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A Commentary on

Alpha1-adrenergic receptor blockade in the ventral tegmental area

attenuates acquisition of cocaine-induced pavlovian associative learning

by Solecki, W. B., Kielbinski, M., Bernacka, J., Gralec, K., Klasa, A., Pradel, K., Rojek-Sito, K., and

Przewłocki, R. (2022), Front. Behav. Neurosci. 16, 969104. doi: 10.3389/fnbeh.2022.969104

The ability to adapt to environmental rewards is crucial for survival. Animals must
identify rewards and direct their behavior to acquire them, while differentiating aversive
stimuli (Berridge, 2000; Roitman et al., 2008). Extensive research has attributed this process
to the phasic release of dopamine (DA) in the forebrain (Wise, 2004; Schultz, 2007;
Saunders et al., 2018). However, while rapid DA release from ventral tegmental area (VTA)
neurons projecting into the nucleus accumbens (NAc) have been regarded as the principal
mechanism of reward-based learning (Robbins and Everitt, 1996; Glimcher, 2011; but see
Jeong et al., 2022), emerging evidence suggests that noradrenaline (NA) actions in the
mesolimbic system are also involved in reward processing (Jahn et al., 2018); a possibility
that was initially discounted (Davis et al., 2022).

Out of the three classes of adrenergic receptors, alpha-1 (α1-AR), alpha-2 (α2-AR),
and beta-adrenergic receptors (β-AR), α1-ARs have been implicated in the regulation
of dopamine release in the VTA-NAc pathway (Grenhoff and Svensson, 1993; Grenhoff
et al., 1995; Paladini and Williams, 2004; Rommelfanger et al., 2009), affecting cue-reward
associations (Mitrano et al., 2012). Early work showed that α1-ARs interact with cocaine
(Drouin et al., 2002; Hyman et al., 2006), leading to addiction due to the blockade of
DA and NA uptake by neuronal plasma membrane transporters (Kuhar et al., 1991).
Targeting α1-ARs could, therefore, be a promising strategy to counteract the behavioral
symptoms of cocaine addiction. However, the complex relationship between cocaine-
induced effects and reward-learning processes has hampered the development of effective
treatments (Thomas et al., 2008; Buchholz and Saxon, 2019) and revealed two important
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knowledge gaps. First, while adrenergic receptors are expressed
in the VTA (Solecki et al., 2017; Kielbinski et al., 2019), the
exact regulatory function of VTA α1-ARs was not well-understood.
Second, although previous work studied α1-ARs in the context of
cocaine-seeking behavior (Zhang and Kosten, 2005; Flagel et al.,
2009; Rommelfanger et al., 2009; Solecki et al., 2018; Schutte et al.,
2020), whether α 1-AR antagonists can affect cocaine-induced
reward cue salience, a crucial component of drug addiction, had
yet to be established.

In their recent work, Solecki et al. (2022) addressed these
two questions by using prazosin, an α1-AR antagonist, to
investigate whether α1-ARs affect cue salience in the cocaine-based
conditioned place preference (CPP) paradigm. The CPP paradigm
has been used repeatedly to study cocaine’s effect on reward
perception (Calcagnetti et al., 1995; Caffino et al., 2021). However,
this is the first time that results are directly contrasted with the
outcome of the same experimental manipulation in an instrumental
learning task, enabling the distinction between salience and
valence. Additionally, the study included the measurement of
ultrasound vocalization (USV) and of NAc dopamine levels.

The research shows that prazosin administration into the VTA
attenuates the acquisition of cocaine-induced CPP, suggesting that
α1-AR blockade impairs associative learning. Significantly, the α1-
AR antagonist did not affect locomotion or induce a stand-alone
effect in CPP. These results confirmed that α1-ARs have a purely
modulatory role in encoding cue salience under cocaine influence.

To assess whether CPP inhibition by prazosin was due to
an induced insensitivity to reward, the authors performed an
instrumental learning task, measuring the rate of cocaine self-
administration, with and without α1-AR blockade in the VTA.
They reported no difference between the two conditions, indicating
that α1-ARs are not involved in reward sensitivity and, therefore,
isolating cue salience as the main effect of NA. This conclusion
was further validated by the finding that prazosin had no effect
on cocaine-induced USVs, indicating no change in the cocaine-
induced positive affective state.

Immunohistochemical analyses demonstrated that α1-ARs
in the VTA are primarily expressed in TH-positive neurons.
However, α1-ARs were also partially colocalized with GABAergic
interneurons and astrocytes. Their expression in these additional
cell types may also be implicated in NA signaling, a possibility
that will need to be addressed by future studies. Additionally, the
authors analyzed phasic dopamine release following intra-VTA
prazosin administration, revealing the attenuation of dopamine
release by the antagonist in parallel to inhibiting Pavlovian
learning. These results solidify the functional role of VTA α1-
ARs in associative learning, via the modulation of downstream
DA signaling.

Nevertheless, future work is required to fully understand
the complexity of cocaine effects. For example, the authors
found a striking non-linear dosage effect of cocaine-induced
CPP. Increasing cocaine dosage from 20 to 25 mg/kg completely
extinguished the acquisition of CPP, producing a CPP score
equivalent to the control test of saline administration. Additionally,
recent work has demonstrated that cocaine can directly affect
NA levels through protein kinase C signaling (Zhu et al., 2022).

Together, these results indicate that the effect of α1-AR blockade
may be more complex than simply inhibiting the encoding of cue
saliency. For instance, an increase or decrease in NA uptake due
to α1-AR activity modulation could hypothetically produce the
same outcome of diminished CPP. Consequently, a crucial next
step would be to perform a rigorous analysis of the interactions
between α-adrenergic drugs and cocaine, as a pre-requisite to
further considering α-adrenergic drugs as potential therapeutic
drugs in cocaine addiction.

To understand potential causes of non-linear cocaine dosage
effects, a systematic study of cocaine release could be informative.
Recently-developed optical sensors could be used to compare
NAc DA levels following cocaine administration in absence
and presence of VTA α1-AR blockade (Patriarchi et al., 2018).
Additionally, α1-AR agonists – formerly utilized in cocaine
behavioral studies (Schmidt et al., 2017) – could be used to provide
further insights into the role of adrenergic receptors in reward
learning. Furthermore, previous work has associated learning
impairments with intraperitoneal administration of prazosin
independently of cocaine administration (Stuchlík et al., 2009).
These findings warrant more stringent controls to ensure that
observed behavioral changes are caused by the interaction between
cocaine and prazosin, and not due to stand-alone effects of
prazosin administration.

In summary, the work by Solecki et al. (2022) is a welcome
addition to a growing body of studies investigating the various
roles of NA in shaping behavior, in the context of drug addiction
(Smith and Aston-Jones, 2011; Perry et al., 2015). The next
challenge is to integrate these novel findings into a comprehensive
understanding of the role of NA in reward-based learning. While
our understanding of the mesolimbic pathway is far from complete,
the development of quantitative models incorporating knowledge
from both DA and NA systems should provide a more accurate
view of reward learning, guiding new insights into the mechanisms
of reward and the treatment of addiction.
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