridge, 1989; Spruijt et al., 1992; Kalueff 
et al., 2016). As a stereotypic behavior with intuitive comparisons 
across species, translational psychiatry increasingly recognizes 
pathological grooming alterations in mice as highly valuable proxies 
to model compulsive sequential psychopathology underlying 
disorders like autism and OCD (Garner and Mason, 2002; American 
Psychiatric Association, 2013; Bortolato and Pittenger, 2017).

Measuring grooming duration helps to clearly identify genetic and 
pharmacological factors that affect the regulation of repetitive 
behaviors. Analyzing this complex repetitive behavior requires precise, 
high-throughput analytical tools (Kalueff et al., 2007; Ahmari et al., 
2013)—a key motivation behind this work. Moreover, because 
grooming manifests unpredictably across prolonged periods, 
developing accurate techniques to measure overall expression enables 
revealing pathogenesis while supporting therapeutic development 
(Sachs, 1988; Kalueff et al., 2016; Song et al., 2016).

We focus on mice here due to their broad appeal to preclinical 
researchers. Mice confer advantages in established genetic 
manipulation lines compared to rats. Their smaller size also facilitates 
higher density housing that is critical for large interventions. 
Additionally, excessive grooming in mice provides a well-validated 
approach to model repetitive behavioral pathologies relevant to 
psychiatric disease research, our primary focus.

Here, we quantify whole mouse grooming episodes using two 
automated behavioral analysis pipelines: DeepLabCut/SimBA and 
HomeCageScan. The output of each program is compared to the other 
and to manual scoring. We studied self-grooming in C57BL/6 mice 
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across three conditions: at baseline, after restraint stress to evoke 
spontaneous excessive grooming, and after water spray to provoke 
exaggerated grooming. Both restraint (van Erp et al., 1994) and water 
spray protocols (Smolinsky et al., 2009) are well-established methods 
to induce excessive self-grooming in mice. By parsing grooming into 
these categories, we  can systematically contrast automated 
quantification during natural conditions versus following two distinct 
induction procedures known to elevate this repetitive behavior in 
different manners. We discuss current obstacles in machine learning 
behavioral analysis and suggest directions for future work.

Methods

Animals

All procedures were approved and overseen by the Yale University 
Institutional Animal Care and use Committee (IACUC). 12 weeks-old 
male and female C57BL/6 mice weighing 20–30 g were obtained from 
Jackson Labs (Bar Harbor, ME). Animals were housed in a facility at 
a temperature of 24°C (297.15 K), relative humidity of 30%–50%, and 
controlled lighting with light on from 7:00 to 19:00 daily.

Experimental procedure

Mice, comprising 12 males and 12 females, were pseudo-randomly 
assigned to two treatment conditions: restraint stress and water spray. 
This assignment was conducted in a balanced and alternating order, 
determined by a computer-generated random sequence, to ensure 
equal distribution across both conditions. Prior to each treatment 
(collectively referred to as “induction”), baseline behavior was 
recorded for 10 min. Immediately following induction, behavior was 
again recorded for 10 min. Recordings were conducted in the HCS 
apparatus (CleverSys, Reston, VA). After each trial, the behavior box 
was cleaned with 70% ethanol applied using paper towels, allowed to 
fully dry, and feces removed if necessary, before introducing the next 
subject. Videos were processed through the HCS pipeline and, in 
parallel, exported for analysis in DLC/SimBA. Seven days later, mice 
were assigned to the other treatment condition (water spray or 
restraint stress), and additional 10 min baseline and induction 
measurements were obtained. This resulted in four 10 min 
observations per mouse.

HomeCageScan video acquisition

Mice were housed together (4 per cage) and first habituated for 
20 min in the behavior room prior to individual recording trials. For 
video capture, subjects were placed separately into clear plexiglass 
cages (47 cm length × 36.8 cm width × 20.3 cm height) inside one of 
four cabinet stations of the Home Cage Rack system (CleverSys Inc., 
Reston, VA).

Each station contains a camera and lighting fixed at a side angle 
view. The Pacific PA-290 analog cameras connect to a quad video 
multiplexer consolidating the 4 feeds into one NTSC signal. This 
interfaces with a WinTV PCI/USB card (models 350/1950/1955) in a 
PC capturing uncompressed 30 fps video at 720 × 480 resolution. 

Onboard multiplexing splits this into four 360 × 240 resolution 30 fps 
MPG videos per each mouse cage.

Baseline measurements

Baseline behavior was recorded for 10 min on each of the two 
sessions, beginning after the last mouse was placed in its cage. 
Individually recorded videos of each of the four mice are stitched 
together by the CleverSys system into a single 10 min video containing 
the behavior of all four animals.

Water spray treatment protocol

In the water-spray condition, following 10 min of baseline 
recording, a new recording was started. Each mouse was removed 
from its cage, placed on a workbench counter and secured at the tail 
base, and sprayed 30 times on the back with distilled water from a 
spray bottle held 5–10 cm. away. The mouse was then returned to its 
cage, and the video timestamp at which the mouse was returned was 
documented. Recording continued until 10 min after the last mouse 
had been returned to the HCS cage.

Restraint-stress treatment protocol

In the restraint stress condition, following 10 min of baseline 
recording, each mouse was removed from its cage and placed head-
first into a ~4 cm diameter-plastic tube, with a breathing hole at one 
end. Once the animal was entirely in the tube, the other end of the 
tube was capped, and the tube was left on the workbench for 10 min. 
After 10 min of restraint each mouse was removed from its tube, 
immediately returned to its HCS cage, and recorded for 10 min.

Video preparation

For downstream analysis, we  converted MPG files into MP4 
format using VLC Media Player’s “Keep Original Video Track” setting, 
retaining original properties while allowing broader software 
compatibility. The resulting same-resolution 30 fps MP4 files were 
utilized across manual scoring, DeepLabCut pose labeling, and SimBA 
classification methods.

Each resulting MP4 video was uploaded to spark.adobe.com and 
cropped into 4 separate videos containing one mouse per video and 
trimmed to the ten minutes of interest (either beginning at the start of 
the baseline trials, or beginning immediately after the animal was 
returned to the recording box following restraint stress of water-spray 
treatment). This resulted in a total of 96 .mp4 videos (24 mice recorded 
across two baselines and two treatments, water spray and restraint), 
maintaining the 30 fps frame rate of the original video.

Technical documentation

DeepLabCut (DLC) and SimBA were implemented remotely at 
the Yale Center for Research Computing, Atop of a Windows 
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OS. Python v. 3.6.13 was run using 7 32G GPUs. The GUIs of DLC and 
SimBA were implemented with XQuartz 11 and Tk v. 8.6.10.

DeepLabCut

The 96 pre-processed 30 fps MP4 videos showing individual mice 
across conditions served as inputs to the DeepLabCut (DLC, v.2.2.0) 
pipeline for labeling anatomical body parts in each frame. We defined 
8 landmark tags for body tracking: nose, left/right ears, front/back 
paws, and mid-back. An experimenter exhaustively hand-labeled all 
instances of these parts across 380 diverse frames selected from 19 
videos. This initial tagged dataset forms the foundation for 
DeepLabCut’s machine learning training process.

In DeepLabCut, we selected ResNet-50 as the foundation for 
constructing our machine learning model. This ResNet (residual 
network) architecture developed by Microsoft researchers is 
optimized for image recognition (He et al., 2016). The name refers 
to shortcut connections that let information bypass layers, with 50 
designating 50 total layers that hierarchically filter visual inputs. By 
utilizing an established framework proven successful at pattern 
detection from images, we inherit capabilities to extract generalizable 
features like colors, edges and shapes to recognize animal body parts. 
As the DeepLabCut developers highlight, ResNet-50 offers top 
performance on diverse behavioral tracking datasets (Mathis et al., 
2018; Mathis, 2021). Compared to larger ResNets, its shallower 
depth prevents overfitting given limited training data while 
maintaining accuracy. For typical laboratory use cases, ResNet-50 
struck the right balance between speed, memory efficiency, and 
precision in their validation. Thus we  adopted the standard 
recommendation to use this network backbone for robust 
pose estimation.

We activated k-means clustering techniques alongside ResNet-50 
training to select a diverse 380-frame subset from the hand-labeled 
data. Explicitly exposing models to challenging edge cases through 
smart sampling improves real-world performance. Our model then 
underwent 410,000 optimization rounds where training images pass 
through ResNet-50, body part coordinates get predicted, and labeling 
errors prompt incremental weight changes to minimize mistakes. 
This customized tuning process evolves the network from generic 
visual recognition to precise mouse limb identification. We allotted 
410,000 iterations based on computing constraints, though the 
model’s labeling loss had sufficiently converged. We  quantified 
optimization success using DeepLabCut’s “Evaluate Network” 
analysis on a held-out frame subset. This measured average Euclidean 
pixel distances between network-predicted coordinates and true 
hand-labels. Our reported training error of 1.43 pixels (px) and test 
error of 6.76 px indicates precise performance—predictions stayed 
closely aligned with ground truth annotations. By validating on 
excluded data, Evaluate Network confirms strong generalization prior 
to deploying models for analysis.

Simple Behavioral Analysis

Following DLC body part identification, each of the 96 labeled 
recordings was analyzed with Simple Behavioral Analysis (SimBA, 
v1.3.0). SimBA processing commences by loading exported 

DeepLabCut CSV files containing (x, y) coordinate positions of 
labeled body parts across all video frames. This anatomical pose data 
feeds into a multi-stage machine learning workflow for detecting 
targeted behaviors.

Following standard guidelines recommended by SimBA’s 
developers (Nilsson et  al., 2020), the first step trains ensemble 
models called Random Forests (RF). Ensembles combine 
predictions from many decision trees—flowcharts dividing frames 
into behavioral categories using body part positions. Our model 
instantiated 100 trees, defined by the “RF n estimators” parameter. 
Each tree determines optimal data splits differently: “auto RF max 
features” selects the number pose measures evaluated when 
identifying ideal separating points. The “gini impurity criterion” 
metric then judges proposed splits at tree nodes. We also provide 
20% of sequences (“test size” parameter) for validating model 
generalizability, i.e., checking performance on entirely new unseen 
videos. Trees terminate when additional divisions no longer 
enhance separation: we  required >1,000 frames per final group 
(“sample leaf parameter”).

With the RF model architecture configured, we create a specialized 
grooming detector. The network uses pose sequences manually-tagged 
as grooming to determine patterns distinguishing it from other 
behaviors. Optimized detection thresholds for grooming sequences 
(>0.75 confidence, >1,000 ms duration) are set using researcher 
evaluation of agreement with true grooming evidence. Once 
successfully trained, this tailored classifier automatically identifies and 
timestamps potential grooming bouts across all untagged videos. 
Outputted CSVs detail start frame, stop frame, duration and 
confidence score for all classified grooming occurrences—enabling 
downstream statistical analysis.

HomeCageScan

The HomeCageScan (HCS) software enables simultaneous video 
recording and behavioral classification in real-time. Per 
correspondence with CleverSys technical staff, real-time quantification 
performs identically to traditional offline analysis (future validation 
can confirm this claim). As real-time analysis is the default 
configuration, we  leveraged this mode for classifying grooming 
concurrently with video tracking during the 10 min recordings for 
each mouse.

HCS identifies complex behaviors like grooming based on 
frame-by-frame body part recognition and posture analysis relative 
to empirically tuned classification models. We  used the default 
model parameters for detecting grooming and related behaviors 
out-of-the-box without modification. One key setting is the “groom 
cycle minimum size” lower bound threshold on the duration of 
conjoined frames grouped into a single bout. This was left at the 
default of 30 frames, equating to 1 s at 30 fps. Thus, any potential 
grooming episodes shorter than 1 s were not classified by 
the software.

Additionally, the “groom maintenance fraction” stipulates what 
percentage of frames within a bout must satisfy grooming pose criteria 
for the entire bout to be designated grooming. This was left at the 
default 80%, meaning grooming pose had to be maintained for at least 
80% of frames within an episode lasting over 1 s in order to 
be categorized.
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Manual-scoring protocol

Behavioral Observation Research Interactive Software (BORIS, 
v7.13) was used to manually label each of the 96 videos. Two 
measurements of self-grooming were quantified: total number of 
grooming bouts and total duration spent grooming. Prior to 
observation, each video was assigned a randomly-generated name to 
blind the experimenter to the treatment condition of the subject, using 
an open-source Perl script (Salter, 2016). Each video was observed 
twice: once documenting the start and stop times of each grooming 
bout, and once documenting the start and stop times of each grooming 
bout as well as location of grooming. This produced the total number 
of overall grooming bouts/duration. For our analysis, we established 
that a grooming bout must last at least 1 s to be included in the total 
count and duration of grooming bouts.

Statistics

To analyze grooming with each quantification method, we used a 
repeated measures ANOVA with a Greenhouse–Geisser correction; 
sex was the sole between-subjects factor. “Baseline” is defined as a 
10 min observation of unmanipulated mice, directly preceding 
treatment manipulation (or “induction”). “Induction” refers to a 
10 min observation directly following either treatment condition 
(restraint stress or water spray). “Treatment” condition refers to the 
specific stress treatment: restraint stress or water spray. Thus, the 
analysis included two within-subjects factors: treatment (water spray 
or restraint stress) and baseline/induction (baseline or induction). A 
p-value less than 0.05 was considered statistically significant.

Results from the 3 analysis methods (HCS, DLC/SimBA, and 
manual scoring) were compared using 2 one-sample t-tests 
(comparing each automated method to manual scoring) and a 3-way 
ANOVA followed by post-hoc t-tests. The 3-way ANOVA consisted 
of three factors: baseline or induction, treatment (restraint or water-
spray), and analysis method (manual, HCS, or SimBA). Sex proved 
not to be a significant predictor of grooming in analyses within each 
analysis method and therefore was not included as a between-subject 
factor in this three-way analysis. Pearson correlations were calculated 
between measures. All analyses were conducted using IBM SPSS 
Statistics version 28 for statistical testing and Python 3.12.0 for data 
processing and visualization. In Python, we  utilized the libraries 
NumPy for numerical computations, Scikit-Learn for linear 
regression, and Matplotlib for graph creation.

Results

Treatment effects vary depending on 
analysis method

First, the effects of the restraint and water-spray treatments were 
evaluated using manual scoring, HCS, and DLC/SimBA, independent 
of one another.

Mean grooming durations across conditions (two baselines, 
restraint, water-spray), scored manually, were analyzed by repeated 
measures ANOVA, with sex as a between-subject factor and treatment 
and baseline/induction as within-subject variables. There were main 

effects of both treatment and baseline/induction, as well as interaction 
effects of treatment × baseline/induction and treatment × sex 
(Figures  1A,C and Table  1). Both water-spray and restraint stress 
significantly increased grooming duration compared to baseline 
[t(70) = −31.396, p < 0.001, d = −7.888 and t(70) = −8.656, p < 0.001, 
d = −1.797 respectively]. Males groomed significantly more than 
females in the baseline condition [t(22) = 3.067, p < 0.01, d = 0.593]. 
Water-spray induced longer grooming durations than restraint stress 
[t(46) = −12.982, p < 0.001, d = −3.748]. A parallel analysis of grooming 
bouts (Figures  1B,D and Table  1) revealed a significant effect of 
baseline/induction, but not of sex or treatment. Both water-spray and 
restraint stress significantly increased grooming bouts from baseline 
[t(70) = −5.11, p < 0.001, d = −1.241 and t(70) = −4.838, p < 0.001, 
d = −1.086, respectively], but there was no significant difference 
between treatment conditions.

For grooming duration as quantified using HCS, there were 
significant main effects of treatment condition and baseline/induction, 
a two-way interaction effect of treatment × baseline/induction, and a 
three-way interaction effect of treatment × baseline/induction × sex 
(Figures 1E,G and Table 1). Post-hoc pairwise comparisons revealed 
significant differences between conditions: water-spray > baseline, 
t(70) = −6.317, p < 0.001, (d = −1.57); restraint > baseline, 
t(70) = −2.006, p < 0.05, (d = −0.502); water-spray > restraint, 
t(46) = −3.948, p < 0.001, (d = 1.140). These results are qualitatively 
similar to those found with manual scoring, though the between-
condition effect sizes are smaller.

HCS diverged from manual scoring in its findings for grooming 
bouts (Figures 1F,H and Table 1). Total grooming bouts differed not 
only between baseline/induction, as in manual scoring, but also 
between restraint and water-spray treatments. There were no 
significant effects of sex according to HCS. Like manual scoring, HCS 
identified significant differences between baseline and water-spray 
bouts, t(70) = 6.685, p < 0.001 (d = 1.677), and baseline and restraint 
bouts, t(70) = 2.14, p < 0.05 (d = 0.476). However, HCS reports that 
both water-spray and restraint resulted in decreased grooming bouts, 
whereas manual scoring suggests that water-spray and restraint 
resulted in increased grooming bouts. Furthermore, HCS found an 
additional significant difference between restraint and water-spray 
bouts, t(46) = 3.939, p < 0.001 (d = −1.137), with water-spray inducing 
a significantly fewer number of bouts; this is in contrast to manual 
scoring, which did not identify a significant bout difference 
between treatments.

Grooming duration quantified using DLC/SimBA differed across 
treatment and baseline/induction conditions (Figures  1I,K and 
Table  1). Like manual scoring and HCS, DLC/SimBA identified 
significant pairwise differences in grooming duration: water-spray > 
baseline, t(70) = −15.749, p < 0.001; restraint > baseline, t(70) = −15.749 
(d = −1.619), p < 0.05; water-spray > restraint, t(46) = −12.367 
(d = −3.570), p < 0.001 (d = −6.677). Total grooming bouts as measured 
using DLC/SimBA also differed between baseline/induction 
conditions (Figures 1J,L and Table 1). Like manual scoring, and unlike 
HCS, DLC/SimBA found that there was not a significant difference in 
bouts between treatment conditions, t(46) = 0.0849, p = 0.4. Also like 
manual scoring, DLC/SimBA found that water-spray significantly 
increased the number of grooming bouts compared to baseline, 
t(70) = −2.496, p < 0.05, d = −1.282; furthermore, DLC/SimBA did not 
identify a significant difference between restraint induction and water-
spray induction, t(70) = −1.503, p = 0.137.
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FIGURE 1

Grooming duration and bouts across conditions per analysis method. (A) Manual scoring quantification of grooming duration for the restraint 
condition. (B) Manual scoring quantification of grooming bouts for the restraint condition. (C) Manual scoring quantification of grooming duration for 
the water-spray condition. (D) Manual scoring quantification of grooming bouts for the water-spray condition. (E) HCS quantification of grooming 
duration for the restraint condition. (F) HCS quantification of grooming bouts for the restraint condition. (G) HCS quantification of grooming duration 
for the water-spray condition. (H) HCS quantification of grooming bouts for the water-spray condition. (I) DLC/SimBA quantification of grooming 
duration for the restraint condition. (J) DLC/SimBA quantification of grooming bouts for the restraint condition. (K) DLC/SimBA quantification of 
grooming duration for the water-spray condition. (L) DLC/SimBA quantification of grooming bouts for the water-spray condition. s  =  seconds. Dark 

(Continued)
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Gray  =  Male, Light Gray  =  Female. Error bars are 95% confidence intervals. *p  <  0.05, **p  <  0.01, and ***p  <  0.001. Intra-condition significance line (spans 
two bars) indicates post-hoc sex difference analysis. Inter-condition significance lines (spanning all four bars) indicates post-hoc main effect of 
condition (Baseline vs. Induction), for the specified treatment condition.

FIGURE 1 (Continued)

TABLE 1 Comparative analysis of grooming behavior measurement methods.

Figures Dependent 
variable

Test used Independent 
variables

n p-value F values

Figures 1B,D Bouts (Manual Scoring)

Repeated 

Measures ANOVA

Treatment

24

0.953 F(1, 23) = 0.004

Baseline/Induction <0.001 F(1, 23) = 32.632

Treatment × Baseline/

Induction × Sex
Interaction: p = 0.346

F(1, 23) = 0.927

Treatment × Baseline/

Induction
Interaction: p = 0.601

F(1, 23) = 0.281

Treatment × Sex Interaction: p = 0.859 F(1, 23) = 0.032

Baseline/Induction × Sex Interaction: p = 0.620 F(1, 23) = 0.252

Figures 1F,H Bouts (HCS)

Repeated 

Measures ANOVA

Treatment

24

0.21 F(1, 23) = 6.213

Baseline/Induction <0.001 F(1, 23) = 44.765

Treatment × Baseline/

Induction × Sex
Interaction: p = 0.543

F(1, 23) = 0.469

Treatment × Baseline/

Induction
Interaction: p = 0.011

F(1, 23) = 0.765

Treatment × Sex Interaction: p = 0.916 F(1, 23) = 0.011

Baseline/Induction × Sex Interaction: p = 0.257 F(1, 23) = 1.354

Figures 1J,L Bouts (SimBA)

Repeated 

Measures ANOVA

Treatment

24

0.312 F(1, 23) = 1.070

Baseline/Induction <0.001 F(1, 23) = 32.225

Treatment × Baseline/

Induction × Sex
Interaction: p = 0.395

F(1, 23) = 0.751

Treatment × Baseline/

Induction
Interaction: p = 0.632

F(1, 23) = 0.236

Treatment × Sex Interaction: p = 0.916 F(1, 23) = 0.011

Baseline/Induction × Sex Interaction: p = 0.350 F(1, 23) = 0.910

Figures 1A,C

Duration (Manual 

Scoring)

Repeated 

Measures ANOVA

Treatment

24

<0.001 F(1, 23) = 131.264

Baseline/Induction <0.001 F(1, 23) = 577.628

Treatment × Baseline/

Induction × Sex Interaction: p = 0.921 F(1, 23) = 0.010

Treatment × Baseline/

Induction

Interaction: 

p = <0.001 F(1, 23) = 143.801

Treatment × Sex Interaction: p = 0.043 F(1, 23) = 4.604

Baseline/Induction × Sex Interaction: p = 0.899 F(1, 23) = 0.016

Figures 1E,G Duration (HCS)

Repeated 

Measures ANOVA

Treatment

24

0.011 F(1, 23) = 7.603

Baseline/Induction <0.001 F(1, 23) = 48.628

Treatment × Baseline/

Induction × Sex Interaction: p = 0.012 F(1, 23) = 7.599

Treatment × Baseline/

Induction Interaction: p = 0.005 F(1, 23) = 9.814

Treatment × Sex Interaction: p = 0.136 F(1, 23) = 2.396

Baseline/Induction × Sex Interaction: p = 0.154 F(1, 23) = 2.176

(Continued)
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Thus, neither HCS and DLC/SimBA fully recapitulated the results 
of manual scoring: manual scoring found a significant increase in 
bouts in water-spray, HCS found a significant decrease in bouts in 
water-spray, and neither HCS nor DLC/Simba identified the sex 
difference in grooming duration identified by manual scoring.

DLC/SimBA more accurately predicts total 
grooming duration than HCS.

Across all treatment conditions, manual scoring and DLC/SimBA 
measurements of grooming duration were strongly positively correlated 
(Figure 2A; baseline, r(46) = 0.781, p < 0.001; restraint, r(22) = 0.857, 
p < 0.001; water spray, r(22) = 0.744, p < 0.001). This suggests that DLC/

SimBA closely aligns with manual scoring in calculating total 
grooming duration.

For the correlation between measurements of manual and HCS 
grooming duration, only baseline and restraint stress conditions were 
significant (Figure  2B; baseline, r(46) = 0.449, p = 0.002; restraint, 
r(22) = 0.589, p = 0.004; water spray, r(22) = −0.274, p = 0.195). This is 
consistent with our past results (Xu et  al., 2015). Notably, HCS 
consistently overscored grooming in the baseline condition, when 
grooming levels are low, but consistently underscored grooming in the 
water-spray condition, when grooming levels are high.

HCS and DLC/SimBA measures of grooming duration were also only 
correlated in the baseline and restraint stress conditions, but not for the 
water spray condition (Figure  2C; baseline, r(46) = 0.480, p < 0.001; 
restraint, r(22) = 0.710, p < 0.001; water spray, r(22) = −0.042, p = 0.852).

TABLE 1 (Continued)

Figures Dependent 
variable

Test used Independent 
variables

n p-value F values

Figures 1I,K Duration (SimBA)

Repeated 

Measures ANOVA

Treatment

24

<0.001 F(1, 23) = 167.965

Baseline/Induction <0.001 F(1, 23) = 387.368

Treatment × Baseline/

Induction × Sex Interaction: p = 0.251 F(1, 23) = 1.389

Treatment × Baseline/

Induction

Interaction: 

p = <0.001 F(1, 23) = 162.588

Treatment × Sex Interaction: p = 0.003 F(1, 23) = 11.245

Baseline/Induction × Sex Interaction: p = 0.440 F(1, 23) = 0.618

Figure 4 Duration

Repeated 

Measures ANOVA

Treatment

24

<0.001 F(1, 23) = 78.543

Analysis Method <0.001 F(1, 23) = 79.770

Baseline/Induction <0.001 F(1, 23) = 460.957

Treatment × Analysis 

Method × Baseline/

Induction

Interaction: p < 0.001

F(1, 23) = 20.039

Treatment × Analysis 

Method
Interaction: p < 0.001

F(1, 23) = 23.432

Treatment × Baseline/

Induction
Interaction: p < 0.001

F(1, 23) = 106.700

Analysis Method × Baseline/

Induction
Interaction: p < 0.001

F(1, 23) = 103.869

Figure 7 Bouts

Repeated 

Measures ANOVA

Treatment

24

0.102 F(1, 23) = 2.899

Analysis Method <0.001 F(1, 23) = 187.255

Baseline/Induction 0.006 F(1, 23) = 9.337

Treatment × Analysis 

Method × Baseline/

Induction

Interaction: p = 0.004

F(1, 23) = 8.806

Treatment × Analysis 

Method
Interaction: p = 0.080

F(1, 23) = 2.905

Treatment × Baseline/

Induction
Interaction: p = 0.190

F(1, 23) = 1.827

Analysis Method × Baseline/

Induction
Interaction: p < 0.001

F(1, 23) = 57.577

This table presents a detailed comparison of the outcomes from different grooming behavior measurement methods, including manual scoring, HomeCageScan (HCS), and DeepLabCut/
Simple Behavioral Analysis (DLC/SimBA). The table highlights differences in measuring grooming duration and bouts under various treatment conditions.
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HCS and DLC/SimBA vary in their 
treatments of low and high grooming 
durations.

We used Bland–Altman plots to further characterize relationships 
between scoring methods when quantifying grooming duration. 
When comparing manual scoring vs. DLC/SimBA (Figure 3A), there 

is only a weak relationship of points above and below the mean, at 
both high and low grooming levels [r(94) = −0.235, p = 0.021].This 
suggests that DLC/SimBA exhibits a slight bias towards under-
estimating grooming duration at high grooming levels, relative to 
manual scoring. The mean difference between the duration of 
grooming calculated by manual scoring and by DLC/SimBA was 
significant, with a mean difference of −10.23 s [t(95) = 11.392, 
p < 0.001], suggesting that DLC/SimBA tends to slightly overestimate 
grooming durations relative to manual scoring.

Figure 3B presents the Bland–Altman plot for manual scoring and 
HCS. There was a positive correlation between average and difference 
scores [r(94) = 0.562, p < 0.001], suggesting that HCS overestimates at 
low grooming durations and underestimates at high grooming 
durations. The mean difference between grooming durations 
calculated by manual scoring and HCS was −98.50 s, suggesting HCS 
dramatically overestimates grooming durations overall. Finally, the 
Bland–Altman plot comparing HCS to DLC/SimBA (Figure  3C) 
follows a negative slope [r(94) = 0.616, p < 0.001]. This indicates that at 
low grooming durations, HCS reports greater grooming duration than 
SimBA, and at higher grooming durations, DLC/SimBA reports 
greater grooming durations than HCS. The mean difference in 
duration calculated by HCS and DLC/SimBA was 107.40 s, further 
underscoring the divergence of these methods from one another.

HCS and DLC/SimBA vary in their 
estimation of grooming duration at 
baseline but not during provoked 
grooming

We next analyzed grooming measures across all conditions. 
Three-way within-subject ANOVA (restraint vs. water-spray, 
baseline vs. induced, HCS vs. DLC/SimBA vs. manual scoring), 
revealed a significant two-way interaction between analysis method 
and grooming induction: HCS reported significantly higher 
grooming durations at baseline, relative to DLC/SimBA and manual 
scoring, but did not differ as dramatically after grooming induction 
(Figure  4A and Table  1). This pattern was also apparent when 
restraint-induced and spray-induced grooming were examined 
separately (Figures 4B,C and Table 1). HCS tended to report higher 
mean grooming duration than manual scoring/SimBA in restraint 
trials and a lower mean grooming duration than manual scoring/
SimBA in water-spray trials, suggesting that HCS may truncate the 
range of grooming durations.

SimBA more accurately predicts total 
grooming bouts than HCS

Next we compared the scoring methods in their assessment of 
grooming bouts. Across baseline and water spray conditions, manual 
scoring and DLC/SimBA measures of bout number were positively 
correlated [Figure 5A; baseline, r(46) = 0.487, p < 0.001; water spray, 
r(22) = 0.423, p = 0.049]. This correlation reached trend levels for the 
restraint stress condition [r(22) = 0.340, p = 0.104].

For baseline and restraint stress conditions, there was no 
significant correlation between manual scoring and HCS measures of 
grooming bouts [Figure  5B; baseline, r(46) = −0.137, p = 0.187; 

FIGURE 2

Correlations between methods of quantifying grooming duration, 
categorized by treatment group. (A) Manual Scoring vs. DLC/SimBA. 
(B) Manual Scoring vs. HCS. (C) HCS and DLC/SimBA. s, seconds. 
Data points: Circle  =  Baseline, Triangle  =  Restraint, Square  =  Water 
Spray. Regression Lines: Solid  =  Baseline, Dashed  =  Restraint, 
Dotted  =  Water Spray.
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FIGURE 3

Bland–Altman plots comparing analysis methods (grooming 
duration). (A) Manual Scoring vs. DLC/SimBA. (B) Manual Scoring vs. 
HCS. (C) HCS vs. DLC/SimBA. Dashed line indicates mean difference 
and dotted lines indicate 95% confidence intervals. s, seconds. 
Circle  =  Baseline, Triangle  =  Restraint, Square  =  Water Spray.

restraint, r(22) = −0.142, p = 0.528]. However, there was a trend-level 
positive correlation in the water spray condition [r(22) = 0.371, 
p = 0.075].

For baseline and restraint stress conditions, there was no 
correlation between SimBA and HCS scores of grooming bouts, 
however there was a significant association for the water spray 
condition [Figure  5C; baseline, r(46) = 0.192, p = 0.201; restraint, 
r(22) = 0.292, p = 0.187; water spray, r(22) = 0.519, p = 0.013].

HCS and DLC/SimBA vary in their 
treatments of low and high grooming 
bouts

Bland–Altman plots were used to further visualize differences in 
measured grooming bouts across scoring methodologies. Comparing 
manual scoring to DLC/SimBA (Figure 6A), there was a roughly even 
distribution of data points with no overall trend in overestimation or 

FIGURE 4

Impact of analysis methods on interpreting treatment-induced 
effects on grooming duration. Comparison of analysis methods to 
assess grooming duration across treatment conditions (A) All trials. 
(B) Restraint trials only. (C) Water-spray trials only. s, seconds. Solid 
Line  =  Baseline, Dashed Line  =  Treatment. *p  <  0.05, **p  <  0.01, and 
***p  <  0.001. Error bars: 95% confidence interval.
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underestimation. However, there is a cluster of points in the upper right 
of the plot, suggesting that at high levels of grooming, DLC/SimBA 
may underestimate bout number. The mean difference between 
number of bouts calculated by manual scoring and SimBA was 
significant [mean difference = −1.98; t(95) = 16.9, p < 0.001], suggesting 
that, overall, SimBA slightly overestimates bout number. In comparing 

manual scoring to HCS, the data points again appear evenly distributed. 
However, the mean difference in the number of bouts between manual 
scoring and HCS was −15.3 [Figure  6B; t(95) = 35.2, p < 0.001], 
indicating that HCS substantially overestimates grooming bouts 
overall. The mean difference in grooming duration between HCS and 
DLC/SimBA was 13.3 [Figure 6C; t(95) = 28.9, p < 0.001], suggesting 
that on average HCS tends to score grooming bouts higher than 
DLC/SimBA.

FIGURE 6

Bland–Altman plots comparing analyses methods (grooming bouts). 
(A) Manual Scoring vs. DLC/SimBA. (B) Manual Scoring vs. HCS. 
(C) HCS vs. DLC/SimBA. Dashed line indicates mean difference and 
dotted lines indicate 95% confidence intervals. Circle  =  Baseline, 
Triangle  =  Restraint, Square  =  Water Spray.

FIGURE 5

Correlations between methods of quantifying grooming bouts, 
categorized by treatment group. (A) Manual Scoring vs. DLC/SimBA. 
(B) Manual Scoring vs. HCS. (C) HCS and DLC/SimBA. Data Points: 
Circle  =  Baseline, Triangle  =  Restraint, Square  =  Water Spray. 
Regression Lines: Solid  =  Baseline, Dashed  =  Restraint, Dotted  =  Water 
Spray.
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HCS overestimates grooming bouts in 
baseline conditions

Three-way within subjects ANOVA (restraint vs. water-spray, 
baseline vs. induced, HCS vs. DLC/SimBA vs. manual scoring) on 
grooming bouts revealed a significant two-way interaction between 
analysis method and baseline/induced: HCS dramatically overreported 

grooming bouts at baseline, relative to the other methodologies, but 
not after induction—indeed, HCS reported more grooming bouts at 
baseline than after restraint or water-spray (Figure 7 and Table 1; see 
also Figure 1H).

Discussion

Abnormal repetitive grooming behaviors in mouse models of 
disease pathophysiology have been interpreted as paralleling abnormal 
repetitive behaviors seen in human psychiatric disorders. The 
increasing importance of such behaviors underscores the need for 
robust, automated behavioral quantification techniques. In this paper, 
we compared the assessment of mouse self-grooming by an open-
source method [DeepLabCut(DLC)/SimBA] and a commercial 
method [HomeCageScan (HCS)], compared to the current standard 
of manual scoring by a blinded rater.

All three methods confirmed that both restraint and water-spray 
conditions elevated grooming duration compared to baseline, with 
water-spray inducing more grooming than restraint; this is in 
alignment with current literature that suggests physical stressors 
induce more grooming behavior than emotional stressors (Mu et al., 
2020). Previous work has documented 4 mists as sufficient to induce 
elevated grooming (van Erp et al., 1994), while we chose to use 30 
mists in order to more confidently induce increased grooming. The 
three methods disagreed on changes in grooming bout count. Manual 
scoring and DLC/SimBA showed that both treatment conditions 
resulted in an increase in grooming instances from baseline, whereas 
HCS suggested a decrease in grooming bouts from baseline.

While DLC/SimBA largely aligned with manual scoring in terms 
of grooming duration and the number of grooming bouts, notable 
discrepancies were observed between HCS and manual scoring. 
Specifically, HCS showed a significant relationship with manual 
estimates of the number of grooming bouts in the water spray 
condition, but this did not extend to the duration of grooming. 
Conversely, HCS was significantly in sync with manual duration 
estimates during baseline and restraint stress conditions, yet it 
diverged from manual counts of grooming bouts in these scenarios. 
This discrepancy may stem from the heightened responsiveness of 
DLC/SimBA compared to HCS to the nuanced differences in 
grooming microstructure patterns that manifest following water 
spray as opposed to restraint stress (Mu et al., 2020). Future studies 
should explore if DLC/SimBA can detect specific elements of the 
grooming sequence with greater acuity than HCS. Factors such as 
minimum bout duration settings and continuity thresholds may 
critically impact bout designations between approaches. The 
accuracy of bout identification is crucial for behavioral inferences, 
and understanding the sources of disagreement by independently 
and openly manipulating key parameters is an important avenue for 
future research. A possible explanation for these discrepancies is that 
HCS may struggle to accurately determine the end of a grooming 
duration, potentially combining multiple grooming events into a 
single bout. This could explain the reduced number of grooming 
bouts but increased duration observed. Additionally, when the 
animal’s back is turned to the camera, SimBA might mislabel breaks 
in grooming that resemble grooming postures (e.g., sniffing or 
crouching), leading to an artificial decrease in grooming 
bout number.

FIGURE 7

Impact of analysis methods on interpreting treatment-induced 
effects on grooming bouts. Comparison of analysis methods to 
assess grooming bouts across treatment conditions. (A) All trials. 
(B) Restraint trials only. (C) Water-spray trials only. Solid 
Line  =  Baseline, Dashed Line  =  Treatment. *p  <  0.05, **p  <  0.01, and 
***p  <  0.001. Error bars: 95% confidence interval.
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Furthermore, HCS’s minimum 1 s duration threshold for merging 
shorter bouts, along with stricter criteria for breakpoints compared 
to human judgment, might contribute to the observed differences in 
bout lengths and counts between manual scoring and 
SimBA. However, bout distinctions are influenced by multiple 
configuration factors across programs. Therefore, we  should 
be  cautious in making definitive statements about the sources of 
disagreement without specifically manipulating segmentation 
parameters, a task that is challenging with proprietary tools. This 
nuanced understanding of the limitations and variances in automated 
and manual scoring methods underscores the need for careful 
consideration in behavioral analysis.

The difficulty of automated analysis of self-grooming behavior in 
this study may be partially accounted for by the single side-view angle 
of the camera used in the experimental setup. Capturing behaviors 
from a side-facing angle is necessary for smaller, more intricate 
behaviors like grooming, which may be difficult to decipher from a 
top-down view. Yet, side-angle camera views present notable 
challenges to machine learning algorithms as body parts change size, 
disappear, and reappear into view as the animal moves towards and 
away from the camera. SimBA notes these difficulties, and their 
pre-packaged side-view body label set is not validated (Sturman et al., 
2020). Similarly, HCS is advertised as the only automated side-angle 
behavioral analysis tool for mice on the market, reflecting the unique 
obstacles that a side-angle camera raises. The discrepancies introduced 
by the one side-angle camera setup may be  a topic for further 
exploration, such as in comparison to recordings from a top-down 
view and from multiple side-angle cameras.

In general, the shift towards open-source software in behavioral 
analysis is a positive one. While commercial products act as a “black 
box” in which an experimenter can view the inputs and outputs but 
nothing in between, open-source tools allow for greater insight into 
analysis methods. In the case of DLC/SimBA, these programs allow 
for greater flexibility in algorithmic variables, such as the number of 
body-part labels to use, the type of neural network architecture to 
base the model on, and the final statistics to calculate (e.g., bout 
number and grooming duration), among others. Furthermore, when 
investigating unexpected results, open-source tools like DLC/SimBA 
allow users to look at individual steps of the program to determine at 
what point error was introduced—for example, with DLC/SimBA, 
we are able to examine the accuracy of body-part labeling by DLC as 
a checkpoint prior to using SimBA. In contrast, with HCS, it is 
unclear at what step aberrant results were introduced—whether this 
was at body part labeling, behavior labeling, or some point 
in between.

In general, open-source tools present a steeper learning curve to 
use, as the technical knowledge required to use them (e.g., how to use 
the terminal and open-source repositories like GitHub) presents 
additional challenges to neuroscientists. The SimBA README 
document is well designed and easy to follow, but it assumes a 
significant level of background knowledge to be able to get started. In 
this aspect, traditional commercial tools with exhaustive manuals may 
be more user-friendly to neuroscientists.

While the present investigation centered on the emerging open-
source analysis solutions DeepLabCut and SimBA, expanding direct 
comparison to additional open source packages like VAME (Luxem 
et al., 2022), B-SOiD (Hsu and Yttri, 2021), and MoSeq (Wiltschko 
et al., 2020), which use varied supervised and unsupervised learning 

approaches to automated behavioral analysis, merits future work. 
Each employs distinct approaches to modeling body posture and 
classifying behavior that could complement or outperform 
SimBA. We  selected SimBA specifically due to its widespread 
adoption evidenced by top-ranking search results and high citation 
count for “open source behavioral analysis” on both Google and 
Google Scholar. Contrasting how these alternatives generalize to 
novel housing situations relative to SimBA poses an important next 
step for benchmarking capability across tools developed in academic 
labs. Still, even commercial solutions like EthoVision (Noldus et al., 
2001) warrant inclusion to evaluate performance among diverse 
proprietary and cost-free offerings. Systematically applying rigorous 
validation tests across leading techniques, open and closed alike, 
should yield an expanded, more articulate understanding of optimal 
solutions tailored to nuanced experimental requirements while 
pushing the boundaries of accessible automation for 
reproducible science.

In our analysis, the simplified cage conditions lacked enrichment 
elements that could challenge tracking. Comparing performance in 
complex environments with tunnels, nesting or running wheels poses 
an important direction as naturalistic stimuli further tax algorithms. 
Similarly, restricting recordings to 10 min sessions risks inadequately 
sampling complete behavioral repertoires expressed over longer 
periods. Continuous 24 h monitoring could provide more 
representative activity data for classifier training and testing. Finally, 
our sole focus on a single repetitive grooming behavior prohibits 
inferring flexible quantification of broad ethograms. Expanding 
analysis to social behaviors, anxiety-like activities and more would 
enhance understanding of commercial and open-source technique 
capabilities measuring comprehensive phenotypes. Further work 
incorporating enriched testing environments, prolonged observation 
and diverse behavioral categories will elevate applicability to wider 
translational questions.

When considering the current shift towards automated complex 
data analysis, it is also necessary to address the issues of scale 
associated with machine learning analyses. Processing the 96 10 min 
long videos in DeepLabCut resulted in the creation of over 50,000 
files; the creation and long-term storage of these files pose a significant 
and costly technical challenge.

In sum, we  find the combination of DLC with SimBA to 
provide an excellent parallel to manual scoring by a blinded 
observer when quantifying grooming duration in singly-housed 
mice, using a single side-view camera. DLC/SimBA is a potentially 
powerful tool for high throughput, rigorous analysis of grooming 
behavior in the context of pathophysiological and ethological 
studies. The measurement of grooming bouts was also positively 
correlated with manual scoring, though less strongly than that of 
grooming duration. As the field advances, there is a growing 
consensus on the best tools for behavior analysis, with the 
development of these and other analytic methods paving the way 
for more standardized, quantitative approaches in the study of 
disease pathophysiology.
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