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The central amygdala modulates
distinctive conflict-like behaviors
in a naturalistic foraging task
Sunwhi Kimm1, Jeansok J. Kim2 and June-Seek Choi1*
1School of Psychology, Korea University, Seoul, Republic of Korea, 2Department of Psychology,
University of Washington, Seattle, WA, United States

Conflict situations elicit a diverse range of behaviors that extend beyond

the simplistic approach or avoidance dichotomy. However, many conflict-

related studies have primarily focused on approach suppression, neglecting the

complexity of these behaviors. In our study, we exposed rats to a semi-naturalistic

foraging task, presenting them with a trade-off between a food reward and a

predatory threat posed by a robotic agent. We observed that rats displayed two

conflict-like behaviors (CLBs)—diagonal approach and stretched posture—when

facing a robotic predator guarding a food pellet. After electrolytic lesions to

the central amygdala (CeA), both conflict behaviors were significantly reduced,

accompanied by a decrease in avoidance behavior (hiding) and an increase

in approach behavior (frequency of interactions with the robot). A significant

negative correlation between avoidance and approach behaviors emerged after

the CeA lesion; however, our data suggest that CLBs are not tightly coupled

with either approach or avoidance behaviors, showing no significant correlation

to those behaviors. Our findings indicate that the CeA plays a crucial role

in modulating conflict behaviors, competing with approach suppression in

risky situations.
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Introduction

Conflict behaviors are frequently observed in nature as animals strive to navigate the
complex interplay between potential rewards and risks. Foraging animals, for example, must
continuously weigh the benefits of obtaining food against the potential threats of predation
[e.g., (Lima and Dill, 1990)]. This behavior can be described as a combination of approach
and avoidance strategies. Researchers have identified specific conflict-like behaviors (CLBs)
such as moving back and forth (Miller, 1944), head dips (Takeda et al., 1998), and stretched
postures (Mackintosh and Grant, 1963; Kaesermann, 1986; Blanchard and Blanchard, 1989),
which may be regulated by distinct mechanisms separate from approach or avoidance (Gray,
1977; Corr, 2013; McNaughton and Corr, 2014). However, most conflict studies have focused
on the dichotomy between avoidance and approach suppression, assuming that CLBs are
highly correlated with and adequately represented by these behavioral indexes. For example,
commonly used conflict tests include the probabilistic administration of electric foot shocks
and the measurement of suppressed licking (Vogel et al., 1971; Millan and Brocco, 2003;
Burgos-Robles et al., 2017; Schumacher et al., 2018; Choi et al., 2019) or conditioned lever-
pressing (Piantadosi et al., 2017). Other studies have focused on withholding or delaying
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approach to circumvent aversive outcomes (Bravo-Rivera et al.,
2014) or opting for less rewarding behavioral choices over more
risky and aversive situations (Friedman et al., 2015).

In this study, we aimed to observe the emergence of defensive
behaviors in foraging rats by using a semi-naturalistic foraging
task. To achieve this, we utilized Lobsterbot, a robotic agent
designed to guard a food pellet and threaten approaching rats with
a snapping motion (Kimm and Choi, 2018). Previous research has
demonstrated that robotic predators can elicit realistic and effective
threat responses in laboratory rats (Choi and Kim, 2010; Amir et al.,
2015; Kim et al., 2018; Kimm and Choi, 2018; Lee et al., 2018). Our
experimental setup allowed us to identify two distinct CLBs in rats:
diagonal approach and stretched posture. A diagonal approach is
characterized by a cautious trajectory along the walls toward the
goal, in contrast to the direct approach through open space typically
observed in goal-directed navigation without threats. In a stretched
posture, rats exhibit a distinct body profile, with an elongated torso,
hind paws further from the body’s center, and front paws gradually
approaching the goal.

We further investigated the effect of lesions in the central
nucleus of the amygdala (CeA) on CLBs, as previous research
has associated the CeA with conflict behaviors through indirect
measures such as punished drinking (Möller et al., 1997; Taksande
et al., 2014). Our findings revealed that both diagonal approach
and stretched posture were reduced following CeA lesions, thereby
confirming the CeA’s crucial role in regulating innate CLBs.

Methods

Subjects

Male Sprague-Dawley rats (Orient Bio, Kyunggi-do, Republic
of Korea), initially weighing 250–270 g, were used. All animals
were individually housed in a climate-controlled vivarium with a
reverse 12-h light/dark cycle (lights on at 9:00 PM). Experiments
were conducted during the dark phase of the cycle and strictly
followed the guidelines for the “Care and Use of Laboratory Rats”
from Korea University, Seoul, Republic of Korea.

Surgery

Rats were anesthetized with pentobarbital sodium (50 mg/kg,
i.p.) and mounted on a stereotaxic frame. Two holes were
drilled into the exposed cranium, and custom-made electrodes
(stainless steel insect pins insulated with epoxy, except for 0.5–
1 mm at the tip) were inserted through these holes to reach
the target coordinates in the CeA. Bilateral lesions in the CeA
were made by passing anodal currents, with coordinates and
lesion parameters detailed in Supplementary Table 1 (Paxinos
and Watson, 2006). Rats in the sham lesion group (SHAM)
underwent the same surgical procedure except that the electrodes
were inserted 1–2 mm dorsal to the target coordinates, and no
current was passed. All rats were given a recovery period of 7–
14 days after the surgery was completed and placed on a standard
food deprivation schedule to maintain 80–90% of their normal
body weights.

Lobsterbot task

All rats underwent an approach-avoidance conflict task that
had been previously developed (Kimm and Choi, 2018). The task
involved a robot named Lobsterbot (Figure 1A) designed to mimic
the prey-capturing motion of a predator, obstructing the rat’s access
to a food pellet (1.5–2 g) by snapping its claws (Figure 1B).

The experimental protocol consisted of habituation and
Lobsterbot sessions (Figure 1C). First, the rats were habituated to
the experimental arena for 2–3 days without the Lobsterbot present.
During this time, the rats were allowed to freely explore the arena
for 5 min, and a single food pellet was available at the opposite end
of the arena. The habituation stage for each rat ended when they
consumed food pellets in 2 consecutive sessions.

After completing the habituation stage, the Lobsterbot sessions
(5 min/day) began and lasted for 5 days. During these sessions,
the Lobsterbot was positioned behind the food pellet and snapped
its claws when it detected the rat’s presence. A breach in the
infrared photobeam was considered an episode of encounter, and
the Lobsterbot’s attack ended as soon as the rat escaped and the
photobeam was no longer broken.

Histology

After the completion of the experiments, rats were overdosed
with sodium pentobarbital and perfused transcardially with saline
and 10% buffered formalin. The brains were stored in post-fix
solution (30% sucrose in 10% buffered formalin) and sectioned
on a microtome at 50 µm thickness. Sections were mounted on
gelatin-coated slides, then stained with Cresyl violet and Prussian
blue dyes. The brain lesion sites were histologically reconstructed
for the analysis (Figures 1D, E).

Behavioral measurement

The movements of the rats were tracked using ANY-maze video
tracking software (Stoelting Co., USA). The software tracked the
green dot, which represented the rat’s head, and the orange dot,
which represented the center of the rat’s body. These movements
were then used to calculate the angle and length of the stretched
posture during the rat’s encounter with the Lobsterbot (as shown in
Figures 2A, B). The frequency of encounters was monitored using
the infrared photobeam sensors of the Lobsterbot (as shown in
Figure 3A). Additionally, ANY-maze also monitored the position
and movement of the rats to measure the time they spent hiding in
the Gate zone (an area around the gate, as shown in Figures 3C, D).

Statistical analysis

The statistical analysis was conducted using IBM SPSS version
20.0. A two-way ANOVA with repeated measures was applied
to examine behaviors (diagonal approach, stretched posture,
encounter frequency, and duration in the Gate zone) for each
session. Bonferroni’s post-hoc tests were conducted to compare
both between-group and within-group differences in all the

Frontiers in Behavioral Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnbeh.2023.1212884
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/


fnbeh-17-1212884 July 27, 2023 Time: 13:38 # 3

Kimm et al. 10.3389/fnbeh.2023.1212884

FIGURE 1

Experimental setup and procedure. (A) Schematic of the experimental arena, highlighting the positions of the Lobsterbot, food pellet, and Nest area.
(B) Diagram of a rat-Lobsterbot interaction. The Lobsterbot’s claws remain open at rest but close with a velocity of 164 ms/40◦ when the rat’s head
breaks the infrared photograph beam. (C) Overview of the experimental design. First, bilateral electrolytic lesions or sham lesions were applied to the
central amygdala of rats. After a 2-week recovery period, the rats were habituated to the arena with just the food pellet and no Lobsterbot present.
Habituation ended after two consecutive sessions in which the rats consumed the pellets. Finally, five Lobsterbot sessions were conducted where
the Lobsterbot guarded the food pellet. (D) Photomicrographs showing representative SHAM and CeA lesions. (E) Reconstruction of CeA lesions,
with dark regions indicating the least extensive lesions and gray regions indicating the most extensive lesions. The distances from bregma are
indicated in the leftmost column, and the coordinates were adapted from the rat brain atlas by Paxinos and Watson (6th edition).
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FIGURE 2

Impact of CeA lesions on conflict behaviors. (A) Representative images showing the difference in conflict-like behaviors between sham-lesioned
(left) and CeA-lesioned (right) rats while approaching food/Lobsterbot. The green and orange dots represent the positions of the rat’s head and
center of the body, respectively. While the SHAM rats typically showed a diagonal angle of approach with stretched posture, the CeA-lesioned rats
showed a non-diagonal approach with non-stretched posture. (B) Polar plots illustrating the approach angles and posture lengths of rats from each
group during their approach to food/Lobsterbot. A diagonal approach angle was defined as being between 0 and 60◦ or 120 and 180◦. (C) Mean
percentage of diagonal approach observed in each session (left) and across all sessions (right). (D) Mean length of stretched posture observed in
each session (left) and across all sessions (right). Statistically significant differences between groups are indicated by an asterisk (*p < 0.05). Data are
presented as mean ± SEM.

aforementioned behaviors. An independent t-test was utilized to
evaluate the between-group difference in the mean percentage
of diagonal approach and stretched posture across five sessions.
Pearson’s correlation coefficient was employed to analyze the
relationship between behavioral indices. Results are presented as
the mean ± standard error of the mean (SEM).

Results

Effects of CeA lesions on conflict-like
behaviors (CLBs)

SHAM (n = 11) and CeA-lesioned (n = 15) rats were tested in
an approach-avoidance conflict task using the Lobsterbot. During
the task, rats foraged for food pellets while a predator-like robot,
Lobsterbot, obstructed access to the pellets by snapping its claws
(Figure 1B and Supplementary Video 1). The rat’s head and body
center were tracked to determine the approach angle and stretched
posture (Figures 2A, B).

The results showed that most rats in the SHAM group favored
a diagonal approach angle (θ < 60◦, 120◦ θ < 180◦) over a
straight approach angle (60◦ < θ < 120◦) when approaching
the Lobsterbot. The mean percentage of diagonal approaches was
significantly affected by the lesion [Two-way repeated measures
ANOVA; F(1,23) = 8.336, p < 0.01; Figure 2C-left], but not
by session [F(3.206,73.73) = 1.671, p > 0.1] or lesion × session
interaction [F(4,92) = 0.6426, p > 0.6]. CeA-lesioned rats showed a

significantly lower percentages of diagonal approaches compared to
the SHAM rats in the third session (Bonferroni’s post hoc, p < 0.05;
Figure 2C-left). On average, the CeA-lesioned rats displayed a
significantly lower percentage of diagonal approaches over the
course of 5 sessions compared to the SHAM rats [Independent
t-test; t(24) = 2.656, p < 0.05; Figure 2C-right].

The stretched posture analysis revealed significant main effects
of lesion [Two-way repeated measures ANOVA; F(1,23) = 32.87,
p < 0.0001; Figure 2D-left] and session [F(3.184,73.23) = 5.282,
p < 0.01], but not of lesion × session interaction [F(4,92) = 0.6426,
p > 0.6]. CeA-lesioned rats exhibited significantly shorter
stretched postures compared to the SHAM rats across all sessions
(Bonferroni’s post hoc, p-values < 0.05; Figure 2D-left) as well as
in the 5-session average [Independent t-test; t(24) = 6.117, p < 0.05;
Figure 2D-right].

To sum, both diagonal approach and stretched posture were
reduced by CeA lesions, indicating that CeA is critical for the
expression of CLBs.

Alterations in approach and avoidance
behaviors by CeA lesions

In addition to the reduced CLBs, CeA lesions also altered the
approach and avoidance. The frequency of encounters, used as
an index of approach, was significantly increased by the lesion
(Figures 3A, B). A Two-way repeated measures ANOVA revealed
significant effects of lesion [F(1,24) = 50.30, p < 0.0001], session
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FIGURE 3

Impact of CeA lesions on approach and avoidance behaviors. (A) Raster plots showing robot encounters on the first Lobsterbot session. Each tick
represents an episode of an encounter, and each row of ticks indicates all encounters recorded from a single rat. (B) Mean frequency of encounters
in each session. (C) Map of the arena showing the location of the Gate zone. (D) Representative heat maps showing averaged occupancy plots over
all sessions superimposed over the map of the arena. A warmer color indicates higher occupancy. (E) Mean duration of time spent in the Gate zone
on each session. Statistically significant differences between groups are indicated by an asterisk (*p < 0.05). Data are presented as mean ± SEM.

[F(2.631,63.15) = 30.11, p < 0.0001], and interaction [F(4,96) = 18.73,
p < 0.0001] (Figure 3B). Post hoc analysis further indicated
that the frequency of encounters in the CeA-lesioned rats was
significantly higher than in the SHAM-lesioned rats across all
sessions (Bonferroni’s post hoc, p-values < 0.05; Figure 3B).

Avoidance was assessed by the time spent hiding in the Gate
zone (a virtual 12 cm × 12 cm zone depicted in Figure 3C).
The increased hiding time was observed when the rats avoided
the Lobsterbot and preferred a location behind the walls in the
Gate zone, as reported in a previous study (Kimm and Choi,
2018). This behavior is best characterized as ’inhibitory avoidance’,
which involves suppressing approach behaviors in the presence
of the Lobsterbot. It represents a more passive reaction to threat,
differing from active forms of avoidance or escape. CeA lesions
significantly decreased the time spent hiding (Figures 3D, E).
A Two-way repeated measures ANOVA found a significant effect
of the lesion [F(1,24) = 13.12, p < 0.0014] (Figure 3E). Post-hoc
analysis also showed that the hiding time was lower in CeA-lesioned
rats in sessions 1 and 5 (Bonferroni’s post hoc, p-values < 0.05;
Figure 3E). Taken together, these results suggest that the CeA is
critical for approach suppression and threat avoidance. Likewise,
the pattern of time spent in the Nest area mirrored that of
the Gate zone, even though the duration in the Nest area was
approximately twice as long as in the Gate zone for both groups
(Supplementary Figure 1).

Additionally, head-withdrawal, an active escape behavior from
the Lobsterbot was measured (Supplementary Figure 2). The
head-withdrawal latency measured at milliseconds scale was

significantly slowed by the CeA lesion across all sessions, indicating
CeA’s role in reflexive defensive behavior as well.

Correlational analysis of conflict,
approach, and avoidance behaviors

The significant impact of CeA lesions on CLBs and
approach/avoidance behaviors raises the question of whether
the decreased conflict behaviors are simply byproducts of reduced
avoidance. To address this question, a correlational analysis was
conducted among all behaviors (Figure 4). In the SHAM-lesioned
rats, the diagonal approach showed a significant and positive
correlation with the stretched posture (r = 0.27, p < 0.0001).
These two conflict behaviors were not significantly correlated
with any other behavioral indices of approach or avoidance,
such as encounter frequency or hiding (p-values > 0.05). In
the CeA-lesioned rats, the correlation between the two conflict
behaviors remained robust (r = 0.58, p < 0.0001), without
any significant correlation to other approach and avoidance
behaviors (p-values > 0.05). These results suggest that the two
conflict behaviors are not directly tied to approach suppression or
avoidance behaviors and that CeA lesions have a direct impact on
CLBs rather than an indirect influence through those behaviors.
Interestingly, the correlation between the frequency of encounter
(approach) and time spent hiding (avoidance), which was not
significant in SHAM, became significantly negative in the CeA
lesion (r = −0.54, p < 0.0001), suggesting that the inverse
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FIGURE 4

Correlational analysis of conflict, approach, and avoidance behaviors. Correlation matrices of SHAM and CeA-lesioned groups. The matrices show
correlations between CLBs (CLB1: diagonal approach, CLB2: stretched posture), approach behavior (encounter frequency), and avoidance behavior
(hiding in the Gate zone). The numbers in the matrices represent the correlation coefficients. Increased brightness indicates higher coefficients, and
asterisks (*) indicate statistically significant coefficients (p < 0.05).

relationship between approach and avoidance becomes prominent
when the CeA no longer dominantly regulates those behaviors.

Discussion

Despite an ample number of studies investigating approach
and avoidance behaviors in conflict situations, only a few have
focused on identifying CLBs and the related neural circuits. CLBs
in rodents might not have been frequently identified in most
laboratory settings, perhaps because they appear more prominently
in naturalistic foraging environments where a variety of behavioral
modules need to be recruited for optimal performance (Miller,
1944; Mackintosh and Grant, 1963; Gray, 1977; Kaesermann, 1986;
Blanchard and Blanchard, 1989; Takeda et al., 1998). There has
been a need for novel behavioral paradigms to induce CLBs in
laboratory settings because the majority of studies have defined
conflict as avoidance (Shibata et al., 1986; Yamashita et al., 1989) or
delayed approach (Bravo-Rivera et al., 2014), rather than directly
examining CLBs. A more recent study developed a battery of
conflict tests to better assess CLBs in rodents (Illescas-Huerta et al.,
2021). Specifically, these tests employed tasks consisting of various
challenges, for example, a crossing-mediated conflict task where
rats had to cross a potentially electrified grid to obtain food at
the opposite end of a straight alley. Several CLBs were identified,
including hesitations (touching the threat zone then aborting the
approach), stretched posture, and head-dipping. It is important to
note that CLBs often manifest as approach behaviors despite the
presence of threats. Therefore, simply counting the reduction in the
number of approaches may not be a valid representation of conflict.

In the current study, we employed an innate conflict task
to observe frequent expressions of CLBs. In a realistic foraging
task, rodents faced a constant threat from an automated, sensor-
activated agent while attempting to access a visibly attainable food
reward. This setup allowed us to observe the emergence of CLBs,
such as diagonal approach and stretched posture, without the need
for training or conditioning trials. Additionally, these CLBs were
not correlated with approach or avoidance behaviors, indicating
that they may be a separate class of behaviors. Importantly, the
observed CLBs differ from displacement behaviors, which typically
occur during stressful situations and often involve unrelated or out-
of-context actions, such as grooming or scratching (Maestripieri
et al., 1992; Spruijt et al., 1992). In contrast, CLBs observed in our
study appear to be more directly related to the conflict situation,
reflecting the animal’s attempt to balance approach and avoidance
in the presence of a threat.

Furthermore, we investigated the CeA’s role in CLBs. Our
data showed that CeA lesions led to a significant reduction in
the display of CLBs, alongside even more substantial changes in
approach and avoidance behaviors. This underscores the CeA’s
involvement in all three behaviors–approach, avoidance, and CLBs.
While previous studies have suggested the CeA’s role in approach
and avoidance (Knapska et al., 2006; Lázaro-Muñoz et al., 2010;
Schlund and Cataldo, 2010; Kim et al., 2017), it remained unclear
whether the impact of CeA lesions on CLBs was a direct effect or
a secondary consequence of alterations in approach or avoidance
behaviors. Previous studies investigating the effect of CeA lesions
in conflict behaviors measured disinhibition of approach as an
index of reduced conflict, such as increase in punished drinking
(Yamashita et al., 1989; Möller et al., 1997). This led to critiques
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regarding the construct validity of the findings. Indeed, the CeA has
been implicated in defensive behaviors like freezing (LeDoux et al.,
1988; Choi and Brown, 2003), and the disinhibition of approach
could have likely resulted from reduced defensive behavior. In
contrast, our findings suggest that the CeA may have direct impact
on CLBs that is less closely related to approach and avoidance
behaviors. The changes in CLBs induced by CeA lesions showed
no significant correlation to the changes in approach/avoidance
behaviors, whereas a significant negative correlation between
approach and avoidance behaviors was found. This supports the
idea that the CeA may control conflict behaviors directly to some
level, rather than merely as a byproduct of approach or avoidance
behaviors.

In conclusion, the present study offers novel insights into
the role of the central nucleus of the amygdala (CeA) in
regulating approach-avoidance conflict (AAC) and conflict-like
behaviors (CLBs) in rats, employing an ethologically valid, semi-
natural setting that allows for the observation of these behaviors
distinct from approach and avoidance. Our findings emphasize the
significance of the CeA in governing both CLBs and avoidance
behaviors, illustrating that the underlying mechanisms for these
behaviors within the CeA are likely distinct. Future research
adopting this methodology and finer control over sub-populations
of neurons within the CeA could enhance our understanding of
the neural mechanisms underlying conflict, explore the precise
neural mechanisms within the CeA that control CLBs, and further
investigate the relationship between the CeA and other brain
regions involved in conflict regulation, thereby reinforcing the
validity of the findings.
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