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Traumatic brain injury (TBI) is a primary global health concern and one of the

most common causes of neurological impairments in people under 50. Mild

TBI (mTBI) accounts for the majority of TBI cases. Anxiety is the most common

complaint after mTBI in humans. This study aims to evaluate behavioral tests

designed to assess anxiety-like phenotypes in a mice model of mTBI. ICR mice

underwent mTBI using the weight-drop model. Seven days post-injury, mice

were subjected to one of five different behavioral tests: Elevated Plus Maze (EPM),

Open Field apparatus (OF), Marble Burying test (MBT), Light Dark Box (LDB),

and the Light Spot test within the PhenoTyper home cage (LS). In the EPM and

OF tests, there were no significant differences between the groups. During the

30-min test period of the MBT, mTBI mice buried significantly more marbles

than control mice. In the LDB, mTBI mice spent significantly less time on the

far side of the arena than control mice. In addition, the time it took for mTBI

mice to get to the far side of the arena was significantly longer compared to

controls. Results of LS show significant within-group mean differences for total

distance traveled for mTBI mice but not for the control. Furthermore, injured mice

moved significantly more than control mice. According to the results, the anxiety

traits exhibited by mTBI mice depend upon the time of exposure to the aversive

stimulus, the apparatus, and the properties of the stressors used. Therefore, the

characterization of anxiety-like behavior in mTBI mice is more complicated than

was initially suggested. Based on our findings, we recommend incorporating a

variety of stressors and test session lengths when assessing anxiety-like behavior

in experimental models of mTBI.
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Introduction

Traumatic brain injury (TBI) is the most common neurological
disorder among young adults and the elderly, with an estimated
10 million cases a year worldwide (Menon et al., 2010; Dewan
et al., 2019). TBI is a disruption of normal brain function
caused by an external force applied to the head or body
(Menon et al., 2010). This injury can result from occupational
or sports accidents, military injuries, motor vehicle collisions,
and falls (McAllister, 2016; Taylor et al., 2017). Individuals who
experience TBI may present a broad range of short and long-term
cognitive, emotional, behavioral, sensorimotor, and functional
deficits, which vary due to the injury’s type and severity (Silver
et al., 2019). The pathophysiology of head injuries can be divided
into primary and secondary damage. Initially, physical injury
can cause damage to the blood vessels, brain tissue, and the
blood-brain barrier (BBB). Subsequently, secondary brain damage
(edema, inflammation, pro-inflammatory cytokines, free radicals,
glutamate-induced toxicity, and DNA damage) gradually progresses
over time (days to months). Secondary damage, if not treated, will
eventually cause cell death (Reilly and Bullock, 2005; Griesbach
et al., 2007; Rachmany et al., 2013).

TBI can be classified into three main categories: mild, moderate,
or severe (Mallya et al., 2015), of which mild traumatic brain
injury (mTBI) is the most common (Silverberg et al., 2020).
American Congress of Rehabilitation Medicine (Kay et al., 1993)
describes mTBI as a mild insult to the head that results in a
brief period of unconsciousness followed by impaired cognitive
function. Along with cognitive impairments, mTBI causes an array
of symptoms, most notably headaches, fatigue, depression, anxiety,
and irritability, collectively referred to as post-concussion syndrome
(PCS; Kay et al., 1993). In most cases, the symptoms resolve within
approximately 3 months. However, some individuals continue to
experience symptoms beyond 1-year post-injury (Hall et al., 2005;
Daneshvar et al., 2011). Those with persistent symptoms are said to
experience persistent PCS (Daneshvar et al., 2011; Marshall, 2012).
Moreover, mTBI is associated with a higher incidence of psychiatric
disorders, up to 70% of which are anxiety disorders (Hibbard et al.,
2000; Fann, 2004; Bryant, 2010).

Anxiety disorders are the most prevalent and earliest mental
manifestations following TBI, ranked as the ninth most health-
related cause of disability by the World Health Organization
(WHO). Due to their enormous economic impact, anxiety
disorders are a heavy burden on societies worldwide, with the
highest prevalence in high-income countries (Bandelow and
Michaelis, 2015; Stein et al., 2017; Vestergaard et al., 2020; Penninx
et al., 2021). The Diagnostic and Statistical Manual of Mental
Disorders (DSM-V) defines anxiety disorders as disorders that
share features of excessive fear, anxiety, and related behavioral
disturbances. For example, fear is the emotional response to a real
or perceived imminent threat, whereas anxiety is the anticipation
of future threats (American Psychiatric Association, 2013). There
are several types of anxiety disorders, and they tend to be highly
comorbid with each other. However, they can be differentiated by
the conditions that induce fear, anxiety, or avoidance behavior and
their clinical manifestations (American Psychiatric Association,
2013; Penninx et al., 2021). Following a TBI, anxiety disorders
are classified as “due to a general medical condition” and may

include panic disorder (with or without agoraphobia), general
anxiety disorder, post-traumatic stress disorder (PTSD), and
obsessive-compulsive disorder (OCD; Moore et al., 2006). However,
nowadays (in DSM-V), OCD and PTSD are no longer classified as
anxiety disorders (American Psychiatric Association, 2013).

A variety of behavioral tests are used in anxiety-like condition
research conducted in pre-clinical settings. These tests assess, in
mice, the conflict between exploring novel areas and the fear of
open spaces and bright light. These include the Open Field Test, the
Elevated Plus Maze, the Elevated Zero Maze, the Light Dark Box,
the Marble Burying test, the Hole-Board test as well as Automated
Home Cage Observations (Visser et al., 2005; Moore et al., 2006;
Himanshu et al., 2020). However, anxiety-like behavior has been
challenging to reproduce in animal models. Further, the literature
offers conflicting findings regarding the effect of a TBI on anxiety,
with some studies reporting an increase, others a decrease, or no
change at all (Popovitz et al., 2019; Tucker and McCabe, 2021).

While mTBI plays a notable role in the occurrence of anxiety
in humans, anxiety-like behavior is often elusive in pre-clinical
studies. Therefore, the current study aims to assess various
behavioral tests, thus shedding light on the advantages and
disadvantages of each one of them.

Methods

Mice and experimental design

Adult male ICR mice (HSD, Israel), 6–8 weeks old, weighing
30–40 grams, were used once in this study. Mice were housed in
groups of five in a cage, in 12-h light/dark circles, at a constant
room temperature of 22◦C, and allowed ad libitum access to food
and water. After arriving at the facility, the animals were given seven
days to adjust to their new environment. The minimum number
of mice was used to facilitate results, and all effort was made to
ease the mice’s suffering throughout the experiments. Each group
of mice was randomly assigned to one of the experimental groups.
To minimize anxiety and to ensure consistency in post-mTBI
time, each group of mice underwent a single behavioral test All
behavioral tests were conducted under red light conditions during
the active phase. The study was conducted in the Myers Neuro-
Behavioral Core Facility at the Sackler Faculty of Medicine, Tel
Aviv University. In accordance with the NIH guidelines for animal
care, all procedures were approved by the ethics committee of the
Sackler Faculty of Medicine (01-21-069) (DHEW publication 85-
23, revised, 1995).

Mild traumatic brain injury procedure

A mild traumatic brain injury was induced using a weight-drop
model (Zohar et al., 2003). The weight drop concussive head injury
device comprises an aluminum tube with an internal diameter of
13 mm and a length of 80 cm. Each mouse was anesthetized with
isoflurane to induce injury and placed under the device on top of
a sponge. Next, we released a 30-g weight at the beginning of the
tube, free-falling along its length. This weight struck the right lobe
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of the mouse’s brain between its eye and ear. Once the procedure
had been completed, the mice were returned to their home cages
for recovery and follow-up. To ensure that any deficits observed are
only related to the mTBI, the control mice were also anesthetized
with isoflurane.

Behavioral assessment

Mouse exploration and anxiety-like behavior were assessed
using the Elevated Plus Maze (EPM), Open Field apparatus (OF),
Marble Burying test (MBT), Light Dark Box (LDB), and the Light
Spot (LS) test within the PhenoTyper home cage (model 3000,
Noldus Information Technology, The Netherlands). Behavioral
tests were conducted in a counterbalanced order in separate groups
of mice seven days after injury. A total of 108 mice (mTBI
and control) were placed individually in the arena of each test,
and behavior was recorded. Data was collected with Ethovision
15.0 software (Noldus Info Tech, Wageningen, The Netherlands;
Noldus et al., 2001). All behavioral tests were performed at the
beginning of the active cycle (dark phase) and under red light. A
total of 108 mice (mTBI and control) were placed individually in the
arena of each test, and behavior was recorded. Data was collected
with Ethovision 15.0 software (Noldus Info Tech, Wageningen, The
Netherlands; Noldus et al., 2001). All equipment was cleaned with a
5% Virusolve solution between subjects to eliminate residual odors.

Elevated plus maze (EPM)
EPM relies on the rodent’s dual (contrasting) tendencies toward

novel places, with both a desire to explore and to avoid unfamiliar
open spaces (Lister, 1987; Har-Even et al., 2021). The apparatus
consists of a four-armed black plexiglass platform formed into a
“plus” shape suspended 50 cm above the ground. The arms are
confined by either low (“open”; 30 × 5 × 1 cm) or high (“closed”;
30 × 5 × 15 cm) walls, such that similarly shaped arms face one
another. All tests were done with an array of four red light (dark
conditions) lamps located above the maze with a maximum of
50 LUX intensity in the open arms. Mice were placed individually at
the central platform, facing an open arm. The mice were allowed to
move freely for 5 min. Time spent in the open arm and the entries
to the open and closed arms were measured.

Open field (OF)
The OF test provides a way to assess novel environment

exploration and general locomotor activity systematically (Hall,
1934; Walsh and Cummins, 1976) In addition, it provides an initial
screen for anxiety-like behavior in rodents (Namdar et al., 2020).
Each mouse was placed individually in the center of an open-field
plexiglass box (60 × 60 × 20 cm), and its behavior was recorded
for 5 min. The total distance traveled and the cumulative duration
of the time the mouse remained in the center of the arena were
measured to assess anxiety-like behavior.

Marble burying (MBT)
The MBT is used to measure anxiety-like behavior in

correlation with the number of marbles buried (Chaudhary, 2016).
Standard polycarbonate cages (22 × 30 × 28 cm) were used, and

odorless bedding material was placed inside the cage, 5 cm in depth.
Twenty marbles were evenly distributed across the bedding. Then,
the mice were separately put in the marble cage for 30 min. At
30 min all marbles that were unburied were counted (less than 2/3rd
of the marble’s height).

Light dark box (LDB)
This test is based on animals’ natural conflict between seeking

protection and exploring a novel environment (Shanazz et al.,
2021). The apparatus consisted of two chambers. One is an
open-field plexiglass box (60 × 60 × 20 cm), and the second is a
dark box (16 × 35 × 16 cm). The light chamber was illuminated
with 822-lux light. Each mouse was individually placed in the dark
box and allowed to freely explore the apparatus for 10 min. The total
distance traveled, the time spent on the far side of the chamber, and
the latency to reach the far side of the chamber were recorded.

The light spot (LS) test within the PhenoTyper
home cage

Mice were housed individually in PhenoTyper home cages
for four days. The first three days were considered habituation
days in which mice were allowed to familiarize with the new
home cage environment. During these 4 days, no human handling
took place; food and water were provided ad libitum. The cages
(30 × 30 × 30 cm) are made of transparent plexiglass walls with
an opaque plexiglass floor covered with bedding. The cages are
equipped with a feeding station, a water bottle, a running wheel,
and a shelter. The cage’s lid is equipped with infrared LEDs and
an infrared-sensitive camera for video tracking. EthoVision was
used as video tracking and trial control software (EthoVision XT
14, Noldus Information Technology, The Netherlands; Grieco et al.,
2021). On the day of the LS test, 3 h after the beginning of the dark
(active) phase, a bright LED light (1,100 LUX) was automatically
switched on for 1 h, illuminating the feeding station. To examine
the behavioral response to the LS, we measured the total distance
traveled (in centimeters) by mice before the LS was turned on
(00:00–02:00 h, system time), during the LS test (03:00 h, system
time), and after the LS was switched off (04:00–08:00 h, system time;
Maluach et al., 2017; Prevot et al., 2019).

Statistical analysis

The statistical analysis for the various tests was performed
using SPSS software and RStudio. For the non-automated test data,
t-tests were used to examine potential differences between the
groups. LS test data were analyzed with a Linear Mixed Effects
Regression (LMER) model using the function lmer from the R
packages “lmer4” and “lmerTest” (Bates et al., 2015). The model
included group and LS phase as fixed effect terms and the animal
identifier (ID) as random effect terms to account for repeated
measurement. Significant group × LS phase interaction effects were
followed up with Sidak’s multiple comparisons using the “emmeans”
function from the “emmeans” R package (Chaudhary, 2016; Lenth
et al., 2019). All tests were two-tailed, and p < 0.05 was considered
statistically significant. Statistically significant differences were
marked with asterisks; ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.
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Results

All the groups were assessed for anxiety-like behavior seven
days post mTBI via five different tests. All tests are based on the
conflict between rodents’ tendency to explore a novel environment
and the fear of open and/or brightly lit spaces.

Elevated plus maze

No significant differences were found between the groups in
all three parameters; time in open arms, entries to open arms, and
entries to close arms (t(1,26) = 1.3, p = 0.21, t(1,26) = 0.7, p = 0.5,
t(1,26) = <1.7, p = 0.09, respectively) in anxiety-like behavior and
general locomotor activity examined in the EPM. Mice exposed to
mTBI spent a similar amount of time in the EPM open arms as the
control mice (24.3 ± 6.7 and 30 ± 11.5, respectively; Figure 1A). In
addition, mTBI mice entered open}close arms in a similar manner
(47.8 ± 12.2 and 51.6 ± 15.4, 30.7 ± 9 and 25.3 ± 8 respectively;
Figures 1B,C).

Open field

Two variables were taken from the open field paradigm—the
total distance traveled and the total time spent in the center of
the arena. In both parameters, there were no significant differences
between the groups t(1,18) = −0.75, p = 0.46, t(1,18) = 0.3,
and p = 0.8, respectively. mTBI mice presented similar general
locomotor activity as control mice (distance 4,219.6 ± 1,264 and
3,847.3 ± 930.8, respectively). In addition, both mTBI and control
mice spent comparable amounts of time in the center of the arena
(16.5 ± 9 and 17.6 ± 8.5, respectively; Figure 2).

Marble burying

Marbles buried with bedding up to 2/3 of their depth were
counted at 30 min. The groups differ significantly in the number
of marbles buried during the test period. mTBI mice buried a
significantly greater number of marbles than control mice at a
30-min test period (t(1,18) = 4.2, p = 0.001; Figure 3).

Light dark box

Multiple measures were taken from the LDB test. No significant
differences between the groups were observed in the total distance
(t(1,22) = −0.06, p = 0.9; Figure 4). However, in contrast to the lack
of difference between the groups in cumulative duration of time
in the center of the arena (OF), here, the cumulative duration of
control mice on the far side of the arena was significantly higher
than the time the injured mice spent there (t(1,22) = −2.1, p = 0.047;
Figure 4). In addition, latency to first (the time it took for mice to
get to the far side of the arena) was significantly longer in the mTBI
group compared with the control group (t(1,22) = 2.1, p = 0.045;
Figure 4).

Light spot (LS) test in the PhenoTyper home
cage

Results of a Linear Mixed Model analysis revealed that injury
had an effect on total distance traveled, with mTBI mice ambulating
overall greater distances than control mice (main effect of group:
F(1,18.86) = 8.10, p = 0.010). Furthermore, the distance traveled by
the two groups differed across test phases (group × test phase
interaction: F(2,108) = 4.11, p = 0.019; Figure 5A).

In order to further explore this interplay between the
experimental group and the test phase, we conducted a series of
follow-up analyses. First, we compared the total distance traveled by
mTBI mice and control mice in each of the three test phases. It was
found that the distance traveled by mTBI mice differed significantly
from that of controls only in the pre-LS stage (mTBI mice:
30,350.3 ± 8,754.7, control mice: 15,684.6 ± 9,324.4; p < 0.001;
Figure 5A).

Next, we compared the total distance traveled in the three test
phases separately for the mTBI and control groups. Results indicate
that only in mTBI mice did LS exposure result in a significant
reduction of total distance traveled. Among injured mice, the
distance ambulated after LS exposure was significantly shorter than
before the exposure (14,356.7 ± 13,070.3 vs. 30,350.3 ± 8,754.7;
p < 0.001) and during the exposure (14,356.7 ± 13,070.3 vs.
27,092.1 ± 11,796.4; p = 0.004; see Figure 5B). The distance traveled
by control mice did not differ significantly over the three test phases
(all p > 0.05; Figure 5B). Collectively, the data from the LS test in
the home cage indicate the presence of more persistent anxiety-like
behavior in the mTBI group, that is, residual avoidance behavior
(Kyriakou et al., 2018; Grieco et al., 2021; Figures 5A,B).

In summary, EPM and OF were each 5 min long with a new
and open arena as a stressor. In both tests, there were no significant
differences between the groups. The LDB was a 10 min evaluation
with a bright light stressor added to the new and open arena. Like
in the OF, there were no significant differences between the groups
in total distance traveled. Nevertheless, the cumulative time spent
on the far side of the arena was significantly lower for mTBI mice
than for control mice. In addition, latency to first was significantly
longer in mTBI mice compared to controls. The MBT was a 30-min
evaluation with a stressor of 20 shiny marbles. During the 30-min
test period, mTBI mice buried a significantly increased number of
marbles than the control mice. The LS test was unique, conducted
over hours and integrating two stressors: social isolation and bright
light. Significant within-group mean differences for total distance
traveled were found for the mTBI group but not for the control
group. In addition, the total distance moved by injured mice (in
all test phases together) was significantly higher than the control
group.

Discussion

In previous studies done in our lab using the same mTBI
protocol, we established that mTBI affects learning and memory as
well as gait and balance, and sleeping patterns in mice (Rubovitch
et al., 2019; Namdar et al., 2020; Richmond-Hacham et al., 2022).
The current work aims to elaborate on anxiety. This study aimed to
evaluate anxiety-like behavior in an mTBI mouse model, using four
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FIGURE 1

Elevated plus maze. (A) Mean ± SEM of the time spent in the open arms of the elevated plus maze in %. (B) Mean ± SEM of the entries to the open
arms in %. (C) Mean ± SEM of the entries to close arms (n = 14 in each group).

FIGURE 2

Open field. (A) Total distance traveled as mean ± SEM in cm. (B) Time in the center as mean ± SEM of cumulative duration in seconds (sec) (n = 10 in
each group).

FIGURE 3

Marble burying. Mean ± SEM of the marbles buried by the mice after
30 min (n = 10 in each group). ∗p < 0.05.

different gold standard assays and one home cage environment.
Each behavioral test was performed on different groups of mice.

The study design was chosen to keep the stressor of one test
from affecting anxiety levels in the following test. In addition,
it is well known that the time point post-TBI is an extremely
relevant parameter when studying anxiety (Popovitz et al., 2019).
Nevertheless, the design may affect the ability to compare and
speak about the tests as a unit. We assessed anxiety tests that fall
into three categories: Tests to evaluate open space-induced anxiety
(EPM and OF), tests of novelty-induced anxiety (MBT), and tests
of light exposure-induced anxiety (LDB and LS). Only male mice
were used in this study since head injuries are significantly more
common in men (Cassidy et al., 2004). In addition, it has been
shown that the estrogen secretion circuit affects anxiety levels (Walf
and Frye, 2006). Indeed, conducting a similar study in female
mice would be a desirable next step. Our findings reveal that
the detection of anxiety-like behavior in a mice model of mTBI
depends on both the test employed (related stressor) and the
exposure duration.

Among the more “traditional” anxiety-like tests, the results
suggest that the EPM and OF, open space-based anxiety tests,
are the least sensitive paradigms, in line with existing literature
(Ennaceur and Chazot, 2016). These findings may have changed if
a different TBI model or severity had been used. For example, as
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FIGURE 4

Light dark box. (A) Total distance traveled as mean ± SEM in cm. (B) Far side as mean ± SEM of cumulative duration in the far side of the arena in
seconds (sec). (C) Latency to first as mean ± SEM of cumulative duration of the time past until the first time in the far side of the arena in seconds
(n = 12 in each group). ∗p < 0.05.

FIGURE 5

LS test (Light Spot test). (A) Group by LS phase interaction effect on the total distance traveled by mTBI (n = 8) and control mice (n = 8). Values
are mean ± SEM. (B) Within-group comparisons for control and mTBI mice across the different LS test phases. Values are mean ± SE. ∗p < 0.05,
∗∗p < 0.01, ∗∗∗p < 0.001.

reported in Popovitz et al. (2019) article from 2019, moderate to
severe CCI models increased anxiety measured by EPM up to three
weeks post-injury. In contrast, moderate to severe TBI in our weight
drop model did not show an increase in anxiety by EPM (Heim
et al., 2017; Har-Even et al., 2021; Qubty et al., 2022). Moreover,
despite no differences between the two groups in the time spent
within the open arms of the EPM and the center of the OF arena,
mTBI mice spent significantly more time in the outer area of the
LDB arena than control mice. The exposure duration to the stressor
of the LDB test is longer compared to the EPM and OF paradigms.
However, when considering evidence showing that there are no
significant differences between mTBI and control mice in OF when
exposures last longer (Namdar et al., 2020), we suggest that the
difference between the tests is primarily a consequence of the light
exposure added to the new and open arena. Moreover, based on
evidence from non-TBI research (Ennaceur et al., 2006), it may
be that the sensitivity of inner arena activity parameters (OF) is
not the same as that of outer arena activity parameters (LDB). The
30-min long MBT test of novelty-induced anxiety further supports
our assumption regarding the vital role of exposure duration. It
was found that mTBI mice buried more marbles at 30-min test
period, indicating increased anxiety levels. Therefore, a short test

session might have allowed this result to be overlooked, leading to
an erroneous conclusion that mTBI does not alter novelty-induced
anxiety responses. Moreover, we can conclude from this finding that
the “count of marbles buried” may be particularly susceptible to the
effect of exposure duration.

A further indication of the importance of exposure duration
is the observation that only the automated LS test, the test with
the most extended duration, was sensitive to anxiety-induced
changes in total distance traveled among mTBI mice. Notably, when
measured as part of the OF or LDB tests, the same parameter
failed to indicate differences between the two groups. This result
illustrates the influence of not only stressor exposure duration
but also the behavioral test or anxiety domain being evaluated as
well as the interplay between them. While all four standard assays
are performed in a novel arena, the LS is conducted in a home
cage environment. It is presumed that mice respond differently
when the aversive stimulus is in their home. More concretely,
open space-based paradigms (OF, EPM), novelty-based paradigms
(marble burying), and light-based paradigms (LDB, LS) are known
to measure different aspects of the multidimensional and complex
nature of anxiety (Kalueff et al., 2007). Consequently, impairments
in certain anxiety subdomains, like avoidance, may take longer to
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manifest and thereby require a longer time to be detected (Kyriakou
et al., 2018). The anxiety-like behavior of mTBI mice in the LS test
supports this assertion. It emphasizes the importance of studying
subsequent time points following aversive stimuli (even up to five
hours later) rather than focusing primarily on the acute response
(Kyriakou et al., 2018). It may be especially true for low anxiety
strains of mice, such as those in this study (Ennaceur, 2014), that
longer exposure duration may be needed to elicit anxiety response
when mild aversive stimuli are used. An additional consequence of
prolonged behavioral tests could be fatigue. It is observed that mice,
like humans, alter their sleep patterns following a traumatic brain
injury (Schreiber et al., 2008; Namdar et al., 2020). Given that sleep
disruption has been shown to exacerbate emotional vulnerability
and increase anxiety (Chellappa and Aeschbach, 2022), it is most
likely that its contribution to mice’s exhibition of anxiety-like
behavior will emerge in longer-duration tests.

The methods chosen here enabled us to account for the
intensity of the aversive stimuli (i.e., only mild stressors were
employed), expanding empirical knowledge and clearing some
of the conceptual fog surrounding the relationship between
mTBI and anxiety. In that aspect, it may resemble, as much
as possible, “real life” situations (relatively mild stressors) that
mTBI patients may encounter daily and react differently than
non-mTBI patients. Clinically thinking, numerous brain regions
are associated with anxiety, such as the amygdala, hippocampus,
anterior cingulate cortex, and many more (Engels et al., 2007;
Litvin et al., 2008). Considering that brain injuries in humans are
heterogenic in mechanism and severity, it is likely that they will
result in different types of anxiety. Additionally, as we showed in
a mice model, post-injury anxiety can be context-dependent in
humans, meaning that the severity and presentation of anxiety
symptoms may vary based on the circumstances and environment
in which the individual finds themselves. For example, someone
with TBI-related anxiety may feel more anxious in crowded or
noisy environments or when faced with certain stressors that are
reminiscent of the original injury (Mallya et al., 2015; Howlett
et al., 2022). In pre-clinical settings, several types of TBI models are
available: Fluid Percussion Injury Model (FPI), Controlled Cortical
Impact Injury Model (CCI), Weight-Drop TBI Model, Penetrating
Ballistic-Like Brain Injury Model, Blast Injury Model, Repetitive
Brain Injury Model (Xiong et al., 2013). Compared to other TBI
models, the weight-drop model used in the current study better
mimics the injury processes in most human cases (McNamara et al.,
2020). However, when conducting a study in a lab environment
according to standardization guidelines, we cannot expect the
heterogeneity we see in humans.

In this context, another factor to consider regarding the
generalizability of our findings is the use of the ICR mouse strain.
The ICR strain is one of the preclinical research’s most widely
used outbred mice. The use of ICR mouse strain, on the one
hand, elicit results that bear a resemblance to the heterogeneity in
human and, on the other, are very strain specific. ICR mice have
distinct characteristics that may affect outcomes of behavioral tests,
such as a high level of general locomotor activity and resiliency
to aversive stimuli (Adams et al., 2002; Ennaceur, 2014). This
aspect is particularly relevant in light of the fact that the LS test
is conducted in single-housing conditions. Accordingly, isolation-
induced anxiety may have an additive effect, even though evidence

from non-TBI research suggests that this is unlikely (Kamakura
et al., 2016). It is, therefore, necessary to conduct further studies on
mTBI in other mouse strains to clarify the role of injury in anxiety.
Moreover, it is to be expected that there will be an environmental
effect on the anxiety levels of mice in group housing. It is important
to take into account the anxiety induced by returning mice to cages
after being exposed to an aversive stimulus. However, in a non-TBI
study, researchers showed that within-cage order of testing does
not interfere with anxiety levels tested as the amount of plasma
corticosterone (Benedetti et al., 2012). In addition, we see different
results in tests done in group-housed mice. Consequently, if there is
an effect it is not significant.

In summary, our results show that mTBI mice exhibit
anxiety-like behavior in the MBT, the LDB, and the light-spot
test but not in the EPM and OF tests. The relevance of testing
several behavioral paradigms when evaluating anxiety-like behavior
is highlighted. Also emphasized is the importance of increasing
measurement times and using advanced automated tests in
combination with the standard traditional tests.
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