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Multi-view image-based behavior
classification of wet-dog shake in
Kainate rat model
Salvador Blanco Negrete*†, Hirofumi Arai*†, Kiyohisa Natsume
and Tomohiro Shibata*

Department of Human Intelligence Systems, Graduate School of Life Science and Systems Engineering,
Kyushu Institute of Technology, Kitakyushu, Japan

The wet-dog shake behavior (WDS) is a short-duration behavior relevant to

the study of various animal disease models, including acute seizures, morphine

abstinence, and nicotine withdrawal. However, no animal behavior detection

system has included WDS. In this work, we present a multi-view animal behavior

detection system based on image classification and use it to detect rats’ WDS

behavior. Our system uses a novel time-multi-view fusion scheme that does not

rely on artificial features (feature engineering) and is flexible to adapt to other

animals and behaviors. It can use one or more views for higher accuracy. We

tested our framework to classify WDS behavior in rats and compared the results

using different amounts of cameras. Our results show that the use of additional

views increases the performance of WDS behavioral classification. With three

cameras, we achieved a precision of 0.91 and a recall of 0.86. Our multi-view

animal behavior detection system represents the first system capable of detecting

WDS and has potential applications in various animal disease models.

KEYWORDS
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1. Introduction

Animal behavior analysis plays an essential role in pre-clinical models investigating the
causes of human diseases. Hence, automating and finding new insights into behaviors is
fundamental to accelerating research. Machine vision techniques are widely recognized as
effective instruments for automating behavior analysis. However, most systems are limited
to one view, in mice, usually from the top. Nevertheless, a single view cannot be used to
detect all behaviors. Although a top view is suitable for analyzing the displacement of a rat in
a cage, it may not be suitable for observing behaviors that involve detailed limb movements.

Wet-dog shake behavior consists of a rapid oscillation of the body (Dickerson et al.,
2012). In rats, it is analyzed by recording experiments from a side view and then reviewed
manually. Still, it can be challenging even for humans, especially when the rat faces opposite
to the camera. The behavior is unpredictable and has a short duration, which makes it easy to
miss. In our experiments, it only accounts for 0.38% of the time despite using an over-WDS
disease model. In this study, we analyze WDS in Kainate (KA) treated rats, where WDS
is one of the behaviors used to evaluate seizure progress during treatment (Lévesque and
Avoli, 2013). WDS is also present in morphine abstinence, and nicotine withdrawal, among
other studies (Wei, 1973; Suemaru et al., 2001; Vuralli et al., 2019; Shahzadi et al., 2022;
Yunusoglu et al., 2022). Studying WDS behavior could help us understand animal model
diseases and their human equivalents. Despite numerous systems developed for animal
behavior detection in recent years, none of them can detect WDS behavior.
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Live Mouse Tracker is a popular real-time behavior analysis
system for mice, but a single camera from the top, and feature
engineering make it challenging to adapt to other animals (de
Chaumont et al., 2019). Moseq is an unsupervised behavior
identification system. It relies on a 3D deep sensor, it is not
user-friendly, and the code is not open source (Wiltschko
et al., 2015). Another popular machine learning system for
quantifying animal behavior is DeepLabCut, which is capable of
posture detection and tracking but is not designed explicitly for
behavior classification (Mathis et al., 2018). SimBA is a toolkit
for behavior classification. However, it uses pose estimation,
which requires annotating user-defined key points in addition
to the target behavior (Ro et al., 2020). Several commercial
behavior analysis systems, such as TopScan, HomeCageScan by
Cleversys and Ethovision by Noldus, from which some incorporate
multiple cameras, including side views, they operate by generating
silhouettes using color filtering techniques. Subsequently, body
parts are deduced from these silhouettes, and behaviors are
identified by analyzing the predicted body parts in terms of their
spatiotemporal patterns (Matsumoto et al., 2020). Nevertheless,
these are classic techniques, and the systems fail to incorporate
contemporary machine learning techniques that could yield better
results. Furthermore, these systems offer limited flexibility, and
the absence of open-source code prevents community-driven
improvements and modifications. Additionally, the cost should be
taken into consideration. To date, no system has been capable of
detecting WDS behavior.

In this work, we take inspiration from the multi-view human
action recognition (MVHAR) field to address the problem of
animal behavior recognition, particularly the WDS behavior in
rats. There are two main approaches for MVHAR; the first one
is to train end-to-end neural networks (Putra et al., 2018, 2022;
Wang et al., 2018; Vyas et al., 2020), but the performance is tied
to the use of large MVHAR datasets (Weinland et al., 2006; Gkalelis
et al., 2009; Wang et al., 2014; Shahroudy et al., 2016; Guo et al.,
2022). Equivalent animal datasets are not available, and producing
them would be costly. Another approach is extracting features, with
skeleton features being the most used (Zhang et al., 2019; Bian
et al., 2023), and then using a separate classifier. Extracting skeleton
features requires pose estimators that need extensive amounts of
labeled data for training (Insafutdinov et al., 2016; Cao et al.,
2017), but labeling animal data can be particularly challenging as
it requires familiarity with the target animal anatomy to produce
correct labels (Labuguen et al., 2021).

To address these challenges, this study presents a multi-
view supervised machine learning system for animal behavior
classification. We introduce a novel multi-view-time fusion
architecture. At its core, it relies on a simple image classifier.
Before classification and multi-view-time analysis, we use the same
approach for background removal as (Meratwal et al., 2022) which
involves first using an object localization network that generates
a bounding box. Then, an image patch is taken according to the
bounding box to isolate the subject in the image and remove the
background. This approach avoids relaying in hand-crafted feature
representations like skeletons and reduces the data needed for
training. The WDS dataset we created is a novel non-human multi-
view activity recognition dataset with a practical application. Our
system can detect the WDS events with a precision of 0.91 and a
recall of 0.86 using three cameras. Although we limit this study to

the WDS behavior, our system could be trained to incorporate user-
defined behaviors across different animals and for classification
tasks in general. We hope our system is used to reveal unforeseen
features of animal behavior.

2. Materials and methods

The experiments were conducted in accordance with the Guide
for Care and Use of Laboratory Animals at the Graduate School
of Life Science and Systems Engineering of the Kyushu Institute of
Technology (Sei#2021-003).

2.1. Injection of Kainic acid

The experiments were performed with three young rats aged
4–5 weeks and 104.0−152.5 g (Japan SLC Inc., Japan). There
were eight to 10 days of adaptation before the experiment. Light
(12 h light–12 h dark), humidity (50+−5 %), and temperature
(23 + 1◦C) were regulated.

We administered 0.05% KA (5 mg/kg) intraperitoneally after
anesthesia (2.5% isoflurane) using the repeated low-dose protocol
(Hellier et al., 1998). Every hour three times in total. The animals
were recorded for 1 h immediately after the third KA injection.

2.2. Hardware information

We use the live mouse tracker 50 cm × 50 cm plastic cage (de
Chaumont et al., 2019). We recorded three experiments with up to
four cameras to create a Machine Learning dataset. A Camcorder,
a GoPro HERO8 Black, two GoPro HERO7 Silver. A camera was
set on each side of the cage. The camcorder was mounted using
a tripod, we include a camcorder as this is a common setup
for manual labeling (Arai et al., 2022). The GoPro cameras were
attached to the plastic enclosure using a suction cup mounted and
positioned at the center top of the panel, the angle was adjusted to
capture the entire enclosure as Illustrated in Figure 1. The angle
and position of the cameras changed slightly between experiments
as the cameras were mounted and dismounted between the
different experiments. All the cameras were set to a resolution of
1080p at 30 fps. The GoPro HERO8 contains three digital lenses;
we used the wide digital lens. The videos were synchronized using
Apple Final Cut Pro Multicam editing workflow. The proposed
study was conducted using the cloud service Google Colab with a
Tesla V100-SXM2−16GB GPU graphics card and an Intel (R) Xeon
(R) CPU @ 2.20 GHz hardware configuration.

2.3. Data collection

The dataset for machine learning was created using three
1 h recordings after the third KA injection. Two recordings were
used for the training dataset. Four cameras were used in the first
recording and three in the second. One experiment recorded using
three cameras was used for the validation dataset.
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FIGURE 1

Top: the rat being depicted from different perspectives. Left bottom: the open source LMT acrylic enclosure. Bottom right: GoPro camera attached
by a suction cup mount.

2.3.1. Target behavior wet-dog shake
The wet-dog shake behavior occurs naturally as a spontaneous

behavior, described as a rapid oscillation of the body as illustrated
in Figure 2 (Dickerson et al., 2012). WDS as a naturally occurring
behavior is rare and mostly zero when recorded for short periods
(Sperk et al., 1985) thus, we only consider KA-treated rats for this
study. The KA rat model is an over-WDS model. Soon after the
administration of KA, rats experience an unusually high amount of
WDS for approximately 1 h until class IV and/or class V seizures
appear (Racine, 1972; Hellier and Dudek, 2005; Sharma et al.,
2008). In the three experiments used for this study, the animals
experienced 149, 220, and 49 WDS events during the hour of high
WDS activity after KA administration. The duration mean is 0.33 s
with a standard deviation of 0.11 s.

2.3.2. Wet-dog shake event annotation
For each WDS event, the frames corresponding to that event

are annotated as wet-dog shake (WDS); otherwise, the frames are
annotated as no wet-dog shake (NWDS). Figure 3A depicts the

event annotations in a 2 min sample, with the horizontal axis
corresponding to time and a spike representing a WDS event.

2.3.3. Object localization dataset
For object localization, it is necessary to indicate the

animal’s position. The Region of Interest (ROI) describes
the animal’s location, a square defined by its width, height,
and position (x, y coordinates). Since the video recordings
contain more than a million frames, only a subsample was
annotated. Frames were selected by extracting the image
features utilizing a pre-trained convolutional neural network,
specifically MobileNetV2, which was trained on the extensive
ImageNet dataset. The extracted features consisted of a 1,280-
dimensional feature vector. To simplify the data representation,
we reduced the dimensions to 100 principal components using
principal component analysis (PCA). Finally, we implemented
K-means clustering (Hartigan and Wong, 1979). We used
the cloud services Roboflow and Labelbox for annotating the
images.
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FIGURE 2

Time-lapse sample frame sequence of WDS behavior recorded in this study (t = 0 s previous to the start WDS behavior, t = 0.1–0.4 s WDS behavior,
t = 0.5 s ending of WDS behavior). This behavior is evocative of the movement seen in dogs.

Initially, we labeled 744 frames, 672 for training and 72 for
validation. The label includes the WDS event annotation and the
ROI. The dataset is balanced, as we selected a similar number of
images for each class (WDS and NWDS). Although not necessary
for object localization, we added frames where the network failed
in the classification task. The final dataset contains 1.5 k images for
training. Figure 3B illustrates two example annotations for object
localization.

2.3.4. Image classification dataset
We run our entire dataset through the Object Detection

Network and take the ROI predictions as ground truth. Then,
we crop the images according to the predicted ROI to remove
the background. We select all the frames that contain the WDS
behavior and then randomly select a similar amount of NWDS
behavior images to maintain a balanced dataset. This image
classification dataset contains 25,544 frames, 24,920 for training,
and 624 for validation. Although this approach gives, for the
most part, correct labels, it is not perfect, as the ROI predictions
are sometimes inaccurate. Figure 3C shows two examples of
annotations, one showing WDS behavior and another NWDS
behavior.

2.4. Neural networks

For our framework, we use three networks, as illustrated in
Figure 4. The first network NN1, is for object localization, the
second network NN2, is for image classification and the third
network NN3, is to predict the final score from a feature map that
encodes the multiple views as well as time. We use TensorFlow
(Abadi et al., 2016) on the Google Colab platform, which allows
running everything on the cloud if a web browser is available.

2.4.1. Object localization network
We use a Single Shot MultiBox Detector (SSD) (Liu et al., 2016)

approach, the fastest meta-network architecture, while maintaining
a high accuracy score (Huang et al., 2017). The main advantage
of SSD is that it consists of a single feed-forward convolutional
network with three stages. Although it can produce ROI and class
scores, we only use this network to produce the ROI. Separating
the object localization task enables training with fewer labeled
data and makes it independent of a particular behavior. The
first stage of the object localization network, feature extraction,
involves convolutional layers that generate feature maps that
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FIGURE 3

There are three annotation types: (A) the rat behavior is labeled at each timestamp. (B) Label for object detection, region of interest, and behavior
class. (C) cropped image and its corresponding behavior class label.

FIGURE 4

An overview of the method used and the different stages. NN1 object localization; NN2 image classification; NN3 predicts the final score from a
feature map encoding time and the multi-views.
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FIGURE 5

Multi-view integration and time series analysis framework. NN2 analyses all frames from t–15 to t15 from all camera angles to create a vector map
from class scores. NN3 generates the final prediction from the vector map.

FIGURE 6

Diagram of the NN3 model architecture, which consists of a Conv2D layer, a flatten layer, a Dense layer and ReLU activation, along with Batch
Normalization and Dropout layers.

FIGURE 7

Raw classification prediction in a 2 min video sample. Numerous false positives are detected.

encode useful semantic features at different scales and channels.
The second stage, the detection head stage, produces ROI and class
scores at each feature map scale. The final step is Non-maximum
Suppression (NMS), which eliminates repeated predictions. We use
the MobileNetV2 (Sandler et al., 2018) for the feature extraction
stage, which is also optimized for speed and runs with low hardware
requirements, such as smartphones. We use the TensorFlow 2
Detection Model Zoo API (Huang et al., 2017). The network uses
pertained weights on the COCO 2017 dataset (Lin et al., 2014). We
use it to run on a per-frame base, predicting the rat’s location.

2.4.2. Image classification network
Image classification is described as assigning the label from k

categories to the image x.

f :x→ {1, ..., k} (1)

Here we train a CNN for image classification; two classes
are predicted, WDS and NWDS behavior. We use the WDS
classification dataset previously described. As the backbone of the
classifier, we use MobileNetV2 (Sandler et al., 2018). Employing a
separate classifier allows using a higher picture resolution to make
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TABLE 1 Correlation analysis for comparison between different cameras
and human labeling.

Human GP7 GP8 HC

Human 1.00 0.80 0.81 0.77

GP7 0.80 1.00 0.70 0.68

GP8 0.81 0.70 1.00 0.70

HC 0.77 0.68 0.70 1.00

GoPro7 (GP7), GoPro8 (GP8), handy cam (HC).

predictions, as the cropped image is created directly from the image
with the original resolution.

2.4.3. Multi-view and time series analysis
To accommodate for the multiple views, we modify equation

(1), were xV represents a set of images according to the number of
views nV .

f :XV → {1, ..., k} |XV {x1, x2, ..., xnV } (2)

Our method uses a score fusion multi-view image classification
algorithm. Previous multi-view classification systems that use score
fusion employ an aggregation function to predict the final label
(Seeland and Mäder, 2021). In contrast, we train a separate network,
NN3, that predicts the final score; additionally, to incorporate time
analysis, NN2 generates predictions of XV from t−n . . . t+n as
follows:

f :Xt
V → {1, , k} |Xt

V = {

xt−n
1 xt

1 xt+n
1

xt−n
2 · · · xt

2 ... xt+n
2

...
...

xt−n
nv

xt
nv

xt+n
nv

} (3)

The output of NN2 is a vector of class scores, as illustrated in
Figure 5, and then NN3 predicts the final score. This approach
allows NN3 to use multi-view-temporal information. Additionally,
with this strategy, only NN3 needs to be trained if we want to adapt
to a new environment, add or remove cameras, or change the time
window.

The NN3 model architecture as illustrated in Figure 6 begins
with an input layer, followed by a Conv2D layer with 30 filters
and a kernel size of (3, 5). The output is flattened and passed
through a Dense layer with 20 units and ReLU activation. Batch
Normalization and Dropout layers are employed to improve
generalization. Finally, a Dense output layer with 2 units with
softmax activation provides classification probabilities for the input
data. To further refine and eliminate gaps in the results obtained
from the network, we utilize one median and one minimum filter.

3. Results

3.1. Object detection

The dataset for object detection contains 1572 images, 1500 are
used for training, and 72 for validation. In the validation dataset,
the network achieves an average Intersection over Union (IoU)
of 0.98, meaning the network can correctly localize the animal in
the image.

The network we use for object localization also produces a
classification score; in the validation dataset, the precision and
recall achieved are 0.79 and 0.52, respectively. These results are
not enough for our purposes, considering that the dataset used
for validation is balanced, which is not the case in the practical
application. Therefore, this network is only used to predict the

FIGURE 8

Receiver operating characteristic (ROC) curves for one, two, and three view configurations.
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TABLE 2 Comparison of WDS recall and precision metrics with three
different camera configurations in the 1 h validation recording.

Views Precision Recall

Three 0.91 0.86

Two 0.97 0.65

One 0.90 0.57

ROI. There are two possible reasons for the low performance in
the classification task. The first is the low resolution of the cropped
area used to predict the class, and the second is that the network
may need more training data.

3.2. Image classification

The dataset for image classification consists of 25,549 pictures.
For training, 24,920 images are used for training and 629 for
validation. The network achieves 92% accuracy in the validation
set. Although 92% seems high, in practice, 8% error produces
numerous false positives; this is especially problematic as the WDS
behavior occupies only 0.38% of the time in our experiments. This
point is illustrated in Figure 7, showing the per-frame predictions
across the different cameras where many false positives are
detected. Although image classification has been used successfully
in video classification. In our case, it is not enough, as we only have
a few frames to determine the behavior, and the network needs to
detect the start and the end of the WDS behavior. So only using
image classification alone is not enough.

The image classification results in Table 1 show the correlation
between the predictions in different cameras and the ground truth
from a 2 min video sample. The camera with the highest score is
obtained by the GoPro8 (Pearson’s r = 0.81).

3.3. Multi-view and time series analysis

In this section, we test our system in an unseen, 1 h experiment
containing 49 WDS events, recorded with three cameras. To
evaluate the system, we use recall and precision metrics. This
evaluation corresponds to how scientists would use our system to
detect the WDS behavior in experiments for the KA rat model.
Additionally, we employ Receiver Operating Characteristic (ROC)
curves to effectively compare the model’s performance across
different configurations, considering varying numbers of views as
illustrated in Figure 8.

3.4. Performance evaluation

We compare results using different camera configurations to
demonstrate whether using multiple views provides performance
benefits over using a single view. Table 2 shows the comparison
results. We observe that precision is high across all camera
configurations, while recall improves when using more views. This
confirms the benefits from using additional views.

In order to further evaluate the performance of our system
using different camera configurations, we have included Figure 8,

which displays the ROC curves for three different scenarios: 1
view, 2 views, and 3 views. The ROC curves illustrate the trade-
off between sensitivity and specificity for each configuration. The
results indicate that incorporating additional views improves the
overall performance of our system. However, it should be noted
that the ROC curves are calculated using raw per-frame data,
while in Table 2, the results are counted on a per WDS event
basis.

3.5. Visual inspection

Figure 9, presents a visual comparison of the final predictions
of the multi-view system for WDS behavior in a 2 min video sample
extracted from the 1 h validation recording. The 2 min sample
is analyzed with different numbers of views. Upon examining
the predictions in Figure 9 it becomes evident that the number
of WDS events recalled increases with the addition of more
cameras while maintaining zero false positives. This improvement
in recall can be attributed to the fact that multiple views offer
better coverage of the subject’s behavior, reducing the likelihood of
missing true instances due to occlusion or orientation. Moreover,
the increased information from multiple views also aids the
system in discerning between true WDS events and other similar
actions, thereby reducing the number of false positives. These
observations are consistent with the results in Table 2, where all
camera configurations exhibit great precision, and recall rises as the
number of cameras grow.

3.6. Failure cases

In this section, the failure cases are discussed. Upon careful
inspection a total of four false positives were observed during the
1 h validation experiment. Figure 10 illustrates these four failure
cases. In two of these instances, the rat exhibited rearing behavior,
while in the other two, it was walking.

The false positives in rearing behavior may be attributed to the
occasional occurrence of elevation of the forelimb during WDS
behavior, which can resemble rearing to some extent as illustrated
in Figure 2. To ensure that the model does not consistently confuse
rearing behavior with WDS, the first 10 min of the 1 h validation
experiment were examined. Seven instances of rearing behavior
were identified, none of which were detected as false positives.
This observation indicates that the model is generally capable of
distinguishing between rearing behavior and WDS.

Regarding the false positives involving the rat’s walking, it was
noted that the rat moved frequently, but only two instances were
incorrectly classified as WDS behavior. In Figure 7, which displays
the raw per-frame predictions generated by the image classification
network (NN2) across three distinct views, the ground truth is
marked in red. Between 15 and 17 s, all the views indicate some
probability of WDS, while the rat is actually walking, as illustrated
in Figure 11. However, the final prediction by NN3 is successful in
filtering out the noise in all view configurations. In this instance,
although the WDS probability was high in the raw classification
prediction, reaching around 80 percent, for true WDS events, the
probability reaches almost 100 percent, showing that the system is
capable of distinguishing walking from WDS in most cases.
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FIGURE 9

The final prediction of the WDS behavior in a 2 min video sample with different camera configurations.

FIGURE 10

The false positives (four in total) during the 1 h validation experiment where the rat exhibits rearing behavior (two cases) and walking behavior (two
cases).

In the case of false negatives, a clear pattern could be identified
to explain the misclassifications. Further investigation and potential
refinements to the model may be required to address these
instances and improve overall performance.

4. Discussion

The human decision-making process frequently depends on
the utilization of visual information from a variety of angles. This
has inspired the development of machine learning systems that
take advantage of multiple views for activity recognition, mainly
in humans; still, progress in this field has yet to trickle into animal

behavior classification and adapt it to its unique challenges, namely
the lack of datasets and the variety of animals across different
species used for experiments. In this study, we develop a multi-
view animal behavior classification system designed to deal with
the major challenges unique to animals. Separating the object
localization task allows training with few labeled data, makes
it independent to a specific behavior detection task, and avoids
degrading the image resolution for classification. Meanwhile, the
system can be easily adapted to be used with different amounts
of cameras and/or for new environments by only fine-tuning the
third network NN3. The system is designed to be easily adapted and
used with different animals, behaviors, and other classification tasks
while training with little data. In the WDS behavior classification
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FIGURE 11

Time-lapse of the rat at the 15–17 s mark, displaying the rat’s walking behavior.

task, our system achieved 0.91 precision and 0.86 recall despite the
validation 1 h experiment being recorded on a different date, with
a different rat subject, and slightly different camera positioning as
the cameras were dismounted between the experiments.

4.1. WDS in other rat disease models

Wet-dog shake behavior can be found in various disease models
and as a spontaneous behavior (Wei, 1973; Suemaru et al., 2001;
Dickerson et al., 2012; Vuralli et al., 2019). The dataset collected in
this work only includes the WDS behavior after the KA treatment
of rats (Lévesque and Avoli, 2013). Our method should work with
other rat disease models where WDS is present, as we could not find
studies that suggest WDS locomotion differences between disease
models. This also includes WDS as a spontaneous, natural behavior.

4.2. Other subjects and classification
tasks

Our system could be adapted to be used for other subjects and
other classification tasks, including other animals and behaviors.
For example, our framework could be used for pure classification
tasks. Multi-view image classification is already used for quality
control in malting barley (Dolata et al., 2017). With our framework,
we could use all the frames from the time barley enters the camera
field of view until it is no longer visible while being transported in
the conveyor belt.

In the future, we wish to examine the self-grooming behavior.
Self-grooming is a complex behavior. In rats, it comprises a

series of individual movements that follow a sequence: (0) no
grooming, (1) paw licking, (2) nose/face/head grooming, (3)
body grooming, (4) leg grooming, and (5) tail/genital grooming
(Arai et al., 2022). Rat models of several neuropsychiatric
disorders exhibit abnormal self-grooming, each with a distinct
phenotype (number, duration, transitions) (Kalueff et al., 2016).
For example, in the latent period of the KA rat epilepsy model,
rats exhibit an increase in the self-grooming frequency, length,
and transition probability 1−2 (paw licking to nose/face/head
grooming) suggesting that self-grooming behavior analysis can be
used to detect changes of neurons in the dorsolateral striatum
as these are related to increases in transition probability in later
phases (Arai et al., 2022). Although some systems can detect self-
grooming, none analyze individual movements (van den Boom
et al., 2017; de Chaumont et al., 2019). These systems use a
top view, so discerning the details of self-grooming behavior
would be difficult. In contrast, our system could be trained
with a better angle view or views that capture self-grooming
details and classify each of the five movements involved in self-
grooming.

4.3. Camera performance and
classification

In our study, we observed that the choice of camera plays a
role in the classification performance. As seen in Table 1 the GoPro
cameras exhibit higher correlations with human labeling. It appears
that although the videos were recorded with the same resolution,
the GoPro cameras provide higher image quality compared to the
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camcorder. In Figure 10, the top right image was captured using the
camcorder, while the other images were taken with GoPro cameras.

One of the novel aspects of this work is the use of GoPro
cameras in behavioral studies. GoPro cameras offer several benefits,
such as different lenses, compact size, mounting flexibility, and
high-quality image capture. In our experiment, the GoPro cameras
were mounted on the acrylic panel using a suction cup mount,
which allowed for close and adjustable positioning to the subject.
In contrast, the camcorder was positioned on a tripod farther away
from the subject.

Future research could explore the impact of camera selection
on classification performance in more detail.

5. Conclusion

5.1. Multi-view behavior classification

Our system integrates multi-view classification and video
classification. We offer a novel approach to encode the multiple
views and time using a CNN. The system does not rely on feature
engineering; it uses object localization and image classification
networks as its base, offering great flexibility and making it easy to
adapt to other behaviors and animals or any classification task.

Our findings demonstrate the significance of observing animal
behavior events from different perspectives.

5.2. Wet-dog shake behavior
classification

With the increase in scientists using behaviors in the
analysis of disease models of animals (Arai et al., 2021, 2022;
Arakawa, 2021; Matsumoto et al., 2022), there is a need for
automated video analysis systems. This research presents the
first system for automatically classifying WDS behavior in rats,
a behavior relevant to the study of numerous animal disease
models. Additionally, we also provide the first wet-dog shake
dataset containing more than 10 h of video, a novel non-
human multi-view dataset for activity recognition with a practical
application.
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