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Introduction

Autism Spectrum Disorder (ASD) is highly heterogeneous across individuals, making it

difficult to accurately diagnose and effectively treat each case. Genetics (Moreno-De-Luca

and Martin, 2021), environment (Karimi et al., 2017), and intermediate brain phenotypes

(Benkarim et al., 2021; Aglinskas et al., 2022) all contribute to this heterogeneity. In addition,

the interplay between these factors is largely unknown. As a consequence, the identification

of ASD subtypes and their causes remains challenging, hindering personalized diagnosis

and treatment.

To complicate things, ASD-specific individual variation is entangled with variation that

also occurs among neurotypical participants: ASD-related and unrelated factors jointly shape

brain anatomy and function (Aglinskas et al., 2022). Furthermore, differences between data-

acquisition sites and measurement errors additionally contribute to variation in the data

collected for different individuals (Littmann et al., 2006). This is a challenge in multiple

ways: at best, it reduces the effect sizes of reliable ASD biomarkers; at worst, it can produce

spurious differences leading to subtypes that do not replicate across studies—as has been

demonstrated in the case of depression (Drysdale et al., 2017; Dinga et al., 2019).

Therefore, in order to understand individual variation that is specifically related to ASD,

we need to disentangle it from shared variation. However, separating ASD-specific variation

from shared variation is difficult, and even recent studies typically do not do this. As a result,

neural variation of interest for a disorder is often conflated with variation in age, gender and

scanning site (Easson et al., 2019).

Disentangling ASD-specific variation

Previous studies have attempted to identify ASD-specific patterns in neural data,

using either case-control matching or normative models. Case-control matching compares

ASD individuals with typically developing (TD) participants of matching characteristics

(commonly age, gender, IQ, and scanning site). These approaches work well in theory, but

assume that shared sources of variation are few and known (because participants must be

selected taking these sources of variation into account). However, brain anatomy is shaped

by a multitude of genetic and environmental factors (Gu and Kanai, 2014) some of which are

unknown, undermining any attempt at explicit matching.

Normative models rely on pooling data from many TD and ASD participants and

comparing their distributions to identify ASD-specific trends or developmental trajectories

(Bedford et al., 2020). Such approaches can take into account sources of variation that are

not explicitly matched, as long as the subject pool is diverse enough (Bethlehem et al., 2022).
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However, by design, normative models are models of groups, and

they are not well suited for studying individual variation.

To overcome the limitations of current approaches, it would

be desirable to disentangle subject-specific ASD-specific features

without the need of explicit matching (as in normative models),

but at the level of individual participants (as in case-control

matching). Contrastive variational autoencoders (CVAEs; Abid

and Zou, 2019) are deep-learning models that can be trained to

accomplish this, isolating ASD-specific features from features that

are shared between ASDs and TDs (Figure 1A), including noise-

driven variation that is observed in both the ASD and TD groups.

Recently, we applied these models to a large database of

neuroanatomical scans (ABIDE I; Di Martino et al., 2014). We

found that CVAEs improved over alternative methods in several

key ways. First, CVAEs learned ASD-specific features that better

reveal relationships between neuroanatomy and ASD symptoms

(compared to approaches that do not disentangle ASD-specific

variation, Figure 1B). Second, ASD-specific features generalized

to an independent dataset (SFARI VIP), where we additionally

demonstrated that ASD-specific, but not shared features, capture

genotype variation carrying an increased risk of developing ASD

(16p11.2 deletion and duplication). Third, ASD-specific features

enable the identification of neuroanatomical loci implicated in

ASD heterogeneity.

Finally, we observed that ASD-specific features are better

described by continuous dimensions than categorical clusters

(Figure 1C) suggesting that neuroanatomy is affected by ASD

along smoothly varying factors, rather than distinct subtypes. This

observation was only evident after disentanglement, as shared

features still exhibited a clustered structure. Looking at ASD-

specific variation can therefore more accurately represent how

many distinct forms of Autism there are—potentially informing

both nosology and treatment selection.

The way forward

Even though recent advances show promise in tackling

heterogeneity in ASD, more work remains to be done. For

example, while the relationships between ASD symptoms and

neuroanatomy are enhanced after disentangling, effect sizes remain

small, indicating that a large portion of individual variation is

not yet explained. This could be due to multiple reasons: coarse

behavioral measures, relevant ASD-specific variation not being

reflected in neuroanatomical data, or inability of the CVAEs to

capture all the relevant information. Each of these represents an

area of potential improvement.

Improving behavioral measures

Currentmeasures (such as ADOS, ADI-R, andVineland scores)

are designed for diagnosis using single aggregate scores; finer-

grainedmeasures might be needed to capture the multidimensional

nature of ASD (Tang et al., 2020). Current measures do contain

subdomains that can be used to capture some multidimensional

variation (e.g., repetitive behavior or social-communication

subdomains in ADOS). However, such experimenter-defined

subdomains might not correspond to the dimensions of individual

variation within ASD: a single dimension of individual variation

might drive correlated changes across multiple subdomains, and

vice versa. Therefore identifying dimensions that capture the

difference between ASD participants and controls might not

be sufficient to characterize all relevant individual variation

within ASD. In addition, recent research has developed new

computational approaches tomeasure social cognitive abilities such

as the attribution of beliefs, desires, emotions, and traits (Baker

et al., 2017; Houlihan et al., 2022). These approaches make it

possible to estimate parameters that capture individual differences

(“computational phenotyping”; Patzelt et al., 2018; Hauser et al.,

2022). The convergence of computational phenotyping with

techniques that disentangle disorder-specific variation such as

CVAEs has the potential to paint a more detailed picture of

individual differences in behavior associated with ASD.

Integrating multiple data modalities

Analyzing jointly multiple kinds of data within each individual

can offer a more complete understanding of individual variation.

Data acquired with one modality can reveal features that are not

visible in the data acquired with other modalities. For example,

structural MRI can offer anatomical information that cannot be

detected at the lower spatial resolution of fMRI; conversely, fMRI

can reveal differences in functional responses that complement

anatomical information. Furthermore, the joint analysis of different

data modalities can reveal relationships between them. A recent

study demonstrated this by examining jointly structural and

functional MRI data (Hong et al., 2018). Structural MRI data

identified 4 different subtypes of autism, and fMRI revealed

different connectivity anomalies associated with each subtype

(Hong et al., 2018). Similar strategies can be adopted to integrate

other data modalities (e.g., EEG, MEG, and fMRI, see Mash et al.,

2018).

Genetics can further complement the characterization of each

participant. Joint analysis of genetic and neuroimaging data is

of particular interest because it can reveal associations between

genotypes and the resulting neurophenotypes. Moving an initial

step in this direction, a recent study used fMRI to measure

alterations in functional connectivity in ASD, and compared

their location to gene expression maps for genes associated with

ASD (Benkarim et al., 2021). Another recent study (Lu et al.,

2022) found that combining genetics and fMRI data improved

ASD classification, suggesting that these data modalities offer

complementary information.

Future studies will need to leverage large datasets to link

genetics, neurophenotypes and symptoms. In particular, acquiring

neuroimaging and behavioral measures as part of newly collected

genetic datasets will be essential to understand the impact of

individual differences in genetics on the brain and on behavior.

In this context, disentangling ASD-specific variation from shared

variation in neural and behavioral measures will help guide the

identification of genes associated with ASD phenotype.
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FIGURE 1

(A) Disentangling ASD neuroanatomy. After training the CVAE, we computed subject-specific similarity based on shared and ASD-specific

neuroanatomical features for 512 ASD subjects. Shared and ASD-specific similarity matrices were then compared with expected similarities based

clinical and non-clinical properties. (B) Relationship to symptoms. ABIDE dataset: ASD-specific features better correlated with properties indexing

ASD severity (ADOS total, DSM IV), while shared features better correlated with non-clinical properties such as scanner type and age. Baseline model

(non-contrastive variational autoencoder, which did not disentangle ASD-specific variation) features demonstrated worse relationships with both

clinical and non-clinical properties. SFARI dataset: We replicated our findings using a zero-free-parameter generalization to an independent SFARI

dataset with genotyped subjects. Neuroanatomical di�erences between 16p11.2 copy-number-variation subjects were better reflected in

ASD-specific than shared features. (C) Structure of neurovariation. Dimensionality reduction (UMAP) revealed continuous rather than categorical

variation in ASD-specific features. Categorical variation can instead be seen in shared features. B, Baseline model; Sh, Shared features; Sp,

ASD-specific features.

Addressing comorbidity

ASD rarely occurs in isolation—ADHD and anxiety are

just some of the most frequently co-occurring conditions

(Matson and Goldin, 2013). Individuals with comorbid ASD

consistently show higher severity scores (Hayashi et al.,

2022), making it difficult to discern based on the ADOS

scores alone whether a person has severe or comorbid autism.

Extremely high rates of comorbidity (ADHD is present in

50–70 percent of ASD individuals) suggest that perhaps

comorbidity might be better conceptualized as another facet

of individual variation.

It is therefore pressing to understand the neural bases of

comorbidity in order to inform the etiology of ASD. For example:

Do individuals with comorbid ASD+ADHD present with a

conjunction of neural features seen in individuals who have only

ASD and only ADHD, or with a distinct set of features? Research

has identified both distinct and overlapping features in comorbid

ADHD+ASD but definitive etiology of this condition remains

elusive (Hours et al., 2022).

Several other neurological conditions (epilepsy, early

onset stroke, Parkinsons; Brainstorm Consortium et al., 2018),

gastrointestinal issues (Martínez-González and Andreo-Martínez,

2019), and psychiatric disorders (Obsessive Compulsive Disorder,
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Schizophrenia, Bipolar disorder, and Major Depressive Disorder)

are comorbid with ASD (Brainstorm Consortium et al., 2018).

Recent studies are revealing shared genetic, neural and cognitive

mechanisms between ASD and comorbid psychiatric disorders

(Mizuno et al., 2019; Thorp et al., 2021). CVAEs—with appropriate

architecture modifications—can help to identify features specific

to the presence of each disorder in isolation as well as features that

are uniquely associated with comorbidity.

Leveraging state of the art techniques

There are already a variety of computational approaches

in psychiatry (see Graham et al., 2019). State-of-the-art deep

learning methods have been used to distinguish between ASD

participants and controls (Alsaade and Alzahrani, 2022; Chen

et al., 2022; Santana et al., 2022), but are just beginning to be

applied to investigate ASD subtypes and factors underlying ASD

variation (Akter et al., 2021; Aglinskas et al., 2022; Parlett-Pelleriti

et al., 2022). In studying individual variation specifically, even

the methods that have been applied have not been fully tested

in all their possible variants. For example, in deep networks, the

dimensionality of the layers and their number are tied to model

performance. However, larger models are prone to overfitting,

therefore training set size, and diversity become increasingly

important (Dinsdale et al., 2022), as well as the use of regularization

techniques (e.g., dropout). Increasing model size in CVAEs while

taking adequate steps to mitigate overfitting could better capture

ASD-specific variation.

Alternatively, breakthroughs could come from utilizing novel

network architectures. For example, Generative Adversarial

Networks and Diffusion models (Goodfellow et al., 2020; Rombach

et al., 2021) are able generate more realistic outputs than VAEs

(on which CVAE is based on), often indistinguishable from real

inputs (Karras et al., 2018; Yi et al., 2019). This ability could prove

advantageous if it captures finer-grained information that might

have been lost in CVAEs.

A challenge for thesemodels remainsmaking latent dimensions

explicit (conditioning on features like age, diagnosis, or genotype)

or at least interpretable. A recent study went in this direction,

predicting disease-specific brain aging without longitudinal data

conditioning generativemodels using disorder and age information

(Xia et al., 2019). Applied to the case of ASD, these approaches

might be used to predict individuals’ response to treatment

(conditioning on current neuroimaging data) without the need

for traditional factorial design, i.e., all participants completing all

treatments. Disentangling ASD-specific variation would make it

possible to condition the models selectively using neuroimaging

features that are relevant to ASD, removing confounding features

that could impair the models’ performance.

Linking descriptive research with
intervention studies

Descriptive research into ASD biomarkers and subtypes

must go hand in hand with intervention studies aimed at

improving the quality of life in affected individuals. While

there are various non-medical interventions available for ASD

treatment (Bond et al., 2016), response across individuals

is highly variable (Kamio et al., 2015). ASD individuals

respond to some interventions, but not others (Zachor

and Ben-Itzchak, 2017), suggesting that selecting the right

treatment for the right individual is critical. Currently, targeting

specific treatments based on behavioral profiles shows only

limited success in predicting response to treatment and ASD

progression (Hollocks et al., 2022). Recently, fMRI biomarkers

have shown promise in predicting response to treatment

better than behavioral measurements (Yang et al., 2016)—

disentangling disorder-specific variation can potentially bring

such neuromarker approaches closer to clinical validity. In

order to bridge the gap between descriptive studies and the

development of personalized interventions, research findings

should increasingly be used to predict future symptom trajectories

and the interventions that individuals are most likely to respond

to Bzdok et al. (2021).

Conclusions

Individual differences are a key challenge in understanding

biological bases of ASD and developing targeted treatments.

The field can tackle this challenge by making concerted

progress along several key research directions: improving

the behavioral characterization of participants, integrating

data modalities, modeling comorbidity, taking advantage

of new computational techniques, and ultimately studying

the link between individual variation and intervention

outcomes. Across all these research directions, disentangling

disorder-specific variation from unrelated variation will be an

essential asset.
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