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The present study aimed to investigate the e�ects of a short period of

normobaric hypoxic exposure on spatial learning andmemory, and brain-derived

neurotrophic factor (BDNF) levels in the rat hippocampus. Hypoxic conditions

were set at 12.5%O2. We compared all variables between normoxic trials (Norm),

after 24h (Hypo-24h), and after 72h of hypoxic exposure (Hypo-72h). Spatial

learning and memory were evaluated by using a water-finding task in an open

field. Time to find water drinking fountains was significantly extended in Hypo

24h (36.2± 21.9 s) compared to those in Norm (17.9± 12.8 s; P < 0.05), whereas

no statistical di�erences betweenNorm andHypo-72h (22.7± 12.3 s). Moreover,

hippocampal BDNF level in Hypo-24h was significantly lower compared to

Norm (189.4 ± 28.4 vs. 224.9 ± 47.7 ng/g wet tissue, P < 0.05), whereas no

statistically di�erences in those between Norm and Hypo-72h (228.1 ± 39.8

ng/g wet tissue). No significant di�erences in the changes in corticosterone and

adrenocorticotropic hormone levels were observed across the three conditions.

When data from Hypo-24h and Hypo-72h of hypoxia were pooled, there was

a marginal negative relationship between the time to find drinking fountains

and BDNF (P < 0.1), and was a significant negative relationship between the

locomotor activities and BDNF (P < 0.05). These results suggest that acute

hypoxic exposure (24h) may impair spatial learning and memory; however, it

recovered after 72h of hypoxic exposure. These changes in spatial learning and

memorymay be associated with changes in the hippocampal BDNF levels in rats.

KEYWORDS

acclimatization, behavior, hippocampus, normobaric hypoxia, plasticity, simulatedhigh-

altitude test

1 Introduction

A recent meta-analysis concluded that hypoxia negatively affects executive functions

in humans (McMorris et al., 2017). Specifically, exposure to high altitudes is associated

with an impairment of spatial learning and memory (Virues-Ortega et al., 2004). Some

studies have shown that short-term acclimatization at high altitudes (days 3–6) improves
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(recovers) cognitive function impaired by acute exposure to high

altitudes (Beidleman et al., 2017; Pun et al., 2018), but not all

(Pramsohler et al., 2017; Frost et al., 2021). However, the detailed

mechanisms that hypoxic-induced changes in cognitive function

has not been well-established. A previous review of human studies

summarized that cerebral blood flow (CBF) increases in acute

hypoxia (high altitude) to maintain sufficient cerebral oxygen

levels (Ainslie and Subudhi, 2014). Despite an increase of global

CBF at high altitude, the findings showed that executive function

was impaired in hypoxia in human studies (McMorris et al.,

2017). In contrast, some animal experiments demonstrated that

carotid artery stenosis induced-cerebral hypoperfusion decreased

CBF along with cognitive impairment (Gao et al., 2019; Wang

et al., 2020). These discrepancies between human and animal

findings suggest that global CBF may not fully account for changes

in cognitive function, and thus, warrant further investigations.

Regional difference in cerebral perfusion (CBF per given volume)

related to site specific parts of the brain may be one possible

candidate. It was reported that maintenance of appropriate

perfusion in the hippocampus is vital to retain memory function

(Johnson, 2023). Hippocampal damage may also contribute to

cognitive impairment (Gao et al., 2019; Wang et al., 2020).

In the hippocampus of the brain, it has been known that

brain derived neurotrophic factor (BDNF) is expressed in

high concentration (Hofer et al., 1990; Phillips et al., 1990).

BDNF is a member of the neurotrophin family that regulates

various neurotrophic functions such as neuroregeneration,

neuroprotection, and synaptic plasticity (Mattson et al., 2004).

Animal experiments have demonstrated that BDNF plays an

important role in spatial learning and memory in rats (Mu et al.,

1999; Mizuno et al., 2000; Yamada et al., 2002). Spatial learning and

memory function may be important not only in rats but also in

humans. For example, 100 million tourists visit high altitudes (e.g.,

above 2,000m; Faulhaber et al., 2017). According to the Japanese

National Police Agency, ∼43% of total numbers of mountain

climbing-related accidents were “lose the way,” leading to “fall.”

This would be of particular concern to mountaineers for whom

falls are serious injury. Since acclimatization at high altitudes

would potentially recover hypoxic-induced an impairment of

cognitive function (Beidleman et al., 2017; Pun et al., 2018),

this raises the question whether changes in spatial learning and

memory would be accompanied with BDNF changes during

short-term hypoxic exposure.

However, directly evaluating BDNF levels in the hippocampus

of an intact human brain is impossible. Alternatively, animal

models can allow the evaluation of BDNF levels in the

hippocampus though little is known about the time-dependent

effects of hypoxic exposure on spatial learning and memory, with

respect to changes in hippocampal BDNF levels. Additionally, it has

been reported that exposure to hypoxia increased corticosterone

and adrenocorticotropic hormone (ACTH) in animal models

(Johnson et al., 2013;Wang et al., 2023), which potentially influence

cognitive impairment (Reyes-Castro et al., 2018; Lansdell and

Dorrance, 2022). Therefore, this study aimed to investigate the

Abbreviations: ACTH, adrenocorticotropic hormone; ANOVA, analysis of

variance; BDNF, brain-derived neurotrophic factor.

effects of short-term normobaric hypoxic exposure on spatial

learning and memory. We hypothesized that spatial learning and

memory would worsen following acute exposure to hypoxia along

with decreases in BDNF levels in the rat hippocampus, but it

would recover after short-term acclimatization in hypoxia along

with increases in BDNF levels.

2 Methods

2.1 Animals

All the experiments were performed in accordance with the

Ethics Committee for Animal Experiments, Mount Fuji Research

Institute, Yamanashi Prefecture Government (ECAE-03-2018E).

Forty-five male Wistar rats ranging between 9 and 12 weeks old

were used in the experiments. In general, these weeks of age in rats

were defined as young adults (Stanley and Shetty, 2004). During

the prior training trial, three rats were excluded as they did not

move or could not find water fountain within 5-min. Further,

during the main experiments, three rats were excluded owing

to the same reasons as in the prior training trial. Thus, 39 rats

completed one of the three experiments (n = 13 for each trial).

Ambient temperature (24–26◦C) and relative humidity (50–60%)

were controlled throughout the experiment. Animals were fed ad

libitum and kept on a 12 h light–dark cycle.

2.2 Experimental protocols

The protocol consisted of following three conditions of spatial

learning and memory tasks in the open field: (1) in normobaric

normoxia (room air, 20.9% O2, Norm), (2) after 24 h exposure to

normobaric hypoxia (12.5% O2, equivalent altitude is ∼4,000m,

Hypo-24 h), and (3) after 72 h exposure to normobaric hypoxia

(12.5%O2, Hypo-72 h; Figure 1A). In the two hypoxic trials (Hypo-

24 h and Hypo-72 h), hypoxic gas was supplied via a custom-made

tent (200× 200× 230 cm; width× depth× height) with a hypoxic

gas generator system (Hypoxico Everest Summit II: Will Co., Ltd.,

Tokyo, Japan). The inspired oxygen concentration was determined

before and after each experiment (AE-310s; Minato Medical

Science, Osaka, Japan). A prior training trial of spatial learning

and memory tasks was performed 72 h before each condition.

After the spatial learning and memory task (see below) in each

main experiment (Norm, Hypo-24 h, and Hypo-72 h), rats were

removed from the open field and immediately anesthetized with an

anesthetic mixture of medetomidine, midazolam, and butorphanol.

Under anesthesia, whole blood samples were collected from the

abdominal aorta. After euthanasia due to bleeding from the

abdominal aorta, the hippocampi were taken out.

2.3 Spatial learning and memory

To assess spatial learning and memory, we used a water-finding

task, as described previously (Ichihara et al., 1993; Miyamoto et al.,

2001). This test is dependent on latent learning, and selective

attention (Cheal, 1980; Ichihara et al., 1993), which has been related
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FIGURE 1

Experimental procedure (A) and picture of the apparatus (B).

to fall risks (Yogev-Seligmann et al., 2008). Briefly, the apparatus

consisted of an open field (125 × 75 × 35 cm; width × depth

× height) with an alcove (25 × 25 × 20 cm) in the middle of

one of the long walls of the enclosure. In the alcove, a drinking

tube with the same equipment as usual in the rat’s home cage was

inserted into the center of the alcove ceiling, with its tip 10 cm above

the floor (Figure 1B). During the training task, the rats without

water deprivation were placed in one distal corner of the alcove.

Then they were allowed to move freely for 5min. Animals that

did not begin exploring within 5min or did not reach drinking

water fountains in the alcoves (n = 3) were excluded from the

experiments. Rats were immediately returned to the home cage

after the training trial and were deprived of water for 24 h before

the main experiments (Ichihara et al., 1993; Miyamoto et al., 2001).

In the main experiment, the trained rats were placed in the same

corner as in the previous training trial of the same apparatus. Two

commercial video cameras (OLYMPUS TOUGH TG-6, OLYMPUS

Co. Ltd., Tokyo, Japan, and Canon IVIS HF R21, Canon Co. Ltd.,

Tokyo, Japan) were set 160 cm above the ground of the open field

and on the longside wall to the opposite side (Figure 1B). Based on

previous studies (Su et al., 2014; Onaolapo et al., 2015), to estimate

locomotor activity, the floor (75 cm × 125 cm) was divided equally

into 60 squares (i.e., 12.5 × 12.5 cm squares for each) marked by

black lines. Total numbers of crossings that the center of body

in each rat crossed one side of each grid were counted using the

recorded video.

2.4 Hippocampal BDNF levels and
biomarkers

After learning and memory test, blood sample was drawn

from the abdominal aorta, and cardiac arrest was confirmed.

Immediately after the euthanasia, the hippocampus was isolated

and wet weight of the hippocampus was measured. The

hippocampus was completely frozen with liquid nitrogen, and

homogenized. A 10 µL phosphate buffered saline, containing

1% protease inhibitor was infused into the hippocampus per
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1mg, and an equivalent ProteoJETTM Mammalian Cell Lysis

Reagent (Fermentas, USA) was infused. Thereafter, the sample was

centrifuged at 14,000 rpm for 5min at 4◦C (GS-15R, BECKAMAN,

Co., Ltd., CA, USA), the supernatant was used to measure the

hippocampal BDNF levels using Rat BDNF ELISA kit PicoKine

(Boster Biological Technology, CA, USA). Additionally, blood

samples were centrifuged at 3,000 rpm for 15min at 4◦C (GS-15R,

BECKAMAN, Co., Ltd., CA, USA) to separate serum and plasma,

and the plasma was frozen at −80◦C for further analysis. Plasma

corticosterone and ACTH were analyzed using Corticosterone

Multi-Format ELISA Kits (Arbor Assays, Inc., MI, USA) and

ACTH (Rat, Mouse)-EIA Kit (Phoenix Pharmaceuticals, Inc., CA,

USA), respectively.

2.5 Statistics

Data are presented as mean ± standard deviation (SD). All

statistical analyses were performed using R software (R ver.3.1.2).

One-way analysis of variance (ANOVA) was used to compare all

variables among the three different conditions. When a significant

F-value was found, Dunnett’s post-hoc test (normoxia data as

a control) was performed. To estimate relationships among all

outcomes, a Pearson correlation coefficient was used. At first, “time

to find water fountain” and “total numbers of crossing” were set as

dependent variables (i.e., spatial learning and memory function),

and hippocampal BDNF levels and plasma biomarkers (ACTH and

corticosterone) were set as independent variables. Next, we further

sought to investigate relationships between the hippocampal BDNF

and plasma biomarkers using a Pearson correlation coefficient. In

these relationships, we used the data of Hypo-24 h and Hypo-72 h,

not the data of Norm to observe hypoxic-induced changes of all

outcomes. Effect size (ES) was calculated as Cohen’s d where 60.2,

0.2, 0.5, and 0.8 were defined as trivial, small, moderate, and large,

respectively (Hopkins et al., 2009). Statistical significance was set at

P < 0.05.

3 Results

3.1 Body weight

There were no significant differences in rats’ body weight

among three conditions [262 ± 26 g for normoxia, 281 ± 30 g for

Hypo-24 h, and 273 ± 31 g for Hypo-72 h; F = 1.44, degrees of

freedom (df)= 2 (between), 36 (within), and 38 (total), P= 0.257].

3.2 Water-finding task

The time taken to find the drinking water fountain under the

three conditions is shown in Figure 2A. One-way ANOVA found

a significant trial (time) effect (F = 4.39, df = 2, 36, and 38, P =

0.020, η
2
= 0.20). Compared to the normoxic trail, the Dunnet

post-hoc test further revealed that the time to find drinking water

fountains in Hypo-24 h was significantly extended (17.9 ± 12.8 s

in Norm vs. 36.2 ± 21.9 s in Hypo-24 h, P = 0.007), whereas no

statistical differences between Norm and Hypo-72 h (22.7 ± 12.3 s,

P = 0.678) were observed. Locomotor activities in normoxia (15.3

FIGURE 2

Comparisons in the time to find water drinking fountain (A), and the

hippocampal brain-derived neurotrophic factor (BDNF) (B) among

three trials. The time taken to find drinking water fountains (A) and

the hippocampal BDNF levels (B) in Hypo-24h were significantly

delayed and lower compared to normoxia. Bar graphs indicate

mean with standard error bars. Circles indicate individual data (n =

13 for each trail). Norm, normoxia; Hypo-24h, 24 hours exposure to

normobaric hypoxia; Hypo-72h, 72 hours exposure to normobaric

hypoxia.

± 7.6 times) slightly increased in Hypo-24 (19.4 ± 9.6 times), and

decreased in Hypo-72 h (13.4 ± 5.1 times) without any statistical

differences across the three trials (F = 2.08, df =2, 36, and 38, P =

0.139, η2 = 0.14).

3.3 Hippocampal BDNF levels

Figure 2B shows BDNF contents in three trials with a

significant trial effect (F = 4.39, df = 2, 36, and 38, P =

0.020, η
2
= 0.196). Moreover, compared to the Norm group,
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TABLE 1 Changes in corticosterone and ACTH.

Normoxia Hypo-24 h Hypo-72 h df F P

Corticosterone (ng/mL) 1,421± 505 1,453± 766 1,612± 579 Between 2 0.41 0.668

Within 36

Total 38

ACTH (ng/mL) 2.95± 0.78 2.65± 0.55 2.75± 0.84 Between 2 0.66 0.528

Within 36

Total 38

Values are mean± standard deviation.

df, degrees of freedom; ACTH, adrenocorticotropic hormone; Hypo-24, after 24 h exposure to hypoxia; Hypo-72 h, after 72 h exposure to hypoxia.

BDNF in the Hypo-24 h group was significantly lower (224.9

± 47.7 in Norm. vs. 189.4 ± 28.4 ng/g wet tissue in Hypo-

24 h, P = 0.025), whereas no statistical differences between

Norm and Hypo-72 h (228.1 ± 39.8 ng/g wet tissue, P = 0.744)

were observed.

3.4 Plasma corticosterone and ACTH

Table 1 shows the changes in the plasma corticosterone and

ACTH levels across the three conditions. No significant differences

were observed for either variable.

3.5 Relationships among the outcomes

When the Hypo-24 h and Hypo-72 h data were pooled,

there was a marginal relationship between the time to find

the drinking water fountain and hippocampal BDNF levels

(P = 0.060, Figure 3A). Additionally, there was a significant

relationship between the total number of crossing and hippocampal

BDNF levels (P = 0.028, Figure 3B). In contrast, spatial learning

and memory function (i.e., time to find the drinking water

fountain or hippocampal BDNF levels) was not associated with

plasma biomarkers (i.e., ACTH or corticosterone; All P > 0.05).

Additionally, there were no significant relationships between

hippocampal BDNF and ACTH, and between hippocampal BDNF

and corticosterone (both P > 0.05).

4 Discussion

This study is the first to investigate the time-dependent effects

of short-term hypoxic exposure on spatial learning and memory,

and BDNF levels in the rat hippocampus. The primary findings

of the present study were 3-fold: (i) time taken to find water

fountain was significantly delayed after 24 h of exposure to hypoxia,

but this delay recovered after 72 h; (ii) hippocampal BDNF levels

significantly decreased after 24 h of exposure to hypoxia, but

to Norm after 72 h; and (iii) when the data of both 24 and

72 h were pooled, a negative marginal trend between time to

reach the drinking water fountain and hippocampal BDNF levels

was observed.

In agreement with some findings in humans (Beidleman et al.,

2017; Pun et al., 2018; Heinrich et al., 2019), our results suggest that

short-term acclimatization in hypoxia is a useful tactic to recover

(maintain) the same level of spatial learning and memory function

as at sea level (in normoxia) after acute impairment of this function.

These results provide useful insights for people traveling at high

altitudes. Furthermore, previous studies have demonstrated that

human serum BDNF levels are associated with cognitive function

in humans (Gunstad et al., 2008) and high-altitude exposure

(∼3,900m) decreases plasma BDNF levels and impairs cognitive

function (Li et al., 2012). Animal experiments in rats found that

hippocampal BDNF levels are related to a spatial learning and

memory function (Mu et al., 1999; Mizuno et al., 2000; Yamada

et al., 2002). Our results showed a negative marginal trend between

the time of finding the drinking fountain and hippocampal BDNF

levels (P = 0.060), and a significant negative relationship between

the total numbers of crossing and hippocampal BDNF levels (P =

0.028) when both hypoxic data were pooled, suggesting opposite

responses between hippocampal BDNF and spatial learning and

memory function. Thus, the time-dependent effects of hypoxic

exposure on BDNF, spatial learning and memory function could

provide further insight than previous human studies (Gunstad

et al., 2008; Li et al., 2012). Our findings indicate that hypoxia-

induced changes in hippocampal BDNF levels may play a pivotal

role in influencing spatial learning and memory during hypoxia.

Additionally, the hippocampus is essentially important tissue to

maintain spatial learning and memory function (Morris et al.,

1982; Sutherland et al., 2001). Moreover, the hippocampus is very

vulnerable to insufficient oxygen conditions, such as hypoxia or

ischemia (Knierim, 2015), leading to the impairment of memory

function even with slight damage (Ocampo et al., 2017). Since

BDNF is highly expressed in the hippocampus (Hofer et al., 1990;

Phillips et al., 1990), our findings may be supported. However, we

must acknowledge that this relationship was observed only under

hypoxic conditions, not when normoxic data were included, and

the causal relationship between these variables remains unknown.

Unexpectedly, no changes in plasma corticosterone and

ACTH levels were observed. Previous animal experiments in

rats demonstrated that hypoxic exposure increased corticosterone

levels in the plasma (Baitharu et al., 2014) and hippocampus

(Baitharu et al., 2012, 2014) along with impaired memory function

using the Morris Water maze test. Hypoxia also increases ACTH

levels (Raff and Roarty, 1988), which may influence learning and

memory in animals and humans (Erickson, 1990). One possibility
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FIGURE 3

A relationship between the time to find water drinking fountain and

hippocampal brain-derived neurotrophic factor (BDNF) (A), and

between the total numbers of crossing and hippocampal BDNF (B)

when the data of Hypo-24h and −72h are pooled. Lower BDNF

levels caused a longer time to find water fountain, and greater total

numbers of crossing in hypoxia. Black and white circles indicate

Hypo-24h (n = 13) and 72-h (n = 13), respectively.

to account for the inconsistent findings between our study and

previous studies (Raff and Roarty, 1988; Baitharu et al., 2012,

2014) may exist. In previous studies, rats were exposed to higher

altitudes (25,000 ft = 7,500m; Baitharu et al., 2012, 2014) with

longer periods ∼7 days or severe hypoxia (7% O2; Raff and

Roarty, 1988) than those used in our study. The equivalent

altitude of the present study was ∼4,000m. Therefore, although

speculative, the lower absolute simulated altitude in the present

study may not have been sufficient to increase corticosterone and

ACTH levels. Additionally, all animals in the present study were

imposed 24-h of water deprivation under all conditions before

the main experiment. It has been reported that water restriction

increases plasma corticosterone (Arnhold et al., 2009; Izgut-Uysal

et al., 2014) and ACTH (Wotus et al., 2007; Arnhold et al.,

2009) in rats. Thus, regardless of different oxygen levels (20.9%

O2 vs. 12.5% O2) and different exposure to hypoxia (24 h vs.

72 h), dehydration-induced stress exposure might increase plasma

corticosterone and ACTH even under normobaric normoxia

condition, resulted in no differences in these variables across the

three conditions. Nonetheless, we must acknowledge that this

hypothesis is speculative because how hypoxic exposure with water

deprivation may further influence water-finding test is unclear.

The detailed mechanisms underlying the impairment of spatial

learning and memory after Hypo-24 h recovered at Hypo-72 h,

including opposing responses in hippocampal BDNF levels, remain

uncertain. The signaling cascades initiated by BDNF and its

receptors, such as TrkB are complex (Azman and Zakaria, 2022).

The roles of BDNF have been identified, including modulation of

neural activity, synaptic transmission, and plasticity (Kowianski

et al., 2018), which play important roles in cognitive function

(Buchman et al., 2016), learning performance (Deveci et al.,

2020) and memory (Hariri et al., 2003; Kambeitz et al., 2012).

Moreover, BDNF has been assumed to play a vital role in the

plasticity of synapses, including enhancing hippocampal long-

term potentiation (Lu et al., 2008) and attenuating long-term

depression (Ikegaya et al., 2002), which are considered the primary

underlying cellular mechanisms of learning and memory (Cooke

and Bliss, 2006). Nonetheless, our experimental design was limited

to clarifying these potential mechanisms; therefore, further studies

are warranted.

In more details, the present study observed that the

hippocampal BDNF levels acutely decreased by 24 h thereafter,

increased by 72 h hypoxic exposure. A previous in vitro experiment

demonstrated that acute exposure to hypoxia (5% O2) reduced the

expression of BDNF in rat hippocampal neurons and astrocytes

in a time-dependent manner (0-1-2-3-6-12 h hypoxic exposure;

Tao et al., 2022). Conversely, longer exposure to hypoxia (∼10%

O2) for 72 h stimulated the activation of Wnt/β-catenin signaling

using neural stem cells (Qi et al., 2017) or mouse brain (Varela-

Nallar et al., 2014), which promotes BDNF expression (Yi et al.,

2012; Zhang W. et al., 2018). Thus, the current findings may be

supported by these studies; however, wemust acknowledge that this

hypothesis is highly speculative.

Other potential factors that impair spatial learning andmemory

should also be considered. For example, animal experiments

have shown that exposure to high altitudes impairs memory

and increases oxidative stress (Jayalakshmi et al., 2007; Zhang

X. Y. et al., 2018). Hypoxia-induced oxidative stress causes

rapid impairment of hippocampal mitochondrial biogenesis (Jain

et al., 2015), which plays an important role in maintaining

cognitive function (Gray et al., 2016; Palomera-Avalos et al.,

2017). In contrast, stimulation with an appropriate level of

oxidative stress may increase BDNF levels (Siamilis et al., 2009).

Thus, how hypoxia-induced oxidative stress affected BDNF levels

and spatial learning and memory function in the present study

is unknown; however, this point is beyond the scope of the

present study.
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4.1 Methodological considerations

There are some limitations that should be considered to

interpret the current findings. First, we used only water-finding

task to assess spatial learning and memory. Until now, many tasks

such as Water radial-arm maze (Koebele et al., 2019), Morris water

maze (Hiroi et al., 2016), and Visible platform (Koebele et al., 2019)

tests have been used in this research area. The water-finding task

used in the present study is dependent on s dependent on latent

learning, and selective attention (Cheal, 1980; Ichihara et al., 1993),

and impairments of these function may cause increases in fall

risks (Yogev-Seligmann et al., 2008); however, future studies using

various tasks could yield further insights about hypoxic exposure-

induced changes in spatial learning and memory. Secondly, the

sample size was relatively small. However, as no studies have

examined the effects of short-term hypoxic exposure on spatial

learning andmemory and hippocampal BDNF levels, we conducted

a post-hoc power analysis for pairwise comparisons. We performed

the test for variables that were observed with significant differences

as the standard of 80% power with a two-sided significance level of

0.05 (G Power 3.1). As a result, the estimated effect size of Cohen’s

d was 1.13 and 0.93, with an actual (1-β) power of 0.821 and 0.818

for time to find a drinking water fountain and hippocampal BDNF

levels between Norm and Hypo-24 h. Although future studies with

a larger sample may be required to confirm our findings, these

numbers may be sufficient to detect significant differences in these

variables (Hopkins et al., 2009).

4.2 Implications

Compared to previous human studies (Das et al., 2018;

Chroboczek et al., 2022) and animal experiments (Mu et al.,

1999; Mizuno et al., 2000), the present study has some strengths

that can be applied to human’s life. For example, human studies

could measure only serum BDNF levels owing to be technically

impossible for evaluation hippocampal BDNF levels in intact

humans (Das et al., 2018; Chroboczek et al., 2022). Moreover,

animal experiments used surgically BDNF treated models (Mu

et al., 1999; Mizuno et al., 2000), indicating the model is

far from humans’ life. In this regard, our experimental model

can be considered to mimic mountaineering. Our findings may

be informative for populations that climb high altitudes, such

as Mount Fuji (3,776m). Specifically, acute exposure to high

altitude (i.e.,∼24 h) could potentially impair learning and memory

function; thus, we propose precautionary measures to reduce loss

in the mountains.

5 Conclusion

In summary, the current findings suggest that acute hypoxic

exposure (24 h) may impair spatial learning and memory;

however, short-term hypoxic acclimatization may recover these

impairments. Moreover, changes in spatial learning and memory

may be explained by changes in the hippocampal BDNF levels

in rats.
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