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Endocannabinoids (eCBs) and the expanded endocannabinoid system (ECS)-

“endocannabinoidome”, consists of the endogenous ligands, eCBs, their

canonical and non-canonical receptor subtypes, and their synthesizing and

metabolizing enzymes. This system modulates a wide range of body functions

and acts as a retrograde signaling system within the central nervous system (CNS)

by inhibition of classical transmitters, and plays a vital modulatory function on

dopamine, a major neurotransmitter in the CNS. Dopamine is involved in different

behavioral processes and contributes to different brain disorders—including

Parkinson’s disease, schizophrenia, and drug addiction. After synthesis in the

neuronal cytosol, dopamine is packaged into synaptic vesicles until released

by extracellular signals. Calcium dependent neuronal activation results in the

vesicular release of dopamine and interacts with different neurotransmitter

systems. The ECS, among others, is involved in the regulation of dopamine

release and the interaction occurs either through direct or indirect mechanisms.

The cross-talk between the ECS and the dopaminergic system has important

influence in various dopamine-related neurobiological and pathologic conditions

and investigating this interaction might help identify therapeutic targets and

options in disorders of the CNS associated with dopamine dysregulation.
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Introduction

The discovery of the endocannabinoids (eCBs) as a family of lipid molecules, and the
advances in the identification of other putative receptors, congeners of eCB mediators,
and their enzymes formed a complex and expanded endocannabinoid system (ECS)
known as “endocannabinoidome” (eCBome; Cristino et al., 2020). The ECS is widely
distributed in almost all human cells and tissues and exerts a multitude of cellular
signaling mechanisms involved in the regulation of several functions including retrograde
signaling in the central nervous system (CNS) by modulating classical neurotransmitters
and many types of synaptic plasticity (Jonsson et al., 2006). The isolation of

Frontiers in Behavioral Neuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/journals/behavioral-neuroscience#editorial-board
https://www.frontiersin.org/journals/behavioral-neuroscience#editorial-board
https://doi.org/10.3389/fnbeh.2023.1137957
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbeh.2023.1137957&domain=pdf&date_stamp=2023-03-16
mailto:onaivie@wpunj.edu
mailto:ephrem.engidawork@aau.edu.et
https://doi.org/10.3389/fnbeh.2023.1137957
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnbeh.2023.1137957/full
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/journals/behavioral-neuroscience#articles
https://www.frontiersin.org


Kibret et al. 10.3389/fnbeh.2023.1137957

∆9-tetrahydocannabinol (∆9-THC), the psychoactive component
of cannabis, in 1964 (Gaoni and Mechoulam, 1964) laid a
cornerstone of advances in cannabinoid research. However,
the isolation of endogenous cannabinoid compounds, and the
characterization of cannabinoid receptors (CBRs) and their
chromosomal localization (Onaivi et al., 2002; Joshi and Onaivi,
2019) heralded the explosion in cannabinoid research.

Dopamine (DA) is a major CNS neuro-messenger involved
in different behavioral processes and contributes to several
neuropsychiatric disorders (Iversen et al., 2010). The dopaminergic
pathway is composed of a group of cells called dopaminergic
neurons, whose cell bodies are found in the three distinct midbrain
nuclei: retrorubral field (A8), substantia nigra pars compacta (SNc,
A9), and ventral tegmental area (VTA, A10; Hillarp et al., 1966).
Tyrosine hydroxylase (TH) is the enzyme responsible for the
synthesis of DA, which is released from both somatodendritic and
axonal compartments following neuronal depolarization (Carlsson
et al., 1958; Andén, 1967; Besson et al., 1969).

Previous studies provided data and neuroanatomical evidence
for the functional interactions between the ECS and dopaminergic
systems in the activity of the rat basal ganglia motor circuit (Julian
et al., 2003). ECS modulation of DA function in other brain circuits
including the mesocorticolimbic have been demonstrated (Covey
and Yocky, 2021; Oleson et al., 2021), but the mechanism of DA
release by eCBs requires further investigation, as eCB signaling in
the nucleus accumbens (NAcc) facilitates goal seeking behavior.
Interestingly, in a pre-clinical model, eCBs increase DA signaling
in the NAc to facilitate goal-seeking behavior, thus eCB-based
therapies may be investigated for motivational disturbance in
addiction.

However, the multiple direct and indirect mechanisms of ECS
modulation of dopaminergic and other neurotransmitter signaling
is an important focus in understanding habit formation and
reward pathways (Peters et al., 2021), not only in neuropsychiatric
disturbances but in the emerging link between the eCBome and
the microbiota-gut-brain axis (Di Marzo, 2020). In an analysis of
rats perinatally exposed to THC and patients with schizophrenia
spectrum disorders, Di Bartolomeo et al. (2021) provided evidence
of crosstalk between transcriptional regulations of DA-CB1R
interaction. Their preclinical data suggested that cannabidiol
(CBD) treatment might normalize the perinatal THC-induced
psychopathology by modulating the altered dopaminergic activity
(Di Bartolomeo et al., 2021). Other studies provided evidence for
a balance between direct and indirect modulatory mechanisms
of the interaction between eCBs and DA. On the other hand,
pre-clinical models of natural rewarding behavior, such as sexual
behavior, have provided evidence for the role of the ECS
in modulating its motivational component (Canseco-Alba and
Rodríguez-Manzo, 2014; Rodríguez-Manzo and González-Morales,
2020), a psychobiological function in which DA is highly implicated
(Pfaus et al., 1990).

Here, we review and discuss new knowledge highlighting the
crosstalk between the expanding endocannabinoid and mid-brain
dopaminergic systems. We reviewed recent advances in the era of
global medical and recreational cannabis use and the impact and
implication of the interaction between the ECS and dopaminergic
system in CNS disorders associated with dopamine dysregulation.
We highlight mitochondrial activity involving CB1Rs implicated

in parvalbumin interneurons that may serve as biomarkers for
diseases associated with dopaminergic dysregulation.

The endocannabinoid system

The ECS is an intricate and complex ubiquitous signaling
system than was previously thought. It is composed of cannabinoid
receptors, an increasing family of diverse eCB lipid molecules, and
their synthesizing and metabolizing enzymes (Scotter et al., 2010).
More recently, the identification of other eCB long-chain fatty acid
amides and esters with their metabolic enzymes, and putative CBRs
constitute an expanded ECS that is called eCBome (Di Marzo,
2020). An emerging prominent role of the ECS is the regulation of
cytokines and neurotransmitters, mainly DA, release from immune
cells and neurons, respectively, which is crucial in the maintenance
of homeostasis as an autoprotective response.

Endocannabinoids

eCBs are lipid mediators that exert most of their numerous
biological functions by binding and activating CBRs and
non-CBRs. The two most studied eCBs are anandamide
and 2-arachidonoylglycerol (Alhouayek and Muccioli, 2012).
The synthesis of anandamide follows two steps. The first
step is the conversion of arachidonic acid from the sn-
1 position of phosphatidyl choline to form N-arachidonoyl
phosphatidylethanolamine (NAPE) by transacylase. The second
step involves the hydrolysis of NAPE to produce anandamide
by phospholipase (Liu et al., 2008). An increase in intracellular
calcium results in the activation of sn-1-specific diacylglycerol
lipase-α and -β and subsequent conversion of arachidonoyl-
containing diacylglycerol species to 2-arachidonyl glycerol
(Hashimotodani et al., 2005).

Fatty acid amide hydrolase and monoacylglycerol lipase,
respectively, are responsible for the metabolism of anandamide
and 2-arachidonyl glycerol following cellular uptake. It has been
also demonstrated that cyclooxygenase-2, 12- and 15-lipoxygenases
oxidize anandamide and 2-arachidonyl glycerol. Metabolism is
responsible for intracellular and extracellular signaling mechanisms
of anandamide and 2-arachidonyl glycerol (Di Marzo, 2006).

Cannabinoid receptors

CB1Rs and CB2Rs are the most commonly studied CBRs
that are coupled to G-proteins. CB1Rs activation results in the
inhibition of adenylyl cyclase (AC) via Gi and regulation of the
inwardly rectifying potassium currents (Kir) in AtT-20 pituitary
tumor cells in a pertussis toxin-sensitive manner through the
βγ-subunits (Howlett, 2005). Activation of CB2Rs also inhibits
the activity of AC enzymes. Both CB1Rs and CB2Rs receptors
stimulate p42/p44 mitogen-activated protein kinase (MAPK)
activity (Pertwee and Ross, 2002; Howlett, 2005). Activation of
CB1Rs but not CB2Rs results in the release of inositol triphosphate
and intracellular Ca2+ via Gi/o. Studies also showed stimulation of
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AC following low efficacy coupling of CB1Rs to the Gs G-protein
(Glass and Felder, 1997; Turu and Hunyady, 2010).

CB1Rs, which are expressed in the basal ganglia nuclei,
hippocampus, cerebellum, and neocortex, are the most prevalent
GPCRs in the brain. They are found on GABAergic and
glutamatergic neurons pre-synaptically (Scotter et al., 2010). CB2Rs
are called peripheral receptors and they are highly found in immune
cells (Munro et al., 1993; Galiègue et al., 1995; Brown et al., 2002)
and were believed to be absent in the brain (Griffin et al., 1999;
Brown et al., 2002; Poso and Huffman, 2008). Contrary to these
earlier beliefs, a substantial body of research shows that CB2Rs are
expressed in microglia and neurons in the brain stem, striatum,
and hippocampus (Van Sickle et al., 2005; Onaivi et al., 2006;
Brusco et al., 2008). Additionally, CB2Rs are expressed in the
dopamine neurons in the CNS and are connected to drug addiction,
synaptic plasticity, eating disorders, psychosis, depression, and
autism spectrum disorders (Liu et al., 2017).

There are also non-CB1/CB2 receptors that are activated
by eCBs. Due to the chemical similarity between anandamide
and capsaicin, anandamide is also an agonist at the TRPV-1
receptor and this ability to stimulate vanilloid receptors appears
to be governed by the state of activation of protein kinase A
(PKA) and protein kinase C (PKC; Pertwee and Ross, 2002).
Other orphan receptors, including GPR55 and GPR119 have
been identified as putative CBRs. GPR55 is activated by several
cannabinoids, and oleoylethanolamide mainly activates GPR119
(Overton et al., 2006). GPR55 is also a lysophosphatidylinositol
receptor (Oka et al., 2007). The human caudate and putamen
express the GPR55 gene, while the hippocampus, thalamus,
pons, cerebellum, and frontal cortex do not. Specifically, the
pancreas and gastrointestinal tract express GPR119 (Fredriksson
et al., 2003). It serves as a glucose-dependent insulinotropic
receptor and is coupled to Gαs in the pancreatic islets, which
are cells that produce insulin (Chu et al., 2008). Cannabinoids
have also been demonstrated to exert their effect through
the activation of nuclear receptors, particularly peroxisome
proliferator activated receptors (PPARs). Cannabinoids can directly
activate PPARs and the latter are also indirectly modulated by
receptors and enzymes that regulate the activity and metabolism
of endocannabinoids. Conversely, the PPAR pathway is also
modulating the EC system (Iannotti and Vitale, 2021; Lago-
Fernandez et al., 2021). This regulation and modulation by a
common ligand are important for the development of multitarget
therapeutic strategies.

Cannabinoid receptor signaling

CB1Rs and CB2Rs are coupled primarily to the Gi/o subtypes
of G protein and receptor activation usually results in the inhibition
of AC activity through the release of Giα isoforms (Rhee et al.,
1998). Receptor heterodimerization might be responsible for the
activation of both CB1Rs and dopamine DA2 receptors that resulted
in subsequent activation of AC. The non-selective CBR agonist
WIN-55212-2, but not other cannabinoids, has recently been
reported to increase intracellular calcium in cultured hippocampal
neurons and in human embryonic kidney 293 cells via coupling to
Gq/11 proteins, despite the fact that direct evidence for the coupling

of CB1Rs to Gq/11 was lacking for quite some time (Lauckner et al.,
2005).

Different signaling cascades can be activated by CBR agonists
in a distinctive manner. Gi and Go are found to be effectively
coupled and activated by CB1Rs, but Go is the only G-protein
that CB2Rs activate. Furthermore, agonist-selective G protein
signaling is demonstrated by the fact that the effectiveness of a
given agonist appears to rely on whether CB1Rs is coupled to
Gi or Go (Glass and Northup, 1999; Prather et al., 2000). eCBs
regulate synaptic transmission throughout the nervous system. The
mechanism of eCB signaling in the nervous system is distinct from
classical neurotransmitters. It occurs through a retrograde signaling
mechanism, in which depolarization of the postsynaptic neuron
induces the synthesis of eCBs, which are released and transported
backwards to CB1Rs expressed primarily on the presynaptic
terminal (Brady et al., 2012; Winters and Vaughan, 2021). This
retrograde regulatory control of synaptic transmission by eCBs at
CB1Rs can induce shor-term changes in synaptic strength and more
complex long-term plasticity that are still poorly understood as
reviewed by Winters and Vaughan (2021). The coupling of CB1R
to the Gi/o G-protein produces a signaling cascade that controls
calcium and potassium channels and ultimately inhibits further
neurotransmitter release. Accordingly, eCB signaling modifies
the effectiveness of transmission by promoting communication
between postsynaptic and presynaptic neurons. The final result
of eCB signaling depends on the characteristics of the involved
cells because CB1R activation inhibits neurotransmission (Howlett,
2005).

Depolarization of postsynaptic hippocampal pyramidal cells
or cerebellar Purkinje cells by increased intracellular calcium
rapidly triggers the biosynthesis and release of eCBs. These are
then believed to work through presynaptic CB1Rs to prevent
the release of GABA or glutamate at the presynaptic level. It is
interesting that depolarization-induced suppression of inhibition is
anticipated to increase intense synaptic activity, but depolarization-
induced suppression of excitation should provide a negative
feedback mechanism for reducing high synaptic activity (Pertwee
and Ross, 2002; Sidhpura and Parsons, 2011). Further research is
warranted in understanding eCB-mediated plasticity in its multi-
faceted complexity, regional and synapse specific differences of eCB
retrograde signaling, and as bidirectional regulators.

The endocannabinoidome

eCBs have molecular targets other than CBRs and TRPs, and
these proteins are also targeted by other endogenous and exogenous
substances. Moreover, eCBs have more than one set of metabolic
enzymes and pathways, which they share with other mediators that
may or may not be included in the definition of eCBs. As a result,
the eCBome is emerging as an expanded definition, representing the
ensemble of endocannabinoids, endocannabinoid-like mediators,
and their several receptors and metabolic enzymes (Veilleux et al.,
2019). The eCBome participates in multiple metabolic functions in
health and disease, and aims to illustrate the interconnectedness
of all systems in the body and how the ECS acts to maintain
homeostasis in the body. There is also increasing knowledge of the
functional roles of the gut-microbiome immune-brain axis with
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a link with the eCBome (Di Marzo and Silvestri, 2019). Insights
from understanding the eCBome per se and its interaction with
the gut-immune-brain axis could be used to unlock many medical
mysteries that have eluded us for quite some time, including the
neuropathogenesis of metabolic and neuropsychiatric disorders
associated with dopaminergic dysfunction.

The dopaminergic system

Dopamine is a monoamine catecholamine neurotransmitter
and hormone involved in motor control, motivation, learning, and
memory, and plays a major role in different neurodegenerative
and neuropsychiatric disorders like Parkinson’s disease (PD),
schizophrenia, and drug addiction (Iversen et al., 2010).

Dopamine biosynthesis

DA is synthesized from tyrosine by the rate limiting enzyme
TH, to produce L-DOPA, which is quickly decarboxylated by
L-aromatic acid decarboxylase to DA (Andén, 1967; Scherman
et al., 1988). Release of DA from vesicles happens from both
somatodendritic and axonal terminal locations in a calcium-
dependent manner (Besson et al., 1969). After release, DA acts
through five subtypes of GPCRs (Lachowicz and Sibley, 1997).
Finally, the Na+/Cl- dependent plasma membrane dopamine
transporter (DAT) transports DA in the extracellular space back
into dopaminergic terminals, which can be stored in the vesicles
or metabolized, or diffuses away from the synapse (Sotnikova et al.,
2005).

Dopamine receptors

DA subserves its function by activating five subtypes of
receptors (D1-D5), which are abundant in the CNS. DA receptors
are classified into two general classes: those that predominantly
couple to Gαs/olf (“D1-like”, DA1 and DA5 receptors), and
to Gαi/o (“D2-like”, DA2-DA4 receptors; Lachowicz and Sibley,
1997). Ligand binding studies in recombinant systems indicated
affinity differences between the two classes of receptors for DA.
Accordingly, the affinity of D2-like is higher by 10–100-fold than
that of D1-like, suggesting that extracellular DA concentrations
determine whether D1- or D2-mediated signaling predominates
(Martel and Gatti McArthur, 2020). Looking at the abundance of
receptors in the CNS, whilst D1 is the most abundant, D4 is the
least abundant subtype of the receptor. D2 comes next to D1 and
this is followed by D3 and D4. D1 receptors help regulate the
development of neurons when bound by DA, explaining, at least
in part, their abundance in the CNS. D1 and D5 receptors appear to
have high density in brain structures involved in regulating reward,
motor activity, learning, and memory. Apart from stimulating the
cAMP pathway, D1 and D5 also stimulate the phosphoinositide
pathway culminating in induction of intracellular calcium release
and activation of PKC. Calcium modulates neurotransmitter
release and PKC/PKA negatively modulates the renal Na+/K+

ATPase, thereby producing increased electrolyte excretion and
renal vasodilation. Other dopamine signaling pathways, including
modulation of the Akt-GSK3 and activation of the PAR4 pathways
have also been reported (Hasbi et al., 2011). Moreover, heteromers
of D1/D2 have been identified and are known to be coupled
to the phosphoinositide pathway. D2, D3, and D4 receptors are
expressed mainly in the striatum as well as the external globus
pallidus, core of the nucleus accumbens, hippocampus, amygdala,
and cerebral cortex. D2 is mainly involved in locomotion, attention,
sleep, and learning and memory. D3 and D4 by and large,
subserve similar functions, including cognition, impulse control
and attention, and sleep. These receptors also affect the postsynaptic
receptor-medicated extrapyramidal activity. D2-D4 receptors not
only inhibit AC but also activate K+ channels via the βγ-subunits.

Dopaminergic neurons

The A8–A17 neurons represent the main subgroups of
dopaminergic neurons. These major groups are further divided
into four main groups having a distinct set of physiological and
psychological effects (Andrade, 2010). Groups A8–A10 make up
the mesencephalic or midbrain dopaminergic neurons, groups
A11–A15 make up the diencephalic dopaminergic neurons, and
groups A16 and A17 make up the olfactory bulb and retinal
dopaminergic neurons, respectively (Melis and Argiolas, 1995).
The nigrostriatal, mesolimbic, and mesocortical pathways are three
more sub-divisions of the mesencephalic or midbrain dopaminergic
system, all of which originate from the A8–A10 cell groups.
These dopaminergic neurons originate in a number of nearby
mid-brain nuclei, such as -ld (nucleus A8 cells), the substantia
nigra (nucleus A9 cells), and the ventral tegmental area (nucleus
A10 cells).

The dorsal striatum’s nigrostriatal dopaminergic pathway,
which includes the caudate, putamen, and globus pallidus as well
as neurons whose cell bodies primarily come from the SNc’s
A9 group and, to a lesser extent, the VTA’s A10 neurons, are crucial
for controlling and coordinating locomotor activity (Ungerstedt,
1976). With fewer neurons coming from the A8 and A9 groups
than the nigrostriatal pathway, the majority of the neurons that
make up the mesolimbic dopaminergic pathway project to the
NAcc, amygdala, and olfactory tubercle (Figure 1). The mesolimbic
dopaminergic pathway, commonly known as the “reward pathway”
in the brain, has been linked to reward and pleasure in addition to
its function in the control of affect, mood, and locomotor activity.
The orbitofrontal, medial, dorsolateral, and cingulate regions of
the prefrontal cortex (PFC) are among the regions that receive
projections from the mesocortical dopaminergic system (Abi-
dargham and Moore, 2003). According to several studies, social
behavior, working memory, attention, and executive function are all
influenced by the mesocortical dopaminergic neurons (Bubser and
Schmidt, 1990; Sawaguchi and Goldman-Rakic, 1994; Floresco and
Magyar, 2006). Overall, these DA neurons also spread within GABA
neurons, thus establishing local connections with adjacent neurons,
including the glutamatergic neurons (Zhang et al., 2014). The dual
transmission is associated with the regulation of both GABA and
glutamate neurotransmitters induced by eCB retrograde signaling
(Laksmidewi and Soejitno, 2021).
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FIGURE 1

Midbrain dopaminergic neurons. The schematic illustrates a
midbrain dopaminergic neurons projecting to the NAc, DS, and
PFC and receiving synaptic inputs from a GLU DRN neuron and a
GABAergic NAc neuron. GLU, glutamate; DA, dopamine; GABA, γ-
aminobutyric acid; PFC, prefrontal cortex; DS, dorsal striatum; NAc,
nucleus accumbens; SNpc, substantia nigra pars compacta; VTA,
ventral tegmental area; DRN, dorsal raphe nucleus.

The dopaminergic mesolimbic pathway is involved in the
regulation of natural rewarding behavior (Kelley and Berridge,

2002), such as sexual behavior. An increase in DA concentration
in the NAcc has been detected as soon as the male rat identifies the
presence of a receptive female and during copulation (Pfaus et al.,
1990; Robinson et al., 2001). In the DA neurons of the VTA, sex-
and mating-related signals elevate c-Fos expression, a protein that
can be used as a marker for neuronal activity (Balfour et al., 2004).
The VTA’s neuronal activity increases during sexual engagement
(Hernandez-Gonzalez et al., 1997). Every time they get access to
a sexually receptive female, the vast majority of young, healthy
male rats will act sexually in her presence. Moreover, the rewarding
and reinforcing character of male rat sexual behavior is confirmed
by the following observations: (i) male rats develop a conditioned
place preference (CPP) for copulation (Tenk et al., 2009); (ii) males
will cross an electric grid to have access to a receptive female
(Bialy et al., 2019); and (iii) male rats will spend more time in the
receptive female incentive area in the sexual incentive motivation
test (Figure 2A; Bialy et al., 2019; Canseco-Alba and Rodríguez-
Manzo, 2019).

Interestingly, in the course of an ad libitum copulation session
with a single female, a male rat will repeatedly copulate with
her until reaching satiety (seven ejaculations on average). The
absence of sexual activity, when exposed to a new sexually
receptive female 24 h after copulation to satiety is an expression
of sexual satiety, a long-lasting sexual inhibition that can persist
up to 72 h (Rodríguez-Manzo and Fernández-Guasti, 1994). It

FIGURE 2

Sexual incentive motivation test (A) and sexual satiety paradigm (B). Sexual incentive motivation is measured as the time spent by the male rat in the
incentive zones (receptive female or male) of the test field. Sexually experienced males will spend more time in the incentive zone of the sexually
receptive female (dashed bars) in comparison with the male (empty bars). Sexually satiated males will spend the same time in both incentive zones.
In the sexual satiety paradigm, sexually experienced males in the course of an ad libitum copulation session will ejaculate repeatedly (7 in ≈4 h) until
reaching sexual satiety. Twenty-four hours after copulation to satiety, most males (≈70%) will not respond with sexual behavior when a receptive
female is accessible. Pharmacological treatments can modify the features of the sexual satiety paradigm, the most important being the increase in the
percentage of sexually satiated male rats exhibiting sexual behavior expression with a receptive female. If a drug treatment is administered prior to the
copulation to satiety session, the result (percentage of animals exhibiting sexual behavior) will reflect the prevention of the establishment of sexual
inhibition. If the treatment is administered 24 h after the sexual satiety session, the result will reflect a reversal. Figures modified from Canseco-Alba
and Rodríguez-Manzo (2019).
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has been shown that during sustained copulation, DA levels in
the NAcc remain elevated. Once the sexual activity ceases, DA
gradually returns to basal levels (Fiorino et al., 1997). Also, once
satiated, the male rat will spend less time in the female-incentive
area of the sexual incentive motivation test immediately after
its establishment (Ågmo et al., 2004) and 24 h later (Canseco-
Alba and Rodríguez-Manzo, 2019) reflecting a reduction in sexual
motivation (Figure 2B).

Interaction between the
endocannabinoid and the
dopaminergic systems

Here, we provide an overview of eCB-DA interactions that
are of increasing importance in motor control, reward processing,
and psychosis. The ECS’s potential to interact with particular
neurotransmitters like DA in various brain regions is probably
what led to its involvement in brain functions (Figure 3), and
other systems beyond DA and the classical neurotransmitters.
Dopaminergic neurons that project to various forebrain regions,
including the caudate-putamen and the NAcc/PFC complex,
and whose cell bodies are found in the reticular formation of
the midbrain (e.g., SNc and VTA) interact with the ECS. In
these structures, both neuronal systems would exert a regulatory
influence on numerous effector neurons, influencing activities like
movement control and various cognitive functions, which are
among the most important pharmacological effects of cannabis
(Fernández-Ruiz and González, 2005; Gerdeman and Fernández-
Ruiz, 2008).

Modulation of motor behavior

The basal ganglia contain most of the classical
neurotransmitters, and many additional neuropeptides, which
may participate in the modulation of motor activity. Some of the
more important systems are GABA, glutamate, dopamine, and
acetylcholine (Brady et al., 2012). The ECS components are highly
expressed in the basal ganglia. The basal ganglia contain high levels
of anandamide or 2-arachidonoylglycerol, as well as CB1R, the
CBR type predominantly involved in the control of movement in
healthy circumstances. The considerable modulatory role that the
cannabinoid signaling system plays in the control of movement is
logically explained by the presence of certain components of this
signaling system in significant clusters of neurons and synapses
within the basal ganglia circuits (Fernández-Ruiz, 2009).

The ECS has powerful actions on motor activity in animals
(Geresu et al., 2016, 2019) and this effect is dose-dependent (Onaivi
et al., 1990). Low doses of cannabinoids stimulated motor activity
as evidenced by hyperlocomotion in intact animals and ipsilateral
rotation in rats with unilateral 6-hydroxydopamine (6-OHDA)
lesion of the substantia nigra. Large doses of cannabinoids reduced
motor activity in a variety of behavioral tests and even produced
strong catalepsy (Chaperon and Thiébot, 1999; Fernández-Ruiz
et al., 2002). Similarly, motor activity was increased by low dosages
of anandamide while it was decreased by moderate or high levels in

rodents. Studies also showed that the CB1R antagonist rimonabant
blocked the motor effects of CB receptor agonists, adding further
evidence for the role of the ECS in controlling motor activity
(Sulcova et al., 1998; Chaperon and Thiébot, 1999).

The ability of the ECS to modify the activity of the
neurotransmitters that play a role in the regulation of basal ganglia
function, particularly glutamate, GABA, and DA, is related to
the motor effects that result from the activation or inhibition
of cannabinoid signaling. The capability of eCBs to directly
regulate the activity of these three important neurotransmitters
is made possible by the identification of CB1Rs in a number of
GABAergic and glutamatergic synapses within the basal ganglia
and the presence of TRPV1 receptors in nigrostriatal dopaminergic
neurons (Fernández-Ruiz, 2009). The effects of cannabinoids on
the transmission of DA are often indirect and mediated by either
postsynaptic or presynaptic processes. Such an indirect effect
is made possible by the high density of CB1Rs in GABAergic,
glutamatergic, or opioidergic projections found in close proximity
to dopaminergic neurons. Studies also demonstrated that midbrain
dopaminergic neurons, which lack CB1Rs, may yet synthesize and
release eCB ligands from their somas and dendrites, enhancing
the retrograde signaling function of these molecules via CB1Rs
receptors in excitatory and inhibitory synapses (Fernández-Ruiz
et al., 2010).

Studies have shown additional mechanisms for those
eicosanoid-derived cannabinoids like anandamide, AM404, or
N-arachidonoyl-dopamine that have some affinity for the TRPV-1
receptor, despite the fact that a majority of the cannabinoid effects
on dopamine transmission appear to be GABA- and/or glutamate-
mediated. These receptors, which are commonly found on sensory
neurons and operate as molecular integrators of nociceptive
stimuli, have also been discovered in dopaminergic neurons in
the basal ganglia, allowing specific cannabinoids to directly affect
dopamine function (Starowicz et al., 2007). Data suggest that the
endovanilloid and DA signaling systems work in concert to govern
a range of neurobiological functions, including movement control.
Specific cannabinoids can directly control dopamine transmission
by activation of CB2Rs and TRPV-1 receptors found in nigrostriatal
dopaminergic neurons. Additionally, CB1Rs and dopaminergic
receptors can form heteromers, which offers an additional
mechanism for direct interactions between the two systems, in this
case at the postsynaptic level. Cannabinoids’ interactions with the
dopaminergic transmission in the basal ganglia are anticipated to
have a significant impact on dopamine-related functions in these
brain regions (García et al., 2016).

Modulation of motivational behavior

Mesocorticolimbic dopaminergic neurons control cognitive
functions, motivate behavior, the central stress response, and
the pleasure produced by reinforcers. Most of habit-forming
drugs including cannabis derivatives produce their effect by
altering the mesocorticolimbic DA transmission (Gardner, 2005;
Fattore et al., 2008). Cannabinoid agonists produce euphoria,
stimulate brain reward, decrease anxiety, motivation, and arousal
while increasing emotionality (Lupica et al., 2004). Researchers
agreed that glutamatergic and/or GABAergic innervations to
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FIGURE 3

Interaction of mid-brain dopaminergic neurons with GABA and Glutamate terminals. Dopaminergic projections from the mid-brain VTA and the
SN target postsynaptic glutamatergic and GABAergic axon terminals. 2-AG, 2 arachidonoyl glycerol; Glu, glutamate; DA, dopamine; GABA, γ-
aminobutyric acid; CB1R, cannabinoid type 1 receptor; CB2R, cannabinoid type 2 receptor; D1R, dopamine type 1 like receptors; D2R, dopamine
type 2 like receptors. Black arrows are stimulatory, whereas red ones are inhibitory.

the nucleus accumbens/PFC and VTA might serve as potential
primary targets for the cannabinoid action in these processes
and the ensuing DA changes (Pistis et al., 2001; Cheer et al.,
2003).

Many brain areas that make up the brain reward circuitry
are rich in components of the cannabinoid signaling system,
especially the CB1Rs (Herkenham et al., 1991; Tsou et al.,
1998). Cannabinoid agonists have been reported to increase
mesolimbic dopaminergic activity as evidenced by elevated DA
receptor density, DA release, and DA metabolism in various
limbic structures (Fernández-Ruiz et al., 2010). They also enhanced
the firing rate of mesolimbic dopaminergic neurons in the
A10 region (González et al., 2005; D’Souza, 2007). ∆9-THC has
been associated with increases in dopamine level (Braida et al.,
2001) and neurotransmission (Oleson and Cheer, 2012) in the
nucleus accumbens mesolimbic dopamine system. Pre-clinical
studies also showed that VTA dopamine firing is increased by
CB1 agonists (Melis et al., 2000). The DAT knockout mouse model
of schizophrenia, which is characterized by high dopamine level
in the striatum and nucleus accumbens, has been reported to
have lower levels of anandamide in the striatum (Tzavara et al.,
2006).

Role in neurometabolism

Mitochondria are a key organelle driving bioenergetic
cellular processes for neuronal function and neurotransmission.
Mitochondrial activity is involved in central control of energy
balance and functional CB1Rs are located in brain mitochondria
(mtCBRS), forming a basis for ECS signaling in mitochondrial
neural and glial bioenergetic function (Hebert-Chatelain et al.,
2014). MtCBR processes in neuronal network circuits and
neurotransmission involve parvalbumin interneurons (Hebert-
Chatelain et al., 2014). While studies have shown that brain regions
rich with CBRs and mtCB1Rs regulate excitatory/inhibitory activity
and balance (Hebert-Chatelain et al., 2014), the role of mtCBRs
and (endo)cannabinoids in neuronal and glia cells enriched
with mitochondrial function requires further characterization.
For example, the effects of anandamide on reducing calcium
sensitivity and perturbing membrane properties in mitochondria
are independent of its target receptors and dependent on the
mitochondria (Catanzaro et al., 2009).

D2-receptor (D2R)-mediated control of fast-firing
parvalbumin-containing interneurons exerts a major influence
on the prelimbic PFC (Fitzgerald et al., 2012). In the adult mouse
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PFC, parvalbumin interneurons fire more frequently when D2R
is activated (Tseng and O’Donnell, 2007). These parvalbumin-
containing interneurons of the PFC, whose dysfunction is linked to
neuropsychiatric disorders, specifically schizophrenia, have a high
D2R expression (Fung et al., 2010). Numerous neuropsychiatric
conditions, including depression and schizophrenia, have been
linked to dopamine homeostasis disruption during brain
development. Studies found that D2R knockout mice had an
ongoing increase of parvalbumin-positive neurons in the anterior
cingulate cortex (Graham et al., 2015).

Mitochondrial bioenergetic dysfunction in
inhibitory/excitatory input to parvalbumin interneurons can
alter the excitatory/inhibitory balance in cortical microcircuits,
leading to behavioral impairment in neuropsychiatric and
neurological disorders (Inan et al., 2016; Maya-López et al., 2021)
associated with dopamine dysregulation. Likewise, the change in
D2R dendritic distribution and the decrease in mitochondrial mass
of parvalbumin-containing interneurons in the medial prefrontal
cortex of CB1R knockout animals (Fitzgerald et al., 2012) reinforces
this notion. Specifically, in the CB1R knockout mice, there was a
selective loss of expression and/or trafficking of dendritic D2R in
the parvalbumin interneurons of mouse prelimbic PFC. Therefore,
a disruption of dopamine input along with the inhibitory/excitatory
circuits resulting from the deletion of CB1R could produce a deficit
in parvalbumin interneurons of the prelimbic PFC (Fitzgerald
et al., 2012). Perhaps it can be speculated that brain mitochondria,
parvalbumin interneurons, endocannabinoids, and dopamine may
be used as biomarkers in psychiatric disorders associated with
dopaminergic dysregulation (Khadimallah et al., 2022).

Role of the ECS in dopamine
dysregulation

The interaction of the ECS with dopaminergic system in
the nigrostriatal or mesocorticolimbic structures of the brain
has important implications in diseases associated with dopamine
dysregulation in these brain structures. in situations when DA
transmission is dysregulated, pharmacological modulation of these
systems may help to normalize DA transmission and, as a result,
relieve DA-related diseases (Figure 4). It is well understood that the
ECS has an influence on classical neurotransmitters by retrograde
signaling mechanisms, however, eCB-modulation of DA release
and the impact on neural and behavioral processes require further
studies.

Role in parkinsonism

Dopamine receptors are abundant in the nigrostriatal
dopaminergic pathway. There are direct and indirect pathways in
the brain that start from the motor cortex and return to the motor
cortex via the thalamus. PD occurs due to the disintegration of
the nigrostriatal system. In PD neurons of the substantia nigra
progressively degenerate. As a result, the amount of DA available
for neurotransmission in the corpus striatum is lowered (Latif et al.,
2021). Aberrant ECS signaling in the basal ganglia is suggested

to be a culprit for PD and ligand-dependent modulation of the
CBR could be one of the treatment approaches (Fernández-Ruiz,
2009; Wang et al., 2022). Indeed, the CB1R ligands have been
proposed as a therapy for PD for symptomatic management
(Geresu et al., 2016). Researchers also suggested the importance
of CB1R agonists for the reduction of tremors caused by excessive
stimulation of subthalamic neurons in PD patients (Sañudo-Peña
et al., 1999) and to alleviate dyskinesia related to long-term
levodopa treatment (Ferrer et al., 2003). In addition to the synthetic
compounds, plant-derived cannabinoids (phytocannabinoids)
having antioxidant properties showed promising effects to prevent
dopaminergic neurons from degenerating in animal models of PD
(García-Arencibia et al., 2007). CB2Rs also play a significant role
in PD. Indeed, recent studies using mice with cell type specific
deletion of CB2Rs on dopaminergic neurons revealed the role of
CB2Rs in controlling motor effects (Liu et al., 2017; Geresu et al.,
2019). To this effect, we and others reported promising effect
of cannabinoid ligands against disease progression in wild type
(Geresu et al., 2019) as well as MPTP-lesioned animals (Price et al.,
2009; Geresu et al., 2019). These data collectively indicate the role
of CBRs and their ligands in neuroprotection and preventing the
progression of symptoms in patients with PD.

Results from clinical studies on the use of cannabinoids for
the treatment of PD produced conflicting results. Cannabinoids
may help with the motor symptoms of PD, according to some
observational studies. In a study of 339 people with PD in the
Czech Republic, 46% of participants said they had benefited from
cannabis use; 31% said their rest tremor had improved, and 45%
said their bradykinesia had improved (Venderová et al., 2004).
Studies evaluating the effect of CBD in PD showed a reduction in
total scores in the PD questionnaire and a significant lowering of
non-motor symptoms (Zuardi et al., 2009). However, in another
study, CBD administration produced no improvement in measures
of motor and general symptoms in 21 PD patients (Chagas et al.,
2014). An open-label study on 22 patients assessing motor exam
30 min after smoking cannabis also reported improvements in
tremor, rigidity, bradykinesia, pain, and sleep (Lotan et al., 2014). In
contrast, a few controlled clinical studies of cannabinoids reported
no benefit for motor symptoms and mixed results regarding
levodopa induced dyskinesia (Carroll et al., 2004; Mesnage et al.,
2004). Despite contradicting results, the above data show that there
is involvement of the ECS in PD. However, further research with
randomized clinical trials should be done as evidence for targeting
the ECS in the treatment of PD.

Role in schizophrenia

Schizophrenia is a severe and persistent mental disorder
characterized by cognitive, emotional, or behavioral symptoms.
Despite the fact that the cause and pathophysiology of
schizophrenia are still unknown, a substantial body of research
suggests that changes in a number of neurotransmitter systems,
including DA, are responsible for the pathophysiological
processes that result in the manifestation of these
symptoms. The DA system has drawn the greatest attention
of these. The currently predominant view is that DA
systems in schizophrenia might be characterized by an
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FIGURE 4

Role of the microbiota-gut-brain axis in CNS disorders. There is a bidirectional communication between the gut microbiota and the brain through the
vagus nerve. Gut dysbiosis may play a crucial role in neural development, neurotransmission, neuroinflammation, and changes in neurotransmitter
function, which in turn contribute to the pathogenesis of neuropsychiatric, and neurodegenerative diseases. Cannabinoid ligands targeting central
cannabinoid receptors might be used in the treatment of Parkinson’s disease, drug addiction, or schizophrenia. CBRs, cannabinoid receptors.

imbalance between subcortical and cortical DA systems
(Guillin et al., 2007).

Investigating the interaction between the ECS and the
dopaminergic system is also important in schizophrenia.
According to studies, CB1Rs are found in substantial amounts
in the dopaminergic terminals that are densely innervated in
the brain areas involved in the pathophysiology of schizophrenia
(Herkenham et al., 1991; Tsou et al., 1998). The stimulator
effect of cannabinoids on DA transmission in the NAc
(Müiller-Vahl and Emrich, 2008) and their inhibitory role on
GABA and glutamate transmission may be responsible for
causing or exacerbating psychoses (D’Souza, 2007). Genetic
investigations have also suggested a connection between cannabis
and the etiology of schizophrenia. These research linked a
polymorphism in the CB1R gene with a higher risk of developing
schizophrenia (Ujike et al., 2002; Müiller-Vahl and Emrich,
2008). In addition, according to the cannabinoid hypothesis
of schizophrenia, higher CB1R density or endocannabinoid
levels are observed in schizophrenic patients in cortical and
subcortical (limbic) structures (Müiller-Vahl and Emrich,
2008).

Despite the evidence linking cannabinoids to schizophrenia,
studies have also suggested that some cannabinoid-related
substances may act as a cutting-edge treatment for schizophrenia
(Voruganti et al., 2001; Bossong et al., 2009). There are several
lines of evidence showing the antipsychotic effects of CBD and
rimonabant. Animal studies demonstrated that the effect of
the CB1R antagonist, rimonabant is related to alterations in
DA (Tzavara et al., 2003) and glutamate (Tzavara et al., 2009)
transmissions in cortical structures. Rimonabant did not vary from
placebo in reducing both positive and negative symptoms in a
placebo-controlled clinical trial conducted with patients suffering
from schizophrenia and schizoaffective disorders, hence it did
not appear to have any good benefits in clinical studies (Meltzer
et al., 2004). With increasing interest in the use of cannabinoids for
the treatment of psychosis, clinical studies revealed the potential
of CBD in the treatment of patients with psychosis. The effects
do not appear to be mediated by the activation of CB2Rs, as this
phytocannabinoid has poor affinity for this receptor subtype. Thus,
it is plausible to assume that it could be through modulation of the
TRPV receptors or interference with endocannabinoid inactivation
(Zuardi et al., 2006). In a double-blind RCT in 42 patients, oral
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CBD was found to be safe and led to a significant non-differential
clinical improvement. Moreover, CBD also significantly increased
anandamide levels, which was associated with clinical improvement
(Leweke et al., 2012). Another double-blind parallel-group trial
involving 88 patients with schizophrenia who were given oral CBD
revealed lower levels of positive psychotic symptoms on the Positive
and Negative Syndrome Scale (McGuire et al., 2018). In contrast, a
recent double-blind randomized clinical trial (Boggs et al., 2018)
found no benefit for 600 mg/day of CBD in comparison to a
placebo. Although the involvement of ECS in schizophrenia has
been described, results from preclinical studies using cannabinoid
ligands are not entirely consistent. Only CBD and rimonabant
were tested in clinical studies and hence additional controlled trials
are required to confirm the therapeutic value of cannabinoids in
schizophrenia.

Role in reward and addiction

Preclinical researchers generally agree that dopamine has a
significant role in the development of addiction. However, the
specific role of dopamine in addictive behaviors is far from
apparent, and only a small number of clinical research on the
subject have been carried out in humans. There is a lot of
convincing evidence that mesocorticolimbic dopamine has a role
in reward and addiction in humans (Franken et al., 2005). The
idea that pharmacological control of the ECS may be useful for
treating addictive situations is supported by the ability of this
system to affect DA transmission in corticolimbic regions. Previous
studies demonstrated the potential of CB1Rs in this regard, the
most-studied compound being rimonabant (Beardsley et al., 2009).
Rimonabant impaired the perception of the reinforcing potential
of different habit-forming drugs (Le Foll and Goldberg, 2005),
indicating that motivational processes could be under a permissive
control of CB1 receptor-related mechanisms. Addiction-inducing
substances like opioids, cannabinoids, psychostimulants, alcohol,
and nicotine boost DA release in several brain regions when taken
acutely (Di Chiara et al., 2004). The ECS plays a crucial role in
drug addiction. The mesocorticolimbic pathway, as well as areas of
the brain related to decision-making, withdrawal symptoms, and
relapse, express CB1Rs and CB2Rs (Maldonado et al., 2006; Liu
et al., 2017; Silveira et al., 2017). Animal reward models highlight
the role of CB1R in drug addiction, with CB1R agonists enhancing
conditioned place preference (CPP). CB1R agonist-treated mice
showed a greater preference for cues associated with ethanol
and nicotine (Colombo et al., 2002; Valjent et al., 2002). Studies
also showed that genetic and pharmacologic blockade of CB1R
abolished drug-induced DA increases in rodents treated with ∆9-
THC, nicotine, heroin, morphine, or ethanol (Cohen et al., 2002;
Hungud et al., 2003; Soria et al., 2005).

Evidence also supports the involvement of CB2R in different
aspects related to drug addiction. Psychostimulants are reported
to produce differential effect in DAT-Cnr2 conditional knockout
(cKO) mice with selective deletion of CB2R in dopamine neurons
and the effect is modulated by cannabinoid ligands (Canseco-Alba
et al., 2019). Whilst cocaine, amphetamine, and methamphetamine
produced robust CPP in both DAT-Cnr2 cKO and WT mice;
nicotine, at the dose used, induced CPP in WT but not in DAT-

Cn2 cKO mice. The enhanced hyperactivity induced by cocaine and
nicotine was attenuated following pretreatment with the selective
CB2R agonist JWH133 in the WT mice (Canseco-Alba et al., 2019).
CB2Rs have also been shown to be involved in different aspects
related to alcohol addiction. Mice that consume more alcohol had
a reduced, whereas those with little preference showed no changes
of Cb2 gene expression in the ventral midbrain. Moreover, whilst
the CB2 agonist JWH015 increased alcohol preference in mice
subjected to chronic mild stress, the antagonist AM630 prevented
the development of alcohol preference (Ishiguro et al., 2007).

Given how important CB1R is to the addictive qualities of the
prototypical drugs of abuse, CB1R antagonists may be useful in
the treatment of drug addiction. Rimonabant, a CB1R antagonist,
has been shown to be successful in treating alcohol dependency in
preliminary clinical studies and in clinical trials for the cessation
of smoking as well (Manzanares et al., 2018). There are limited
reports on the use of cannabinoid ligands for the treatment of
drug addiction and dependency in humans. An experimental trial
on a 19-year-old female with cannabis dependence showed that
administration of CBD for 11 days (300 mg on day 1,600 mg on
days 2–10, and 300 mg on day 11) rapidly decreased withdrawal
symptoms (Crippa et al., 2013). In another study, Morgan et al.
(2010) evaluated the impact of CBD on the reinforcing effects of
∆9-THC on addictive behavior and the findings suggested that
CBD has a potential for the treatment of cannabis dependence. The
acute modulation of the incentive salience of drug cues by CBD
might possibly be generalized to the treatment of other addictive
disorders. Currently, there is no effective treatment for drug abuse.
Animal and a few clinical studies using CBD showed a promising
effect of cannabinoids in the treatment of drug abuse, however,
further research using different types of cannabinoids with new
research strategies should be done to target the ECS for drug
addiction.

The ECS has been implicated in the modulation of natural
rewarding behaviors. For example, it has been demonstrated that
eCBs have a role in the control of appetitive motivation and other
aspects of food reward (Kirkham et al., 2002). Another highly
rewarding behavior is sex (Bialy et al., 2019). The transition from
sustained ad libitum copulation to sexual satiety, a behavioral
inhibition, is linked to a fluctuation in extracellular DA level in the
NAcc (Pfaus et al., 1990; Robinson et al., 2001; Canseco-Alba and
Rodríguez-Manzo, 2019; Canseco-Alba et al., 2022). The ECS has
been demonstrated to take part in the establishment of sexual satiety
phenomenon, since a cannabinoid receptor antagonist is capable
of preventing this inhibitory state when administered systemically
(Canseco-Alba and Rodríguez-Manzo, 2014) or directly into the
VTA (Rodríguez-Manzo and González-Morales, 2020) prior to
the session of copulation until satiety. Thus, the specific blockade
of CB1R in the VTA during copulation to satiety prevents the
establishment of this sexual inhibition (Rodríguez-Manzo and
González-Morales, 2020), suggesting that these eCB-mediated
effects occur in this brain region by exerting a modulatory role
on DA-induced natural rewarding behavior. In agreement with the
well-documented evidence that eCBs are released “on demand”
in response to repeated synaptic stimulation (de Fonseca et al.,
2005), it is remarkable that a behavior taken to the extreme will
set up mechanisms in order to keep homeostasis. Accordingly,
the ECS components are expressed in brain regions involved
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in the regulation of copulation, such as the CB1R expressed in
GABAergic and glutamatergic terminals within the VTA and NAcc
(Lupica et al., 2004; Gardner, 2005). Supporting this notion, the
administration of the eCB anandamide directly into the VTA
reverses the sexual inhibition 24 h after copulation to satiety, an
effect mediated by CB1 receptors (Canseco-Alba and Rodríguez-
Manzo, 2016).

Conclusion

ECS is a previously unknown system that has emerged as
an indispensable component for regulating homeostasis and is
involved in most cellular and biological processes. It is now
known that the ECS is a vast signaling network that controls
synaptic transmission throughout the brain and plays a crucial
regulatory role in DA circuits (Fernández-Ruiz et al., 2010; Covey
et al., 2017). Some DA-related neurobehavioral effects in the CNS
are now understood to arise from interactions between the ECS
and DA systems, including motor control or disorders (García
et al., 2016; Geresu et al., 2016, 2019) and reward seeking or
addiction (Gardner, 2005; Parsons and Hurd, 2015; Sagheddu
et al., 2015; Zlebnik and Cheer, 2016). In the meso-cortico-
striatal complex, DA-dependent and -independent mechanisms are
associated with cannabinoid reinforcing effects, and drug-seeking
responses associated with eCB/glutamate interaction, respectively
(Spanagel, 2020). CBD is shown to operate through multiple
receptor mechanisms to modulate brain DA, thereby reducing
drug-intake and drug-seeking behavior (Galaj and Xi, 2021).
Furthermore, in preclinical models, increasing eCB levels restores
aberrant DA neuron activity in the ventral pallidum (Aguilar et al.,
2015), and CB2Rs modulate midbrain DA neuronal activity and DA
related behaviors (Zhang et al., 2014). Further support is provided
by data implicating eCB modulation of DA release during reward
seeking, interval timing, and active avoidance (Everett et al., 2021).

Drug addiction, PD, and other debilitating disorders caused
by malfunctions of DA neurons still represent unmet clinical
needs. The endogenous cannabinoid system may serve as a target
for the development of new strategies for the treatment of CNS
diseases associated with DA dysregulation. Cannabinoid agonist
and antagonists might help in reducing the unwanted effects of
conventional drugs used for the treatment of these disorders.
However, care should be taken to minimize the psychoactive

effects of cannabinoid agonists by designing selective drugs
which may interfere with new molecular mechanisms involved
in cannabinoid transmission. Currently, the evidence is nascent
and too weak to recommend cannabinoid-based interventions
for CNS disorders related to DA dysregulation. Research is only
just beginning to determine the effect of cannabinoids for this
application, and promising preclinical studies should be validated
and complemented with clinical studies to claim the efficacy and
safety of cannabinoids for the treatment of CNS diseases.
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