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Objective: It is indisputable that the functional connectivity of the brain network

in juvenile myoclonic epilepsy (JME) patients is abnormal. As a mathematical

extension of the traditional network model, the multilayer network can fully

capture the fluctuations of brain imaging data with time, and capture subtle

abnormal dynamic changes. This study assumed that the dynamic structure of

JME patients is abnormal and used the multilayer network framework to analyze

the change brain community structure in JME patients from the perspective of

dynamic analysis.

Methods: First, functional magnetic resonance imaging (fMRI) data were

obtained from 35 JME patients and 34 healthy control subjects. In addition,

the communities of the two groups were explored with the help of a

multilayer network model and a multilayer community detection algorithm.

Finally, differences were described by metrics that are specific to the multilayer

network.

Results: Compared with healthy controls, JME patients had a significantly lower

modularity degree of the brain network. Furthermore, from the level of the

functional network, the integration of the default mode network (DMN) and

visual network (VN) in JME patients showed a significantly higher trend, and the

flexibility of the attention network (AN) also increased significantly. At the node

level, the integration of seven nodes of the DMN was significantly increased,

the integration of five nodes of the VN was significantly increased, and the

flexibility of three nodes of the AN was significantly increased. Moreover, through

division of the core-peripheral system, we found that the left insula and left

cuneus were core regions specific to the JME group, while most of the peripheral

systems specific to the JME group were distributed in the prefrontal cortex

and hippocampus. Finally, we found that the flexibility of the opercular part of

the inferior frontal gyrus was significantly correlated with the severity of JME

symptoms.

Conclusion: Our findings indicate that the dynamic community structure of JME

patients is indeed abnormal. These results provide a new perspective for the study

of dynamic changes in communities in JME patients.
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1. Introduction

Juvenile myoclonic epilepsy is a common epileptic syndrome
that often occurs before and after puberty. It usually manifests
as multiple repetitive and irregular myoclonic seizures of the
bilateral or unilateral arm, accompanied by arrhythmia, and may
even lead to sudden falls in patients. The main feature of JME
patients is that the cortex is overexcited, which is also confirmed by
neurophysiology and clinical data. It was proposed that extensive
hyperconnectivity in the frontal cortex acts as the excitatory driver
in the propagation of discharge (Lee et al., 2017). In addition, when
the threshold of phosphene produced by stimulation of the visual
cortex decreases, the visual cortex of epileptic patients can be found
to be overexcited by transcranial stimulation (Brigo et al., 2013),
which also explains why up to 90% of JME patients are sensitive to
intermittent light stimulation (Appleton et al., 2000).

A network-based approach has been proposed to determine
the pathophysiological organization of the seizure-prone state
in epilepsy (Spencer, 2002). With the development of fMRI
technology, resting-state fMRI has become an important
technology to study the brain network of epileptic patients.
At present, some resting state network abnormalities have been
found in the brain network of epilepsy patients (Luo et al., 2015;
Zhang et al., 2015). Furthermore, analyzing the effects of epilepsy
discharges on the interaction between resting-state networks
through functional network connectivity can provide a deeper
understanding of epilepsy (Li et al., 2015). It can be seen that
complex networks have become of major interest in epilepsy
research. However, the physiological structure of the human brain
is relatively complex, and it usually changes with time at rest and
participates in different physiological activities. Although recording
techniques such as fMRI can capture brain dynamics over time,
traditional networks cannot model multiple interactions across
time. A more general network framework is required to describe
the evolution and interaction of the network.

As an extended model of traditional networks, multilayer
networks both have the simplicity of traditional networks and
are conducive to the modeling of multimodal data (Vaiana and
Muldoon, 2018). In the field of neuroscience, multilayer network
architecture is widely used in creating a multilayer temporal
network by collecting time series data from each brain region.
At present, studying the dynamic community structure of brain
networks with the help of multilayer networks can not only reveal
the subtle phenomena hidden in human brain dynamics but also
provide powerful insights for various neurological diseases. A
study on schizophrenia found that patients were more flexible
than healthy controls, suggesting that the brains of patients
were more disorganized during community reconfiguration (Braun
et al., 2016). Multilayer directed networks were applied to the
study of dynamic networks in depression and found that in
the resting state, the salient network of patients with depression
rarely participated in community reconfiguration (Wei et al.,
2017). Patients with temporal lobe epilepsy were found to have
disruptions in the dynamic network reconfiguration of the language
system, and it was concluded that a multilayer network based
on analysis of dynamic network reconfiguration had higher
predictive accuracy for epilepsy than traditional task-based static
measures (He et al., 2018). Scale scores of autism were found

to be highly correlated with the flexibility of the sensorimotor
network, suggesting that maintaining the stability of the motor
cortex is important for normal cognitive function (Harlalka et al.,
2019). Examination of abnormal dynamic network organization
can provide new insights into neurological disorders and can
thus contribute to further understanding of the pathogenesis of
psychiatric disorders.

The multilayer temporal network model fully considers the
fluctuation characteristics of brain functional connections with
time and dynamically extracts the functional information of the
brain network in the resting state. Abnormal dynamic network
configuration has been found in some people with nervous system
diseases by using multilayer temporal networks, but these dynamic
characteristics are still unknown in JME patients. The cortex of JME
patients is overexcited, which will affect the functional connection
of the brain. Therefore, we assume that the dynamic community
structure of the multilayer brain network of JME patients is
abnormal.

In this study, based on the fMRI data of JME patients and
healthy controls in the resting state, we employed sliding window
technology to segment the collected brain imaging data of each
participant, and build corresponding multilayer temporal network
with intralayer connections and interlayer coupling. Next, we divide
the community structures using a multilayer network community
detection algorithm. Finally, the network reconstruction process
was quantified by using network metrics specific to multilayer
networks. The research method of this study is shown in Figure 1.

2. Materials and methods

2.1. Participants

Our study included 69 subjects, including 35 JME patients from
the Epilepsy Center of Lanzhou University Second Hospital and
34 healthy subjects recruited from the local community. This study
was approved by Ethics Committee of Lanzhou University Second
Hospital, and all the subjects gave written informed consent after
being fully informed of the study plan. The diagnosis of JME is
based on the classification criteria of epilepsy in the International
League Against Epilepsy (ILAE) guidelines (Engel, 2001). Patients
will be excluded if they have any of the following characteristics:
(1) have taken antiepileptic drugs; (2) have suffered from mental
or neurological diseases; (3) suffer from developmental disorders,
such as intellectual disabilities; or (4) suffer from acute diseases
that affect brain scan results. The National Hospital Seizure Severity
Scale (NHS3) score is usually used to measure the severity of
epileptic seizures. This score is mainly related to the objective
clinical events of epileptic seizures (O’Donoghue et al., 1996).
It is measured in the same way as the subjective impression of
epileptic patients, and needs to be completed by patients before MRI
scanning. The NHS3 score is mainly composed of six factors related
to epilepsy, and the score is between 1 and 23 points. The screening
of the healthy control group also needs to exclude persons with
febrile convulsions and seizures as well as persons with epilepsy
in their families. Specific demographic characteristics are shown
in Table 1.
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FIGURE 1

Schematic overview of the experimental approach. (A) Times series were extracted from AAL-90 atlas defined regions of interest using resting state
functional MRI data. (B) A sliding window strategy (length/step = 100/2 s, 141 windows in total) was used to generate interregional coherence
matrices over time. (C) The same nodes were connected in adjacent time slices to construct a multilayer network for each participant. (D) Dynamic
community structure was detected by maximizing a multilayer modularity quality function. (E) The module allegiance matrix was calculated. (F)
Dynamic properties were calculated.

TABLE 1 Sample demographic.

JME HC P value

Number of subjects 35 34 -

Age (years) 16.89± 3.76 16.41± 3.09 0.472

Sex (male/female) 18/17 14/20 0.472

Duration of epilepsy (months) 39.97± 42.33

NHS3 total score 8.54± 4.02

Generalized convulsions 2.86± 1.83

Falls 1.37± 1.40

Incontinence 0.46± 1.15

Loss of consciousness 1.31± 0.87

Duration of recovery time 0.91± 0.61

Automatisms 0.67± 0.96

Continuous variables are presented as mean ± SD. Abbreviations: NHS3, national hospital seizure severity scale; JME, juvenile myoclonic epilepsy; HC, healthy controls. For
continuous variables, independent sample t tests were carried out. For categorical variables, χ2 tests were carried out.

2.2. Data acquisition

Magnetic resonance images were collected on a 3T Siemens
Verio scanner. During the scanning process, the subjects needed
to relax, remain stable, not receive stimulation, and open their
eyes to prevent the brain from participating in ideological
activities. Functional images were obtained using a gradient
echo echoplanar sequence. The parameters were as follows:
repetition time (TR) = 2 s, echo time (TE) = 30 ms, slice
thickness = 4 mm, number of slices = 33, flip angle = 90◦, field

of view (FOV) = 240 mm × 240 mm, matrix = 64 × 64, and
number of time points = 200. Structural images were obtained using
a sagittal magnetization-prepared rapid gradient echo (MP-RAGE)
three-dimensional T1-weighted sequence. The parameters were as
follows: TR = 1.9 s, TE = 2.99 ms, slice thickness = 0.9 mm, flip
angle = 90◦, FOV = 230 mm× 230 mm, and matrix = 256× 256.

Data preprocessing was performed using GRETNA: a graph
theoretical network analysis toolbox for imaging connectomes.
To maintain the stability of human data during the collection
process, it is necessary to delete the data of the first 10 time
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points, leaving 190 functional volumes for each subject. Due to
the unsynchronized acquisition time of the whole head image data
and the impact of head movement, slice timing correction and
realignment are needed. We have removed data with movement
greater than 2 mm or rotation greater than 2◦ caused by head
movement. The remaining steps of data preprocessing are as
follows: spatial normalization by DARTEL (warping individual
functional images to the standard MNI space by applying the
transformation matrix that can be derived from registering the
final template file), spatial smoothing with a Gaussian kernel
(full width at half-maximum of 6 mm), regressing out covariates
(white matter, cerebral spinal fluid, and head-motion profiles were
removed by multiple regression analysis to avoid noise signals),
temporal linear detrending, and temporal bandpass filtering
(0.01–0.1 Hz). Finally, resting-state scans were parcellated into
90 regions of interest (ROIs), using the AAL-90 atlas and time
series were extracted. The AAL-90 brain atlas divides 90 brain
regions into five functional networks in advance: the sensorimotor
network, the visual network (VN), the attention network (AN),
the default mode network (DMN), and the subcortical regions
(He et al., 2009).

2.3. Network construction

The key to building a multilayer temporal network model is the
division of time layers. To solve this problem, we mainly adopted
sliding window technology. In previous dynamic network research,
the minimum window size was usually set as 1/f min (f min
represents the minimum frequency of the collected brain imaging
data; Leonardi and Van De Ville, 2015), and the window moving
step was set as one time unit (Pedersen et al., 2018; Harlalka et al.,
2019; Li et al., 2019). Accordingly, we determined the window
length as 100 s (50 TRs), set the step size as 2 s (1 TR) and finally
divided 141 time windows. We calculated Pearson’s correlation
coefficients of the 90 brain regions under each time window to build
an intralayer network.

Then, we needed to couple the matrices under the adjacent
time windows of the multilayer network model, where nodes and
edges represented ROIs and their pairwise coherences, and layers
represented the corresponding time window and were connected to
each other at the same node of the adjacent time window.

As an extension of traditional networks, multilayer networks
can also be represented by matrices. The matrix representation of
a multilayer network is called a supra-adjacency matrix (Vaiana
and Muldoon, 2018). The supra-adjacency matrix of layer M is
expressed as follows:

G =


A[1] O[1,2] · · · O[1,M2]

O[2,1] A[2] · · · O[2,M2]

...
...

. . .
...

O[M1 ,1] O[M1 ,2] · · · A[M]

 , (1 ≤ M1,M2 ≤ M)

(1)

where A denotes the intralayer network adjacency matrix of layer
M. O represents the interlayer matrix belonging to layer M1 and
layer M2.

2.4. Dynamic community detection

For the recognition of the brain community of each subject
under the multilayer network model, we mainly adopt the
multilayer community detection algorithm named GenLouvain
(Jutla et al., 2011). We used a generalized Louvain-like method
originally developed to optimize a single-layer modularity quality
function, and then extended it to optimize the following multilayer
modularity quality function:

Q =
1

2µ

∑
ijlr

{(
Aijl − γlVijl

)
δlr + δijωjlr

}
δ
(
gil, gjr

)
(2)

where i and j are any two nodes and l and r are any two temporal
layers. µ = 1

2
∑

jr kjr is the total edge weight of the network, the
strength of node j in layer l is kjr = kjl + cjl, the intralayer strength
of node j in layer l is kjl, and the interlayer strength of node j in
layer l is cjl =

∑
r ωjlr· Aijl is the edge between nodes i and j in

temporal layer l. If l = r, the Kronecker delta δlr = 1 and equals
0 otherwise. Similarly, if and only if i = j, δlj = 1. The quantities gil
and gjr represent the community assignments of node i in layer l and
node j in layer r respectively, and δ(gil, gjr) is 1 if nodes belong to the
same community and 0 otherwise (Bassett et al., 2013). The element
Vijl is the corresponding element of a null model, for which we used
the Newman-Girvan null model within each layer, given by:

Vijl =
kilkjl
2ml

(3)

where ml =
1
2
∑

ij Aijl is the total edge weight in layer l. kil
and kjl refer to the intralayer strength of nodes i and j in layer l,
respectively. The parameter γl is a structural resolution parameter
of layer l. The parameter ωjlr is a temporal resolution parameter,
giving the interlayer coupling of node j between layers l and r. There
is no corresponding standard to determine the values of γ and ω.
Consistent with previous study (Bassett et al., 2013), we set ωjlr = ω

=1 for neighbor layers, and 0 otherwise. Similarly, we set γl = γ = 1.
Because the GenLouvain algorithm is an extension of the

Louvain algorithm, there must be uncertainty when implementing
the modularization strategy, and the output results will also
change after each operation. To reduce this randomness as much
as possible, we carried out a multilayer community detection
algorithm for each participant 50 times, and averaged the network
topology metrics (recruitment coefficient, integration coefficient,
flexibility coefficient, and promiscuity coefficient) obtained after
these 50 runs to obtain the final result.

2.5. Dynamic network statistics

2.5.1. Module allegiance
Module allegiance is mainly used to measure the degree to

which brain regions belong to the same community (Bassett et al.,
2015). An N × N square matrix (N is the number of brain regions)
is usually employed to represent its results, and each element Pij in
the matrix represents the frequency with which nodes i and j are
allocated to the same community in the whole time period. If nodes
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i and j are in the same community, Pij is 1; otherwise, Pij is 0. It can
be written as follows:

Pij =
1
OT

O∑
o = 1

T∑
t = 1

ak,0
i,j (4)

where O represents the total number of multilayer community
detection algorithms executed, and t is the total number of time
windows. If nodes I and j are assigned to the same community,
ak,o
i,j = 1; otherwise, ak,o

i,j = 0.

2.5.2. Recruitment and integration
Based on the results of the module allegiance matrix,

we calculated the corresponding recruitment and integration
coefficients. These two metrics are used to measure the probability
of alliances within functional networks and across networks
when brain communities are reconfigured, reflecting the ability of
dynamic interactions within and across subnetworks.

The recruitment coefficient is defined as the probability of
a regional alliance (within the same community) from the same
functional subsystem (Mattar et al., 2015). The calculation formula
of the recruitment coefficient of node i in functional network S is:

RSi =
1
nS

∑
j∈S

Pij (5)

where ns is the number of nodes in network S.
The integration coefficient is defined as the probability of

a regional alliance (within the same community) from other
functional subsystems (Mattar et al., 2015). The calculation formula
of the integration coefficient of node i in functional network S is:

ISi =
1

N − nS

∑
j∈S

Pij (6)

2.5.3. Flexibility and promiscuity
Flexibility represents the probability of community allocation

changes in continuous time windows (Bassett et al., 2011). The
flexibility of a node i is given by:

Fi =
gi

L− 1
(7)

where gi is the number of times that the node changes its
community and L is the total number of strain steps.

Promiscuity represents the proportion of nodes in the network
participating in all communities at least once (Papadopoulos et al.,
2016). By comparing the size of promiscuity of a node, we can
determine whether the node only switches back and forth between
the same two communities, or truly participates in different
communities. The promiscuity of a single node i is given by:

9i =
Mi − 1
Com− 1

(8)

where Mi is the number of communities in which the node has
participated and Com is the total number of communities. Because
promiscuity Ψi is a decimal from 0 to 1, the communities where the
node is initially located are generally not considered. Ψ = 0 if the
node participates in only one community, and ψ = 1 if it participates
in every community in the network.

2.5.4. The core-periphery system
The core-periphery system is a mesoscale structure that exists

in parallel with the community. The division of the core-periphery
system of the brain network is determined by the flexibility of the
brain regions (Bassett et al., 2013). In this study, the 10 nodes with
the lowest flexibility were considered core regions, and the 10 nodes
with the highest flexibility were considered peripheral regions. The
brain regions belonging to the core system are often responsible for
stable functions, while the brain regions belonging to the peripheral
system are mainly responsible for flexible coordination of the
functions of various parts.

This research ran all the codes in MATLAB, and the
solution functions of these network topology metrics (recruitment,
integration, flexibility, and promiscuity) were obtained in the
Network Community Toolbox1.

2.6. Statistical analysis

In this study, a dataset of independent variables for each
participant included the following variables: duration of epilepsy,
generalized convulsions, falls, incontinence, loss of consciousness,
duration of recovery time, and automatisms. The NHS3 total
scores served as dependent variables. Normal distribution was
tested for each continuous variable through the Kolmogorov-
Smirnov test. For normally distributed variables, we employed an
independent-samples t test to test the differences between groups.
For unordered categorical variables, such as sex, we used the
chi-square distribution to test the differences between groups. The
alpha level was set at P < 0.05 for all tests with appropriate
correction for multiple comparisons.

This study included various types of analysis, and not all
analyses had the sample sizes validated. However, in quality of
community, group comparisons at the functional network level and
group comparisons at the node level, the statistical power analysis
was performed by GPOWER 3.1.9.7 software (Faul et al., 2007)
using the following parameters: independent samples t test; two
tailed; nominal significance level α= 0.05; d = 0.6; n1 = 34; n2 = 35.
The sample size was demonstrated to achieve 70% power to detect
differences. Please see Supplementary Materials for more detail.

3. Results

3.1. Quantity and quality of community

The quantity of community is the number of communities that
appear in the entire time series of the multilayer network, while
the quality of community is quantified by the modularity Q of the
multilayer network. As shown in Figure 2, the JME group showed
significantly decreased modularity Q (t(67) = 2.335, P(FDR) = 0.0225;
Figure 2A) in the quality of community. However, there was no
difference between the two groups in the quantity of community
(t(67) = 1.213, P(FDR) = 0.2292; Figure 2B).

1 http://commdetect.weebly.com/
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FIGURE 2

Differences between the healthy controls group and the JME
patients group in quality and quantity of community. (A) Quality of
community. (B) Quantity of community. Asterisks represent group
differences; ∗ denotes P < 0.05, FDR-corrected.

3.2. Group comparisons at the functional
network level

By averaging the measurement results of all nodes in the
functional network, the corresponding metric results at the
functional network level are obtained. When conducting multiple
comparison correction of FDR, it was found that the integration
of the DMN (t(67) = 2.402, P(FDR) = 0.0191; Figure 3A) and VN
(t(67) = 2.226, P(FDR) = 0.0294; Figure 3B) in the JME group showed
a significant upwards trend compared to the healthy controls. In
addition, the flexibility of AN (t(67) = 2.101, P(FDR) = 0.0394;
Figure 3C) in the JME group was significantly higher than that in
the healthy subjects.

3.3. Group comparisons at the node level

By analyzing the recruitment, integration, flexibility, and
promiscuity coefficients at the node level, we further identified
regions of abnormal community reconstruction in the brain
networks of JME patients (Tables 2, 3 and Figure 4). For
recruitment, it was found that the recruitment of six brain regions

from three functional networks in the JME group showed a
significant downwards trend compared to the healthy controls
(Figure 5A). Specifically, there was only one region belonging
to the VN, two regions belonging to the AN, and three regions
belonging to the DMN. For promiscuity, it was found that the
promiscuity of five brain regions from three functional networks in
the JME group showed a significant upwards trend compared to the
healthy controls (Figure 5B). Specifically, there were two regions
belonging to the VN, just one region belonging to the AN, and
two regions belonging to the subcortical regions. For integration,
it was found that the integration of fourteen brain regions from
three functional networks in the JME group showed a significant
upwards trend compared to the healthy controls (Figure 5C).
Specifically, there were five regions belonging to the VN, two
regions belonging to the AN and seven regions belonging to the
DMN. For flexibility, it was found that the flexibility of eight brain
regions from four functional networks in the JME group showed
a significant upwards trend compared to the healthy controls
(Figure 5D). Specifically, there was only one region belonging to
the sensorimotor network, two regions belonging to the VN, three
regions belonging to the AN, and two regions belonging to the
subcortical regions.

3.4. Group comparisons of the
core-periphery system

We divided the core-periphery system of the JME group
and the healthy subject group, and compared the differences
in brain regions contained in the core system and peripheral
system of the two groups to further analyze the abnormal brain
network organization of patients. In this study, the flexibility
of each node of all subjects was averaged, the top 10 nodes
with the least flexibility were regarded as the core region, and
the bottom 10 nodes with the highest flexibility were regarded
as the peripheral region. We observed that the left insula
and left cuneus are core regions specific to the JME group
(Figure 6A), and the specific peripheral structures of the JME

FIGURE 3

Differences in metrics results between the healthy control groups and the JME groups at functional networks level. (A) Integration of DMN. (B)
Integration of VN. (C) Flexibility of AN. Asterisks represent group differences; ∗ denotes P < 0.05, FDR-corrected.
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TABLE 2 Brain regions showing significant differences in recruitment and integration.

Recruitment Integration

Regions ROI Network P Regions ROI Network P

ACG.R 32 DMN 0.0473 ORBinf.L 15 AN 0.0169

PCG.R 36 DMN 0.0272 REC.L 27 DMN 0.0489

FFG.L 55 VN 0.0076 PCG.L 35 DMN 0.0088

TPOsup.L 83 AN 0.0437 PCG.R 36 DMN 0.0113

MTG.R 86 DMN 0.0123 CAL.L 43 VN 0.0297

ITG.L 89 AN 0.0253 LING.L 47 VN 0.0306

LING.R 48 VN 0.0415

FFG.L 55 VN 0.0021

FFG.R 56 VN 0.0466

PCUN.L 67 DMN 0.003

PCUN.R 68 DMN 0.0157

MTG.L 85 DMN 0.0246

MTG.R 86 DMN 0.0032

ITG.L 89 AN 0.0104

TABLE 3 Brain regions showing significant differences in flexibility and promiscuity.

Flexibility Promiscuity

Regions ROI Network P Regions ROI Network P

IFGoperc.L 11 AN 0.0238 IFGtriang.L 13 AN 0.0311

IFGtriang.L 13 AN 0.0238 OLF.L 21 subcortical 0.0186

ORBinf.L 15 AN 0.0026 HIP.R 38 subcortical 0.0031

OLF.L 21 subcortical 0.0222 FFG.L 55 VN 0.0215

HIP.R 38 subcortical 0.009 FFG.R 56 VN 0.0186

IOG.R 54 VN 0.0237

FFG.L 55 VN 0.0472

SMG.R 64 sensorimotor 0.0479

group are mostly located in the prefrontal lobe and hippocampus
(Figure 6B).

3.5. Correlations between abnormal nodes
and NHS3 scores

To further understand the relationships between the metrics
and the severity of JME symptoms, correlations between
significantly different measures and NHS3 scores were examined
at the functional network and node levels in this study. Finally, no
significant correlation was found at the functional network level. At
the node level, however, there was a significant positive correlation
between flexibility of the opercular part of the inferior frontal
gyrus and the severity of JME symptoms (r = 0.5246, P = 0.0012;
Figure 7).

4. Discussion

Previous research findings have confirmed that the cortex of
JME patients has the problem of overexcitation, which undoubtedly

affects the functional connection of the brain. To explore the
subtle dynamic changes in brain functional connections in JME
patients, different from previous static network research methods,
this study applied the temporal multilayer model to patients with
JME. Multilayer network community detection was carried out.
By introducing statistical metrics specific to multilayer networks,
such as recruitment, integration, flexibility, promiscuity, and
core-peripheral systems, the change in the community structure of
JME patients was explored. The results showed that compared with
healthy controls, the brain network reconstruction of JME patients
was abnormal. Therefore, this study provides a new perspective
for research on the dynamic changes in communities in patients
with JME.

Regarding community detection, compared with healthy
controls, JME patients had a significantly decreased modularity.
Modularity is used to measure the degree to which the network
is divided into functionally independent modules, reflecting the
ability of the brain to process specific functions within highly
interconnected functional subnetworks (Paldino et al., 2017).
Modularity can also quantify the development of the brain.
Previous studies of differences in brain development related to
cortical thickness have confirmed that certain brain regions tend
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FIGURE 4

Distribution map of abnormal brain regions with significant differences in metrics (recruitment, integration, flexibility or promiscuity). Among them,
the red nodes belong to the sensorimotor network, the yellow nodes belong to the VN, the green nodes belong to the AN, the blue nodes belong to
the subcortical region, and the purple nodes belong to the DMN.

to mature together (Garcia-Ramos et al., 2019), which explains
modular behavior in the brain region. The degree of modularity
affects the ability of the network to adapt to changing functional
requirements (Baniqued et al., 2019). We inferred from the results of
community division that the community structure of JME patients
had changed.

To explore the abnormal dynamic structure of the brain
network of JME patients, this study further analyzed the functional
network and node level. At the functional network level, the
integration of JME patients’ DMN and VN increased significantly,
suggesting that brain regions in these two functional networks tend
to align with brain regions in other experience functional networks
during dynamic reconfiguration. The DMN often participates in
the cognitive process of the brain and plays a key role, such as
remembering, envisioning the future and making social inferences
(Buckner and DiNicola, 2019). Recently, dysfunctions of the DMN
have been observed in JME patients, such as during seizures,
and the clinical symptoms of patients are often related to the
coupling of spontaneous fluctuations and functional connectivity
in posterior regions of the DMN (Jia et al., 2018). Furthermore,
researchers have also found changes in the VN in epilepsy patients.
For example, the ICA technique that detects functional brain

networks in patients with temporal lobe epilepsy was found to
be deficient in advanced visual function (Zhang et al., 2009).
Other researchers have found a positive correlation between
photoparoxysmal response grades and the severity of cortical
tremors and duration of epilepsy (Wang et al., 2022). In addition,
the flexibility of the AN was also significantly increased in JME
patients, suggesting that the community formed by brain regions
in the AN is unstable, as has been demonstrated by previous
studies of epilepsy. For example, some studies have shown that
the dorsal attention network of patients with mesial temporal
lobe epilepsy differs from that of healthy controls (Liao et al.,
2010). In addition, an analysis of resting functional connectivity
in children with absence epilepsy revealed an overall decrease
in AN connections, and behavior measures used to quantify
inattention were significantly higher than in healthy subjects
(Killory et al., 2011).

Based on the analysis at the functional network level, we
focused on the differences in network metrics among the internal
nodes of the DMN, VN, and AN. The study found that
in the DMN network, except for the anterior cingulate and
paracingulate gyrus, the integration of the remaining seven nodes
was significantly increased and mainly distributed in the prefrontal
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FIGURE 5

Bar charts of group differences at the node level. Brain regions with significant differences in (A) recruitment, (B) promiscuity, (C) integration, and (D)
flexibility. Asterisks represent differences between groups; ∗ denotes P < 0.05 and ∗∗ denotes P < 0.01, FDR-corrected.

lobe, posterior cingulate gyrus, precuneus, and temporal lobe.
In the VN network, except for the inferior occipital gyrus, the
integration of the remaining five nodes was significantly increased
and mainly distributed in the occipital lobe, lingual gyrus, and
fusiform gyrus. In the AN network, except for the superior
temporal gyrus of the temporal pole and inferior temporal gyrus,
the flexibility of the remaining three nodes was significantly
increased, and they were mainly located in the frontal lobe. High
integration indicates frequent interaction with brain regions in
other functional networks, and high flexibility indicates unstable
brain network organization. A study has shown that the frontal
lobe is mainly involved in working memory (Baddeley, 1992),
executive functions, and prospective memory. In addition, during
1H-magnetic resonance spectroscopy studies, researchers found
that the concentrations of N-acetyl aspartate in the prefrontal lobes
of JME patients decreased significantly, indicating abnormalities
in the prefrontal cortex (Savic et al., 2004). When VBM analysis
was performed in JME patients, the volume of gray matter in
the frontal lobes was reduced, possibly due to preponderant
discharges of the frontal lobes of JME patients (Lancman et al.,
1994), resulting in reduced volume of gray matter in local
neurons or neuron cell impairment (Doble, 1999). The posterior

cingulate cortex, which plays a significant role in the DMN,
has visuospatial and memory function, and is often seen as an
important region responsible for diffusing connections during
the propagation epilepsy discharge (da Silva Braga et al., 2014).
There is evidence linking the cingulate cortex to structural defects
and dysfunction in generalized tonic-clonic seizures (Luo et al.,
2011). The precuneus participates in the epilepsy discharge network
and shows obvious changes in activity within a few seconds
before discharge (Bai et al., 2010). In addition, before epileptic
discharge, the precuneus showed the strongest connection strength.
Increased connectivity between the precuneus and the nearby
cortex (Qin et al., 2020), especially in motor-related regions, has
been observed, suggesting that hyperconnectivity of the precuneus
may be an important trigger for epilepsy discharge (Qin et al.,
2022). The temporal lobe is often affected by epileptic activity
in different types of epilepsy. The study found that the left
middle temporal gyrus in JME patients decreased in volume of
gray matter and increased functional connectivity with the left
inferior parietal lobule, right postcentral gyrus, and left superior
temporal gyrus (Zhong et al., 2018), while the left temporal
gyrus was often involved in auditory and visual processing
streams (Binder et al., 2009). The occipital lobe is associated with
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FIGURE 6

Consistent and inconsistent core-periphery system between the healthy control groups and the JME groups. (A) Core system. (B) Periphery system.
Among them, the black nodes represent common nodes in two groups, the blue nodes represent nodes specific to the HC, and the red nodes
represent nodes specific to the JME patients.

photosensitive properties in JME patients, especially idiopathic
occipital lobe epilepsy (Chilosi et al., 2006). Existing studies
show that 30% of JME patients are photosensitive (Wolf and
Goosses, 1986). Some studies have found that there are abnormal
cortical thickness and gray matter volume in the occipital lobe of
JME patients, and most of them occur in the fusiform, lingual
gyrus, and lateral occipital cortex (Park et al., 2018). Our results
support the abnormal structure and functional performance of the
above nodes.

To further analyze the causes of abnormal community
structure, we also need to pay attention to the nodes that are
“active” but become “isolated” in JME patients. Therefore, the
core-peripheral structure of the brain regions was divided for
JME patients and healthy controls, with the 10 nodes with the
least flexibility considered the core system and the 10 nodes
with the highest flexibility considered the peripheral system.
The study found that the left insula and left cuneus are core
regions specific to the JME group, which has been confirmed
in previous studies. For example, the betweenness centrality
of the node is high, indicating that the node communicates
frequently with other nodes, while the betweenness centrality
of the left insula of children with Generalized Tonic-Clonic
Seizures (GTCS) is significantly low (Sporns, 2011). It is
inferred that the decrease in betweenness centrality in the left
insula is due to epilepsy disruption of the structural pathways.
Structural damage to the insula not only affects the functional

FIGURE 7

Correlation between the NHS3 scores and the opercular part of
inferior frontal gyrus.

pathways connected to it but also affects the motor and
somatosensory function (Li et al., 2020). The cuneus is usually
considered to be responsible for visual functions, and it is
the center of many long-range white matter fibers to support
nonvisual functions (Si et al., 2021). In addition, the specific
peripheral structures of the JME group are mostly located in

Frontiers in Behavioral Neuroscience 10 frontiersin.org

https://doi.org/10.3389/fnbeh.2023.1123534
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/journals/behavioral-neuroscience#articles
https://www.frontiersin.org


Ke et al. 10.3389/fnbeh.2023.1123534

the prefrontal lobe and hippocampus. Previous studies have
found atrophy of the hippocampus in JME patients (Tae et al.,
2006), potentially due to negative effects on the production
of new neurons during epileptic seizures (Kuruba et al., 2009)
and hyperexcitability leading to cytotoxicity and cell death
(Choi, 1994).

Finally, this study included a correlation analysis between
the metrics of functional networks and nodes with significant
differences and the NHS3 scores. The results showed that only
the flexibility of the opercular part of the inferior frontal
gyrus was significantly positively correlated with NHS3 scores,
suggesting that this brain region is sensitive to the severity of
JME symptoms. The opercular part of the inferior frontal gyrus
is closely related to the insula in structure and function. In terms
of structure, the insula is laterally covered by the opercular parts
of the frontal, parietal, and temporal lobes (Türe et al., 1999).
In terms of function, there are functional correlations between
the insula and orbitofrontal cortex, supplementary motor area,
frontal operculum, and other physiological structures (Ben et al.,
2010). The insula often performs a major role in consciousness
and emotion, and is also responsible for the conversion of the
DMN and central executive network (Jakab et al., 2012). A
study pointed out that the symptoms of emotional instability,
difficulties in social adjustment and disinhibited behavior in
JME patients are related to frontal-insula network activity
(Frieder et al., 2015). Furthermore, in the relevant area of
the spread of the early onset of insular epilepsy, it can be
found that the opercular cortex and the insular lobe are highly
connected (Freri et al., 2017). This is consistent with the results
of our research on the abnormal dynamic network structure
associated with JME diseases, providing a new perspective for
research on the dynamic changes in communities in patients
with JME.

In general, various functional systems will reduce dynamic
interaction in the resting state of the brain and as little integrative
activity as possible to maintain basic brain activity in the
most efficient and cost-effective energy configuration. In
JME patients, epileptic discharge caused sudden, transient
disturbances in brain activity, resulting in abnormal organization
of brain networks. This coincides with the results of this
research that found reduced recruitment, increased integration,
increased flexibility, and increased promiscuity in some
functional networks and some brain regions. This confirms
our research hypothesis that the dynamic community structure
of JME patients is abnormal. This research also provides a
new perspective for the study of dynamic communities of
JME patients.

There are some limitations in this study. First, our sample
size was small. Whether the results can be generalized to the
general population still needs confirmation and exploration.
Second, when we constructed the network, the brain template
chosen was AAL-90, which removed the cerebellum regions.
Previous studies have found that the pathogenesis of JME is
related to the potential spontaneous activity of the cerebellum
(Zhong et al., 2018). Further research is needed to address
these issues in the future. Third, some studies have found
that men and women have different susceptibilities to epilepsy
(Savic, 2014). In the future, sex will be considered to study

the differences in brain dynamics between men and women
with JME.

Date availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Ethics statement

The studies involving human participants were reviewed and
approved by The Epilepsy Center of Lanzhou University Second
Hospital. Written informed consent to participate in this study was
provided by the participants’ legal guardian/next of kin.

Author contributions

MK, CW, and GL designed the experiment and revised the
manuscript. MK and CW wrote the manuscript. GL recorded and
collected the data. CW performed the data analysis. All authors
contributed to this article and approved the version submitted.

Funding

This work was supported by a grant from the National Natural
Science Foundation of China under project numbers 61966023 and
82160326.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fnbeh.2023.1123
534/full#supplementary-material.

Frontiers in Behavioral Neuroscience 11 frontiersin.org

https://doi.org/10.3389/fnbeh.2023.1123534
https://www.frontiersin.org/articles/10.3389/fnbeh.2023.1123534/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnbeh.2023.1123534/full#supplementary-material
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/journals/behavioral-neuroscience#articles
https://www.frontiersin.org


Ke et al. 10.3389/fnbeh.2023.1123534

References

Appleton, R., Beirne, M., and Acomb, B. (2000). Photosensitivity in juvenile
myoclonic epilepsy. Seizure 9, 108–111. doi: 10.1053/seiz.1999.0376

Baddeley, A. (1992). Working memory. Science 255, 556–559. doi: 10.1126/science.
1736359

Bai, X., Vestal, M., Berman, R., Negishi, M., Spann, M., Vega, C., et al.
(2010). Dynamic time course of typical childhood absence seizures: EEG,
behavior and functional magnetic resonance imaging. J. Neurosci. 30, 5884–5893.
doi: 10.1523/JNEUROSCI.5101-09.2010

Baniqued, P. L., Gallen, C. L., Kranz, M. B., Kramer, A. F., and D’Esposito, M.
(2019). Brain network modularity predicts cognitive training-related gains in
young adults. Neuropsychologia 131, 205–215. doi: 10.1016/j.neuropsychologia.2019.
05.021

Bassett, D. S., Wymbs, N. F., Porter, M. A., Mucha, P. J., Carlson, J. M., and
Grafton, S. T. (2011). Dynamic reconfiguration of human brain networks during
learning. Proc. Natl. Acad. Sci. U S A 108, 7641–7646. doi: 10.1073/pnas.10189
85108

Bassett, D. S., Wymbs, N. F., Rombach, M. P., Porter, M. A., Mucha, P. J.,
and Grafton, S. T. (2013). Task-based core-periphery organization of human brain
dynamics. PLoS Comput. Biol. 9:e1003171. doi: 10.1371/journal.pcbi.1003171

Bassett, D. S., Yang, M., Wymbs, N. F., and Grafton, S. T. (2015). Learning-induced
autonomy of sensorimotor systems. Nat. Neurosci. 18, 744–751. doi: 10.1038/nn.3993

Ben, D., Pitskel, N. B., and Pelphrey, K. A. (2010). Three systems of insular
functional connectivity identified with cluster analysis. Cereb. Cortex 21, 1498–1506.
doi: 10.1093/cercor/bhq186

Binder, J. R., Desai, R. H., Graves, W. W., and Conant, L. L. (2009). Where is the
semantic system? A critical review and meta-analysis of 120 functional neuroimaging
studies. Cereb. Cortex 19, 2767–2796. doi: 10.1093/cercor/bhp055

Braun, U., Schäfer, A., Bassett, D. S., Rausch, F., Schweiger, J. I., Bilek, E., et al.
(2016). Dynamic brain network reconfiguration as a potential schizophrenia genetic
risk mechanism modulated by NMDA receptor function. Proc. Natl. Acad. Sci. U S A
113, 12568–12573. doi: 10.1073/pnas.1608819113

Brigo, F., Bongiovanni, L. G., Nardone, R., Trinka, E., Tezzon, F., Fiaschi, A.,
et al. (2013). Visual cortex hyperexcitability in idiopathic generalized epilepsies with
photosensitivity: a TMS pilot study. Epilepsy Behav. 27, 301–306. doi: 10.1016/j.yebeh.
2013.02.010

Buckner, R. L., and DiNicola, L. M. (2019). The brain’s default network:
updated anatomy, physiology and evolving insights. Nat. Rev. Neurosci. 20, 593–608.
doi: 10.1038/s41583-019-0212-7

Chilosi, A. M., Brovedani, P., Moscatelli, M., Bonanni, P., and Guerrini, R. (2006).
Neuropsychological findings in idiopathic occipital lobe epilepsies. Epilepsia 47, 76–78.
doi: 10.1111/j.1528-1167.2006.00696.x

Choi, D. W. (1994). Glutamate receptors and the induction of excitotoxic neuronal
death. Prog. Brain Res. 100, 47–51. doi: 10.1016/s0079-6123(08)60767-0

da Silva Braga, A. M., Fujisao, E. K., and Betting, L. E. (2014). Analysis of
generalized interictal discharges using quantitative EEG. Epilepsy Res. 108, 1740–1747.
doi: 10.1016/j.eplepsyres.2014.09.004

Doble, A. (1999). The role of excitotoxicity in neurodegenerative disease:
implications for therapy. Pharmacol. Ther. 81, 163–221. doi: 10.1016/s0163-
7258(98)00042-4

Engel, J., Jr. (2001). A proposed diagnostic scheme for people with epileptic seizures
and with epilepsy: report of the ILAE Task Force on Classification and Terminology.
Epilepsia 42, 796–803. doi: 10.1046/j.1528-1157.2001.10401.x

Faul, F., Erdfelder, E., Lang, A.-G., and Buchner, A. (2007). G* Power 3: a flexible
statistical power analysis program for the social, behavioral and biomedical sciences.
Behav. Res. Methods 39, 175–191. doi: 10.3758/bf03193146

Freri, E., Matricardi, S., Gozzo, F., Cossu, M., Granata, T., and Tassi, L. (2017).
Perisylvian, including insular, childhood epilepsy: presurgical workup and surgical
outcome. Epilepsia 58, 1360–1369. doi: 10.1111/epi.13816

Frieder, M., Paulus, S., Krach, M., Gozzo, F., Cossu, M., Granata, T., et al. (2015).
Fronto-insula network activity explains emotional dysfunctions in juvenile myoclonic
epilepsy: combined evidence from pupillometry and fMRI. Cortex 65, 219–231.
doi: 10.1016/j.cortex.2015.01.018

Garcia-Ramos, C., Dabbs, K., Lin, J. J., Jones, J. E., Stafstrom, C. E., Hsu, D. A.,
et al. (2019). Network analysis of prospective brain development in youth with benign
epilepsy with centrotemporal spikes and its relationship to cognition. Epilepsia 60,
1838–1848. doi: 10.1111/epi.16290

Harlalka, V., Bapi, R. S., Vinod, P. K., and Roy, D. (2019). Atypical flexibility in
dynamic functional connectivity quantifies the severity in autism spectrum disorder.
Front. Hum. Neurosci. 13:6. doi: 10.3389/fnhum.2019.00006

He, X., Bassett, D. S., Chaitanya, G., Sperling, M. R., Kozlowski, L., and Tracy, J. I.
(2018). Disrupted dynamic network reconfiguration of the language system in
temporal lobe epilepsy. Brain 141, 1375–1389. doi: 10.1093/brain/awy042

He, Y., Wang, J., Wang, L., Chen, Z. J., Yan, C., Yang, H., et al. (2009). Uncovering
intrinsic modular organization of spontaneous brain activity in humans. PLoS One
4:e5226. doi: 10.1371/journal.pone.0005226

Jakab, A., Molnár, P., Bogner, P., Béres, M., and Berényi, E. (2012). Connectivity-
based parcellation reveals interhemispheric differences in the insula. Brain Topogr. 25,
264–271. doi: 10.1007/s10548-011-0205-y

Jia, X., Ma, S., Jiang, S., Sun, H., Dong, D., Chang, X., et al. (2018). Disrupted
coupling between the spontaneous fluctuation and functional connectivity in
idiopathic generalized epilepsy. Front. Neurol. 9:838. doi: 10.3389/fneur.2018.00838

Jutla, I. S., Jeub, L. G., and Mucha, P. J. (2011). A generalized Louvain
method for community detection implemented in MATLAB. Available online at:
http://netwiki.amath.unc.edu/GenLouvain.

Killory, B. D., Bai, X., Negishi, M., Vega, C., Spann, M. N., Vestal, M., et al.
(2011). Impaired attention and network connectivity in childhood absence epilepsy.
Neuroimage 56, 2209–2217. doi: 10.1016/j.neuroimage.2011.03.036

Kuruba, R., Hattiangady, B., and Shetty, A. K. (2009). Hippocampal neurogenesis
and neural stem cells in temporal lobe epilepsy. Epilepsy Behav. 14, 65–73.
doi: 10.1016/j.yebeh.2008.08.020

Lancman, M. E., Asconapé, J. J., and Penry, J. K. (1994). Clinical and EEG
asymmetries in juvenile myoclonic epilepsy. Epilepsia 35, 302–306. doi: 10.1111/j.
1528-1157.1994.tb02434.x

Lee, C., Im, C.-H., Koo, Y. S., Lim, J.-A., Kim, T.-J., Byun, J.-I., et al. (2017). Altered
network characteristics of spike-wave discharges in juvenile myoclonic epilepsy. Clin.
EEG Neurosci. 48, 111–117. doi: 10.1177/1550059415621831

Leonardi, N., and Van De Ville, D. (2015). On spurious and real fluctuations of
dynamic functional connectivity during rest. Neuroimage 104, 430–436. doi: 10.1016/j.
neuroimage.2014.09.007

Li, Q., Cao, W., Liao, X., Chen, Z., Yang, T., Gong, Q., et al. (2015). Altered resting
state functional network connectivity in children absence epilepsy. J. Neurol. Sci. 354,
79–85. doi: 10.1016/j.jns.2015.04.054

Li, Y., Wang, Y., Wang, Y., Wang, H., Li, D., Chen, Q., et al. (2020). Impaired
topological properties of gray matter structural covariance network in epilepsy
children with generalized tonic-clonic seizures: a graph theoretical analysis. Front.
Neurol. 11:253. doi: 10.3389/fneur.2020.00253

Li, Q., Wang, X., Wang, S., Xie, Y., Li, X., Xie, Y., et al. (2019). Dynamic
reconfiguration of the functional brain network after musical training in young adults.
Brain Struct. Funct. 224, 1781–1795. doi: 10.1007/s00429-019-01867-z

Liao, W., Zhang, Z., Pan, Z., Mantini, D., Ding, J., Duan, X., et al. (2010). Altered
functional connectivity and small-world in mesial temporal lobe epilepsy. PLoS One
5:e8525. doi: 10.1371/journal.pone.0008525

Luo, C., Li, Q., Lai, Y., Xia, Y., Qin, Y., Liao, W., et al. (2011). Altered functional
connectivity in default mode network in absence epilepsy: a resting-state fMRI study.
Hum. Brain Mapp. 32, 438–449. doi: 10.1002/hbm.21034

Luo, C., Zhang, Y., Cao, W., Huang, Y., Yang, F., Wang, J., et al. (2015).
Altered structural and functional feature of striato-cortical circuit in
benign epilepsy with centrotemporal spikes. Int. J. Neural Syst. 25:1550027.
doi: 10.1142/S0129065715500276

Mattar, M. G., Cole, M. W., Thompson-Schill, S. L., and Bassett, D. S. (2015).
A functional cartography of cognitive systems. PLoS Comput. Biol. 11:e1004533.
doi: 10.1371/journal.pcbi.1004533

O’Donoghue, M., Duncan, J., and Sander, J. (1996). The national hospital seizure
severity scale: a further development of the Chalfont seizure severity scale. Epilepsia
37, 563–571. doi: 10.1111/j.1528-1157.1996.tb00610.x

Paldino, M. J., Zhang, W., Chu, Z. D., and Golriz, F. (2017). Metrics of brain network
architecture capture the impact of disease in children with epilepsy. Neuroimage Clin.
13, 201–208. doi: 10.1016/j.nicl.2016.12.005

Papadopoulos, L., Puckett, J. G., Daniels, K. E., and Bassett, D. S. (2016). Evolution of
network architecture in a granular material under compression. Phys. Rev. E 94:032908.
doi: 10.1103/PhysRevE.94.032908

Park, K. M., Kim, S. E., Lee, B. I., and Hur, Y. J. (2018). Brain morphology in patients
with genetic generalized epilepsy: its heterogeneity among subsyndromes. Eur. Neurol.
80, 236–244. doi: 10.1159/000496698

Pedersen, M., Zalesky, A., Omidvarnia, A., and Jackson, G. D. (2018). Multilayer
network switching rate predicts brain performance. Proc. Natl. Acad. Sci. U S A 115,
13376–13381. doi: 10.1073/pnas.1814785115

Qin, Y., Li, S., Yao, D., and Luo, C. (2022). Causality analysis to the abnormal
subcortical-cortical connections in idiopathic-generalized epilepsy. Front. Neurosci.
16:925968. doi: 10.3389/fnins.2022.925968

Qin, Y., Zhang, N., Chen, Y., Tan, Y., Dong, L., Xu, P., et al. (2020). How alpha
rhythm spatiotemporally acts upon the thalamus-default mode circuit in idiopathic
generalized epilepsy. IEEE Trans. Biomed. Eng. 68, 1282–1292. doi: 10.1109/TBME.
2020.3026055

Frontiers in Behavioral Neuroscience 12 frontiersin.org

https://doi.org/10.3389/fnbeh.2023.1123534
https://doi.org/10.1053/seiz.1999.0376
https://doi.org/10.1126/science.1736359
https://doi.org/10.1126/science.1736359
https://doi.org/10.1523/JNEUROSCI.5101-09.2010
https://doi.org/10.1016/j.neuropsychologia.2019.05.021
https://doi.org/10.1016/j.neuropsychologia.2019.05.021
https://doi.org/10.1073/pnas.1018985108
https://doi.org/10.1073/pnas.1018985108
https://doi.org/10.1371/journal.pcbi.1003171
https://doi.org/10.1038/nn.3993
https://doi.org/10.1093/cercor/bhq186
https://doi.org/10.1093/cercor/bhp055
https://doi.org/10.1073/pnas.1608819113
https://doi.org/10.1016/j.yebeh.2013.02.010
https://doi.org/10.1016/j.yebeh.2013.02.010
https://doi.org/10.1038/s41583-019-0212-7
https://doi.org/10.1111/j.1528-1167.2006.00696.x
https://doi.org/10.1016/s0079-6123(08)60767-0
https://doi.org/10.1016/j.eplepsyres.2014.09.004
https://doi.org/10.1016/s0163-7258(98)00042-4
https://doi.org/10.1016/s0163-7258(98)00042-4
https://doi.org/10.1046/j.1528-1157.2001.10401.x
https://doi.org/10.3758/bf03193146
https://doi.org/10.1111/epi.13816
https://doi.org/10.1016/j.cortex.2015.01.018
https://doi.org/10.1111/epi.16290
https://doi.org/10.3389/fnhum.2019.00006
https://doi.org/10.1093/brain/awy042
https://doi.org/10.1371/journal.pone.0005226
https://doi.org/10.1007/s10548-011-0205-y
https://doi.org/10.3389/fneur.2018.00838
http://netwiki.amath.unc.edu/GenLouvain
https://doi.org/10.1016/j.neuroimage.2011.03.036
https://doi.org/10.1016/j.yebeh.2008.08.020
https://doi.org/10.1111/j.1528-1157.1994.tb02434.x
https://doi.org/10.1111/j.1528-1157.1994.tb02434.x
https://doi.org/10.1177/1550059415621831
https://doi.org/10.1016/j.neuroimage.2014.09.007
https://doi.org/10.1016/j.neuroimage.2014.09.007
https://doi.org/10.1016/j.jns.2015.04.054
https://doi.org/10.3389/fneur.2020.00253
https://doi.org/10.1007/s00429-019-01867-z
https://doi.org/10.1371/journal.pone.0008525
https://doi.org/10.1002/hbm.21034
https://doi.org/10.1142/S0129065715500276
https://doi.org/10.1371/journal.pcbi.1004533
https://doi.org/10.1111/j.1528-1157.1996.tb00610.x
https://doi.org/10.1016/j.nicl.2016.12.005
https://doi.org/10.1103/PhysRevE.94.032908
https://doi.org/10.1159/000496698
https://doi.org/10.1073/pnas.1814785115
https://doi.org/10.3389/fnins.2022.925968
https://doi.org/10.1109/TBME.2020.3026055
https://doi.org/10.1109/TBME.2020.3026055
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/journals/behavioral-neuroscience#articles
https://www.frontiersin.org


Ke et al. 10.3389/fnbeh.2023.1123534

Savic, I. (2014). Sex differences in human epilepsy. Exp. Neurol. 259, 38–43.
doi: 10.1016/j.expneurol.2014.04.009

Savic, I., Österman, Y., and Helms, G. (2004). MRS shows syndrome differentiated
metabolite changes in human-generalized epilepsies. Neuroimage 21, 163–172.
doi: 10.1016/j.neuroimage.2003.08.034

Si, X., Zhang, X., Zhou, Y., Chao, Y., Lim, S. N., Sun, Y., et al. (2021). White matter
structural connectivity as a biomarker for detecting juvenile myoclonic epilepsy by
transferred deep convolutional neural networks with varying transfer rates. J. Neural
Eng. 18:056053. doi: 10.1088/1741-2552/ac25d8

Spencer, S. S. (2002). Neural networks in human epilepsy: evidence of and
implications for treatment. Epilepsia 43, 219–227. doi: 10.1046/j.1528-1157.2002.
26901.x

Sporns, O. (2011). The human connectome: a complex network. Ann. N. Y. Acad.
Sci. 1224, 109–125. doi: 10.1111/j.1749-6632.2010.05888.x

Tae, W. S., Hong, S. B., Joo, E. Y., Han, S. J., Cho, J.-W., Seo, D. W., et al. (2006).
Structural brain abnormalities in juvenile myoclonic epilepsy patients: volumetry and
voxel-based morphometry. Korean J. Radiol. 7, 162–172. doi: 10.3348/kjr.2006.7.3.162

Türe, U., Yaşargil, D. C. H., Al-Mefty, O., and Yaşargil, M. G. (1999). Topographic
anatomy of the insular region. J. Neurosurg. 90, 720–733. doi: 10.3171/jns.1999.90.4.
0720

Vaiana, M., and Muldoon, S. F. (2018). Multilayer brain networks. J. Nonlin. Sci. 30,
2147–2169. doi: 10.1007/s00332-017-9436-8

Wang, H., Wang, B., Cen, Z., Wang, J., Zang, Y.-F., Yang, D., et al. (2022).
Aberrant visual-related networks in familial cortical myoclonic tremor with
epilepsy. Parkinsonism Relat. Disord. 101, 105–110. doi: 10.1016/j.parkreldis.2022.
07.001

Wei, M., Qin, J., Yan, R., Bi, K., Liu, C., Yao, Z., et al. (2017). Abnormal dynamic
community structure of the salience network in depression. J. Magn. Reson. Imaging
45, 1135–1143. doi: 10.1002/jmri.25429

Wolf, P., and Goosses, R. (1986). Relation of photosensitivity to epileptic syndromes.
J. Neurol. Neurosurg. Psychiatry 49, 1386–1391. doi: 10.1136/jnnp.49.12.1386

Zhang, Z., Lu, G., Zhong, Y., Tan, Q., Liao, W., Chen, Z., et al. (2009). Impaired
perceptual networks in temporal lobe epilepsy revealed by resting fMRI. J. Neurol. Sci.
256, 1705–1713. doi: 10.1007/s00415-009-5187-2

Zhang, Z., Xu, Q., Liao, W., Wang, Z., Li, Q., Yang, F., et al. (2015). Pathological
uncoupling between amplitude and connectivity of brain fluctuations in epilepsy.
Hum. Brain Mapp. 36, 2756–2766. doi: 10.1002/hbm.22805

Zhong, C., Liu, R., Luo, C., Jiang, S., Dong, L., Peng, R., et al. (2018). Altered
structural and functional connectivity of juvenile myoclonic epilepsy: an fMRI study.
Neural Plast. 2018:7392187. doi: 10.1155/2018/7392187

Frontiers in Behavioral Neuroscience 13 frontiersin.org

https://doi.org/10.3389/fnbeh.2023.1123534
https://doi.org/10.1016/j.expneurol.2014.04.009
https://doi.org/10.1016/j.neuroimage.2003.08.034
https://doi.org/10.1088/1741-2552/ac25d8
https://doi.org/10.1046/j.1528-1157.2002.26901.x
https://doi.org/10.1046/j.1528-1157.2002.26901.x
https://doi.org/10.1111/j.1749-6632.2010.05888.x
https://doi.org/10.3348/kjr.2006.7.3.162
https://doi.org/10.3171/jns.1999.90.4.0720
https://doi.org/10.3171/jns.1999.90.4.0720
https://doi.org/10.1007/s00332-017-9436-8
https://doi.org/10.1016/j.parkreldis.2022.07.001
https://doi.org/10.1016/j.parkreldis.2022.07.001
https://doi.org/10.1002/jmri.25429
https://doi.org/10.1136/jnnp.49.12.1386
https://doi.org/10.1007/s00415-009-5187-2
https://doi.org/10.1002/hbm.22805
https://doi.org/10.1155/2018/7392187
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/journals/behavioral-neuroscience#articles
https://www.frontiersin.org

	Multilayer brain network modeling and dynamic analysis of juvenile myoclonic epilepsy
	1. Introduction
	2. Materials and methods
	2.1. Participants
	2.2. Data acquisition
	2.3. Network construction
	2.4. Dynamic community detection
	2.5. Dynamic network statistics
	2.5.1. Module allegiance
	2.5.2. Recruitment and integration
	2.5.3. Flexibility and promiscuity
	2.5.4. The core-periphery system

	2.6. Statistical analysis

	3. Results
	3.1. Quantity and quality of community
	3.2. Group comparisons at the functional network level
	3.3. Group comparisons at the node level
	3.4. Group comparisons of the core-periphery system
	3.5. Correlations between abnormal nodes and NHS3 scores

	4. Discussion
	Date availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References


