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Introduction

A hallmark of anxiety-related disorders is difficulties in inhibiting irrational and

excessive fear. Fear and anxiety usually occur as a result of internal or external cues

(Anderson and Adolphs, 2014). For example, panic disorder involves sudden and internal

feeling of impending doom and pounding heart, while arachnophobia involves encountering

spiders or spider-like objects in the environment. However, repeated exposure to fear-

eliciting cue without any threatening results can lead to reduced fear to the cue, referred

to as fear extinction (Maren et al., 2013; Ganella and Kim, 2014). Extinction is the

process underlying exposure therapies to treat anxiety disorders, and it is observed across

species, including in humans and in rodents (Kim and Ganella, 2015). Conservation of

fear extinction across species has allowed numerous discoveries in the past few decades

to promote our understanding of the neurobiology of anxiety-related disorders and their

treatment (Maren et al., 2013; Haaker et al., 2019).

One significant impediment against translation of preclinical findings to clinical research

has been the historical focus onmale rodents in neurobiological research into fear extinction.

It is speculated that the male focus has been to avoid potential variability in data due to

the cycling hormones in female rodents, with neuroscience showing the biggest bias (5.5

male to 1 female studies) in biological disciplines (Zucker and Beery, 2010). Consequently,

existing preclinical research fails to capture the demographic of anxiety disorders that are

diagnosed twicemore in females thanmales (Kessler et al., 2005; Zucker and Beery, 2010). To

address this issue, recent studies have examined fear learning and extinction in adult female

rodents. For example, extinction in adult female rats is facilitated during proestrus phase

associated with high levels of estrogen (Milad et al., 2009), with systemic injection of estradiol

following extinction leading to facilitated extinction recall (Zeidan et al., 2011). These reports

of estrogen enhancing extinction is counter-intuitive considering that females have∼5 times

more estrogen than males (Frederiksen et al., 2020) but there is a higher prevalence of

anxiety disorders in females compared to males (McLean et al., 2011). However, sex-specific

findings in adult rodents do not address the human epidemiology adequately. Anxiety-

related disorders are typically developmental in their origin (Mineka and Zinbarg, 2006)

and onset of anxiety disorders is the most prevalent during childhood and adolescence

(Kessler et al., 2007). Notably, high prevalence of anxiety disorders in females over males

is observed as young as 6 years of age (Lewinsohn et al., 1998) and such sex difference

persists into aging (Vasiliadis et al., 2020). Therefore, we seek to provide an overview of sex-

specific rodent research in fear conditioning and extinction processes during the juvenile

period, adolescence, and in aging (see summary of published findings in Figure 1). Male and
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FIGURE 1

Ability in cued fear conditioning, extinction, and relapse of extinguished fear across the lifespan in male and female rodents (Park et al., 2017a,b,

2020a,b; Perry et al., 2020; Drummond et al., 2021; Short et al., 2022). Findings are generally consistent that there are no sex di�erences in cued fear

conditioning throughout life in rodents. For extinction, there are distinct sex di�erences between males and females across life, with evidence of

estrogen playing opposing roles in adolescence compared to adulthood. Relapse of extinguished fear is robust in juvenile females but absent in

males. Interestingly, middle-aged rodents do not show reinstatement, suggesting they may revert to juvenile-like behaviors.

female descriptions refer to rodent studies and any reference

to human studies were explicitly stated in this opinion article.

Studies that directly compare or concurrently examine males and

females to report them separately will be prioritized, highlighting

the critical importance of age-specific sex difference research in

translational psychiatry.

Extinction as a new inhibitory learning
that competes with the fear memory

Fear learning or conditioning typically involves the

presentation of a neutral cue (e.g., tone) paired with a threatening

stimulus (e.g., electric shock) (Maren et al., 2013; Ganella

and Kim, 2014). This is repeated till the conditioned cue

alone induces fear responses, such as “freezing”, an absence

of movement other than respiration in rodents (Blanchard

and Blanchard, 1969). Fear responding to the cue is taken

as evidence of fear memory associated with the cue (Maren

et al., 2013; Ganella and Kim, 2014). Fear extinction involves

exposure to such a cue without any threatening outcomes,

which attenuates the cue-induced fear response (Maren et al.,

2013; Ganella and Kim, 2014). Extinction is generally a new

memory that interferes with the expression of the fear memory

(Maren et al., 2013; Ganella and Kim, 2014). In support of this

idea are three widely observed phenomena when conditioned

fear after extinction can relapse (Maren et al., 2013; Ganella

and Kim, 2014). Renewal refers to when fear returns upon

conditioned cue exposure in a different context from extinction.

Reinstatement refers to when exposure to a reminder, such

as a mild threatening stimulus, causes fear expression to the

extinguished cue. Spontaneous recovery refers to when the

conditioned fear response is expressed due to the passage of time

since extinction.

Juvenile sex di�erences in extinction
of conditioned fear

Cognitively, juvenile period in rodents represent young

childhood in humans before large scale abilities (e.g., physically

navigating amaze rather than a computer screen-based spatial task)

fully emerge (Overman et al., 1996; Madsen et al., 2016). During

this time, there is evidence of stronger contextual conditioned fear

in juvenile males compared to females (Park et al., 2017b, 2020a). In

contrast, cued fear acquisition did not differ between postnatal day

(P) 18 male and female rats (Park et al., 2017a). In that study, fear

retrieval and the rate of reduction in cue-induced freezing during

extinction also did not differ between males and females. When

relapse of extinguished fear was examined, however, male rats did

not show renewal, reinstatement, and spontaneous recovery (Park

et al., 2017b), which is consistent with previous findings suggesting

that extinction is resistant to relapse in males at this age (Kim and

Richardson, 2007a,b, 2010b; Gogolla et al., 2009), and may even

erase the original fear memory (Kim and Richardson, 2008, 2009,

2010a; Gogolla et al., 2009). In contrast, females showed all three

types of conditioned fear relapse following extinction (Park et al.,

2017b). These findings suggest a resilient period early in life for

males with effective extinction, while females may develop faster

than males to be more vulnerable to persistent fear memory, which

may explain human epidemiology (Kim, 2017).

Previous studies generally demonstrate that the increased

involvement of the amygdala but reduced involvement of the

prefrontal cortex (PFC) and the hippocampus explain the lack of

relapse following extinction in juvenile male rodents compared

to older rodents (Gogolla et al., 2009; Kim et al., 2009; Orsini

et al., 2011; Ganella et al., 2018b; Li et al., 2018). Of these regions,

the hippocampus in particular may explain the sex differences

in relapse of extinguished fear observed in juvenile rats (Park

et al., 2017a). Renewal, reinstatement, and spontaneous recovery
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are widely conceptualized as context-based relapse in which fear

memory returns due to the physical, internal, and temporal

context change from how extinction occurred (Bouton et al.,

2006). Hippocampus is a well-studied region important for context

learning (Kim and Fanselow, 1992; Lee et al., 2023), and its

dysfunction during extinction can cause renewal (Corcoran et al.,

2005). Hippocampus also changes rapidly during development

and show sex-specific effects from infancy (Koss and Frick, 2016;

Griffiths et al., 2019). However, temporary and bilateral inactivation

of the dorsal or ventral hippocampus using an infusion of γ-

aminobutyric acid agonist muscimol during extinction did not have

sex-specific effects in P18 rats (Park et al., 2020b). In that study,

dorsal hippocampus inactivation facilitated extinction acquisition

in both sexes, while ventral hippocampus inactivation impaired

extinction recall in both sexes. Renewal in females and the absence

of renewal in males were not affected (Park et al., 2020b). Future

studies assessing the amygdala and the PFC are necessary to

understand the mechanisms driving the sex-specific effects in

extinction in juvenile rodents.

Adolescent sex di�erences in
extinction of conditioned fear

Observation of impaired extinction recall in adolescent

compared to preadolescent and adult rodents and humans

(McCallum et al., 2010; Kim et al., 2011; Pattwell et al., 2012;

Ganella et al., 2017a, 2018a) was a significant breakthrough

that reflected the epidemiological and clinical characteristics

in humans that report the highest onset of anxiety disorders

and treatment resistance in adolescence (Kessler et al., 2007;

Hartley and Casey, 2013). However, the original findings were

exclusively in male rodents and sex-specific studies in adolescence

are surprisingly scarce. Adolescence is a period of maturation

marked by puberty and the onset of menarche in which estrous

cycling is irregular (Perry et al., 2020). In the rodent brain,

pubertal onset in female rats is marked by significant changes

in cell and synapse numbers in the medial PFC at ∼P35 while

in males those changes are marked at ∼P45 or more gradual

across adolescence (Juraska and Willing, 2017; Drzewiecki and

Juraska, 2020). In humans, female adolescents are arguably

the most at-risk population to experience an anxiety disorder

(Kessler et al., 2007; Craske et al., 2017). Consistent with such

epidemiology, one study showed that estrous phase associated

with the highest level of estradiol during extinction significantly

impaired extinction in female adolescent rats (Perry et al.,

2020). Specifically, females in proestrus or met/diestrus froze

more than males during extinction, and females in met/diestrus

froze more than males at extinction recall. Females in estrus

or females that had not yet undergone menarche at extinction

did not differ from males (Perry et al., 2020). Sex and estrus

phase on conditioning day generally had no effects during

acquisition and extinction of conditioned fear. Estrus phase

on extinction recall day also had no effects on freezing levels

on any behavioral day. Gonadectomy prior to the onset of

puberty (i.e., at P21) facilitated extinction and improved extinction

recall for female adolescent rats. In contrast to the females,

gonadectomy produced delayed extinction in males, although

extinction recall was unaffected. Similarly, a mouse study showed

delayed extinction in adolescent females relative to males, with

no sex differences reported for spontaneous recovery and renewal

of extinguished fear (Lawson et al., 2022). In adolescence, there

is a significant cortical reorganization related to sex hormones

in rats that are more dramatic in females compared to males

(Juraska and Drzewiecki, 2020), which may underlie females’

sensitivity to estrous cycling and sex hormones in fear extinction.

Overall, estrogen is detrimental while testosterone enhances

extinction in adolescent rats, which may explain and model human

epidemiology. This adolescent finding is contradictory to research

in adults that estrogen is helpful for extinction (Milad et al., 2009),

demonstrating the importance of age in understanding sex effects

in extinction.

Interestingly, clear sex differences in extinction emerge in

response to lifestyle factors in adolescence (Drummond et al.,

2021). In that study, male adolescent rats reared in isolation

showed impaired extinction recall, which was rescued by exercise

during isolation. In adolescent females, isolation transiently

disrupted conditioned fear acquisition, and exercise in isolation

impaired extinction recall. These sex differences in response

to isolation and/or exercise were unrelated to estrous cycling.

Notably, neurogenesis in the ventral hippocampus positively

correlated with extinction recall freezing levels in adolescent

females but not in males, with chronic suppression of neurogenesis

abolishing exercise effects in both sexes (Drummond et al.,

2021). However, 4 days of alcohol drinking following extinction

did not sex-specifically affect spontaneous recovery and renewal

of extinguished fear (Lawson et al., 2022). Previous studies

have shown that the balance between dopamine receptor 1

and 2 (D1 to D2) may be unique in adolescent males and

females compared to other ages (Cullity et al., 2019; Bjerke

et al., 2022), with extinction increasing D2 expression in

adolescence and D1 expression in adulthood in PFC of male

rats (Zbukvic and Kim, 2018). These findings strongly suggest

hippocampus and PFC as potential mechanistic regions to explain

sex differences in extinction in adolescence that should further

be explored.

Aging sex di�erences in extinction of
conditioned fear

The PFC is a critical region for age-specific extinction (Ganella

et al., 2017b; Kim et al., 2017; Zbukvic et al., 2017; Zbukvic

and Kim, 2018; Perry et al., 2021). In humans, the PFC is one

of the first to atrophy in aging, which is consistently related to

reduced cognitive flexibility (Armstrong et al., 2019; Cui et al.,

2023). Extinction could be considered a test of cognitive flexibility

because it involves the flexible retrieval of the fear memory or

the extinction memory depending on the appropriate circumstance

(Kaczorowski et al., 2012; Short et al., 2022). Sex differences in

aging PFC have been reported in longitudinal studies, with males

showing greater age-related thinning than females when observed

over 10 years (Pacheco et al., 2015), although other studies with

shorter observational periods have reported no sex differences
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(Yuan et al., 2018). These findings suggest that extinction may sex-

specifically change during aging, however, the studies are scarce in

any species.

In rats, extinction recall was impaired in middle-aged (13–18

months old) and aged (22–28 months old) compared to adults (3–

6 months old), which was associated with decreased excitability

in regular spiking neurons in the infralimbic cortex of PFC and

increased excitability in burst spiking neurons in the prelimbic

cortex of PFC (Kaczorowski et al., 2012). These findings are highly

insightful because the infralimbic cortex is generally considered

to drive fear reduction whereas the prelimbic cortex is considered

to drive fear expression (Maren et al., 2013). However, that study

only examined males, and it is only recently that both sexes

were tested for extinction in aging rodents. Specifically, aging

from adulthood (3 months old) to middle-age (11 months old)

increased conditioned fear expression similarly across male and

female mice (Short et al., 2022), which is consistent with the

increased excitability in the prelimbic cortex reported previously

(Kaczorowski et al., 2012). Conditioned freezing remained higher

in aged mice during fear retrieval and extinction recall (Short

et al., 2022). Further, middle-aged males showed higher levels of

conditioned fear retrieval but more rapid extinction acquisition

compared to females. Adult mice showed robust reinstatement

of extinguished fear, whereas middled-aged mice did not show

any reinstatement. There were no sex effects in reinstatement,

however, access to running wheels from 8 months of age rescued

reinstatement in male but not female middle-aged mice. In

that study, hippocampal brain-derived neurotrophic factor (Bdnf )

mRNA levels were measured after reinstatement test. Increased

hippocampal Bdnf expression in freely exercising rodents is a

well-established molecular correlate for neuronal growth and

survival relevant for exercise-associated benefits on brain and

behavior (Neeper et al., 1996; Berchtold et al., 2001; Cotman

et al., 2007). Surprisingly, aging did not affect hippocampal

brain-derived neurotrophic factor (Bdnf) mRNA levels, although

mice with running wheel access showed increased total Bdnf

and Bdnf exon 4 mRNA levels in both sexes (Short et al.,

2022).

Taken together, sex effects were only observed during extinction

acquisition or following exercise in aging mice (Short et al.,

2022). Therefore, continued exploration of the PFC and the

hippocampus processes, as well as other regions important

for extinction acquisition, such as the amygdala (Li et al.,

2009; Madsen et al., 2017), are required to understand the

mechanisms underlying sex effects in aging. In addition, 11

months of age in rodents are considered peri-menopausal and

peri-andropausal (Lu et al., 1979), in which hormone levels

fluctuate not unlike adolescence. Sex hormones assessments of

extinction in aging rodents is critical to understand the biology

underlying fear and anxiety in aging, which may contribute to

the increased duration of anxiety disorders and reduced function

in aging human males (Preville et al., 2010; Vasiliadis et al.,

2020).

Conclusions

Age- and sex-specific preclinical research in extinction is clearly

relevant for effective research translation, with many observations

more clearly corresponding to clinical and epidemiological

characteristics of anxiety disorders than sex effects reported in

adults. For example, juvenile female rodents show relapse of

extinguished fear when males do not and high levels of estrogen

in adolescent female rodents are detrimental to extinction. These

findings can explain the higher prevalence of anxiety disorders

observed in females over males. We recommend researchers not

to only include both sexes but also to analyze and report statistical

findings concerning sex, considering thatmany studies now include

both sexes but often sex-specific and sex difference analyses are

unreported. The dearth of studies that report sex-specific findings

in extinction, with no information on critical periods such as before

and after menopause/andropause, is a glaring research gap that we

should strive to address.
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