
TYPE Brief Research Report

PUBLISHED 08 February 2023

DOI 10.3389/fnbeh.2023.1028190

OPEN ACCESS

EDITED BY

Tom V. Smulders,

Newcastle University, United Kingdom

REVIEWED BY

Marcos Antonio Lopez-Patiño,

University of Vigo, Spain

V. Anne Smith,

University of St Andrews, United Kingdom

Emiliano V. Rodriguez,

University of St Andrews, United Kingdom in

collaboration with reviewer VS

*CORRESPONDENCE

Wallace M. Bessa

wmobes@utu.fi

SPECIALTY SECTION

This article was submitted to

Motivation and Reward,

a section of the journal

Frontiers in Behavioral Neuroscience

RECEIVED 25 August 2022

ACCEPTED 23 January 2023

PUBLISHED 08 February 2023

CITATION

Bessa WM, Cadengue LS and Luchiari AC (2023)

Fish and chips: Using machine learning to

estimate the e�ects of basal cortisol on fish

foraging behavior.

Front. Behav. Neurosci. 17:1028190.

doi: 10.3389/fnbeh.2023.1028190

COPYRIGHT

© 2023 Bessa, Cadengue and Luchiari. This is

an open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Fish and chips: Using machine
learning to estimate the e�ects of
basal cortisol on fish foraging
behavior

Wallace M. Bessa1*, Lucas S. Cadengue2 and Ana C. Luchiari3

1Department of Mechanical and Materials Engineering, University of Turku, Turku, Finland, 2Programa de

Pós-Graduação em Engenharia Elétrica e de Computação, Universidade Federal do Rio Grande do Norte,

Natal, Brazil, 3Departamento de Fisiologia, Centro de Biociências, Universidade Federal do Rio Grande do

Norte, Natal, Brazil

Foraging is an essential behavior for animal survival and requires both learning and

decision-making skills. However, despite its relevance and ubiquity, there is still no

e�ective mathematical framework to adequately estimate foraging performance that

also takes interindividual variability into account. In this work, foraging performance

is evaluated in the context of multi-armed bandit (MAB) problems by means of

a biological model and a machine learning algorithm. Siamese fighting fish (Betta

splendens) were used as a biological model and their ability to forage was assessed

in a four-arm cross-maze over 21 trials. It was observed that fish performance

varies according to their basal cortisol levels, i.e., a reduced average reward is

associated with low and high levels of basal cortisol, while the optimal level maximizes

foraging performance. In addition, we suggest the adoption of the epsilon-greedy

algorithm to deal with the exploration-exploitation tradeo� and simulate foraging

decisions. The algorithm provided results closely related to the biological model and

allowed the normalized basal cortisol levels to be correlated with a corresponding

tuning parameter. The obtained results indicate that machine learning, by helping

to shed light on the intrinsic relationships between physiological parameters and

animal behavior, can be a powerful tool for studying animal cognition and behavioral

sciences.
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1. Introduction

Foraging plays an essential role in animal’s fitness and its efficacy has been shaped by

evolutionary processes (Pearson et al., 2014). However, in addition to its phylogenetic basis,

foraging behavior is also largely influenced by ontogeny (Hughes et al., 1992; Grecian et al.,

2018). In fact, both intrinsic and extrinsic factors that modulate behavior confer different

consequences on fitness (Dingemanse et al., 2004; Brown et al., 2007) and the huge variation

between individuals’ life history leads to several differences in the way they deal with stressful

situations, how sensitive to changes they are, or even how they learn new tasks.

But how do physiological responses correlate with these factors and their corresponding

behavioral patterns? In this context, Koolhaas et al. (1999) defined two main profiles: proactive

individuals show high exploration, are less sensitive to environmental changes, have low latency

to aggression and low hypothalamic-pituitary-adrenal (HPA) response, while reactive are less

explorative, highly dependent on environmental stability, have less routine development and

high HPA reactivity. Based on an extensive literature review, Toscano et al. (2016) suggested that

these behavioral traits and their interindividual variations can lead to specialization in foraging
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behavior. Cortisol levels are indeed highly influential on many

traits, including immune response (Zhang et al., 2022), reproductive

investment (Jiang et al., 2022), metabolism (Fernandes Silva et al.,

2022; Winberg and Sneddon, 2022), energy reallocation to cope with

stressors (Gorissen and Flik, 2016), and the behavioral and cognitive

responses (Alfonso et al., 2019, 2020; Torgerson-White and Sánchez-

Suárez, 2022). Furthermore, it is also important to emphasize that

in many animal species, basal and post-stress cortisol levels, as well

as behavioral responses, are correlated in such a way that these

characteristics are used to identify coping styles (Alfonso et al., 2020).

Recently, Morimoto (2019) showed that foraging decisions

can be represented in the context of multi-armed bandit (MAB)

problems. The MAB problem is a machine learning framework

used to investigate the exploration vs. exploitation dilemma: the

learning agent should try to maximize the cumulative reward

by choosing between exploitation (an immediate payoff based on

available information) or exploration (looking for options that

may lead to a better payoff). Reinforcement learning algorithms

proposed to deal with this problem usually rely on a parameter to

modulate the agent exploitation/exploitation tradeoff (Sutton and

Barto, 2018). Moreover, it is already known that different species have

developed different strategies to balance exploration and exploitation

depending on the ecological conditions of their environment. Within

the same species, these strategies may be modulated by specific

internal states and their corresponding physiological parameters.

Therefore, assuming that interindividual physiological differences

lead to distinct foraging behaviors, would it be possible to estimate

foraging performance based on physiological indicators?

In this work, we propose that basal cortisol can be used as a

predictor of the foraging behavior of the Siamese Fighting Fish,

Betta splendens, as well as its performance in MAB related tasks.

Despite their ancient evolutionary appearance, fishes stand for

good biological models. Their brain structure and rich behavioral

repertoire are comparable to those of mammals (Gerlai, 2014),

which offers many possibilities for research on vertebrate evolution,

including both cognitive and behavioral comparative analyses. To

model foraging decisions, we apply the ε-greedy algorithm (Sutton

and Barto, 2018) and suggest that the parameter ε, used to modulate

the exploration/exploitation tradeoff, correlates with normalized

basal cortisol levels of fish. The close agreement between the results

obtained with biological and computational models also allows us to

suggest that simple algorithms like this one can not only describe

quite complex behavioral patterns, but also characterize the decision

mechanisms of many organisms.

2. Materials and methods

2.1. Biological model

Eighty-six male Betta splendens (adults, 3 months old, acquired

in a local breeding facility in Natal/RN) were kept in individual tanks

(3 L, 15 × 15 × 15 cm3) in the vivarium of the Fish Laboratory

at the Federal University of Rio Grande do Norte throughout the

experimental phase. They were weighed and measured (0.87± 0.15 g

and 2.70 ± 0.21 cm) before being placed in the tanks. The tanks

were arranged side by side with an opaque partition between them

to avoid visual contact between the fish. The water in the tanks was

changed every 2 days and its quality was monitored daily: 28 ± 1◦C,

TABLE 1 Fish groups divided by basal cortisol level.

Group Sample size Cortisol
range (in
ng/mL)

Normalized
cortisol

(mean ± SE)

1 16 1.68–10.69 0.0289± 5.22E-03

2 17 12.78–28.55 0.1413± 9.85E-03

3 16 32.18–87,35 0.4103± 4.32E-02

4 16 90.50–117.33 0.8137± 1.53E-02

5 17 117.44–135.40 0.9251± 9.74E-03

pH∼ 6.7 and O2 ∼ 6mg/L. The photoperiod was set on a 12:12

light/dark cycle, and the animals were fed ad libitum twice a day with

commercial pellet food (Alcon Betta, 44% protein and 5% fat) and

frozen Artemia salina.

In the foraging task, a cross-maze was used: 10 cm high, with a

central area of 10 × 10 cm2, and four arms measuring 30 cm long

by 10 cm wide each. Each fish was individually placed in the central

area, in a lift-up start box, for 60 s and then released to explore the

maze. One of the cross-maze arms had a small red circular plate (3 cm

diameter) on which five units of Artemia salina were placed when

fish entered the area (reward area). The reward arm was randomly

chosen for each trial to prevent the fish from learning any other cues

other than the red circular plate. This procedure was performed 21

times (trials) over 11 days. A reward equal to one was assigned to

each trial in which the fish entered first the arm with the circular plate

(success), and equal to zero in the other cases (failure). There were no

cues on the maze walls but the feeding plate. A black curtain was used

to hide the researcher from the fish during the trials. After each trial,

the fish was removed from the maze and returned to its original tank.

All trials were recorded using a camcorder (JVC Full HD 60x, model

GZ-HM65BU) located above the tank.

To estimate basal cortisol levels, the fish were euthanized 24

h after the last trial, all at the same time, with a high dose of

anesthetic (clove oil, 10mL/L) and stored in individual Falcon tubes

at −20◦C. Each whole-body sample was macerated with 3mL of

phosphate-buffered saline (PBS) using a high-speed stirrer (Nova

Tecnica Homogenizador Potter NT 136). The resulting solution

was then centrifuged (e.g., for 10 min at 3000 g and 7◦C). To

standardize fish samples, 1 dL aliquots of supernatant from each fish

homogenate were collected and transferred to Eppendorf tubes. A

salivary cortisol ELISA kit (SLV 2930 Lot 64K044 DRG Diagnostics)

was used. Both cortisol extraction and kit validation followed

Sink et al. (2007). The cortisol test failed for three individuals

and for another one it presented an outlier, resulting in 82 valid

measurements. Moreover, to facilitate comparative analysis, the

cortisol levels were rescaled to range from zero to one using min-

max normalization and then the 82 fish were divided into five groups

(2 with 17 individuals, 3 with 16 individuals). Thus, in order to

allow a better visualization of the obtained results and facilitate the

identification of different foraging patterns, the fish were divided

into two groups with low levels of basal cortisol, two with high

levels and an intermediate group. Table 1 shows the fish groups

with their corresponding sample sizes, measured cortisol ranges (in

ng/mL) and normalized values (group means with standard errors).

An OpenDocument Spreadsheet with the foraging data is available

as Supplementary material.
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2.2. Computational model

The ε-greedy algorithm relies on a single parameter ε to define

the exploratory bias. The parameter can range from 0 to 1, which

directly corresponds to a continuum from high exploitation to high

exploration. At each iteration (trial), the algorithm chooses between

exploiting (with probability 1 − ε) the best arm so far or exploring

(with probability ε) a new one. After choosing an arm A, the

algorithm assigns the corresponding reward R to this action, updates

the number of times this arm was visited N(A) and its action-value

Q(A). The value Q(A) of an arm A represents the mean reward for

this action up to the current trial. After visiting the arm in a trial

and getting the corresponding reward, the action-value is updated as

follows Sutton and Barto (2018):

Q(A)← Q(A)+
1

N(A)

[

R− Q(A)
]

. (1)

The ε-greedy algorithm for a bandit with k arms is presented

in the box below and its implementation in Python is available as

Supplementary material. In the simulation studies, to replicate the

foraging task, four arms were considered a = [1, 2, 3, 4] but only

one of them yielded a reward R = 1 (for the other three arms there

was no payoff, R = 0). All fish had their computer versions properly

run, with each epsilon being assigned the corresponding normalized

cortisol level. Two sets of simulations were performed for the 82

epsilons: first with 21 trials for each ε (for comparative analysis with

fish) and then with 400 trials (to assess their long-term performance).

Set exploration probability ε

Initialize N(a)← 0, for a from 1 to k

Initialize Q(a)← 0, for a from 1 to k

repeat
Pick a random number p between 0 and 1

if p < ε then
Choose an arm at random:

A← random(a)

else
Choose best arm so far:

A← argmaxa Q(a)

end

Get reward of the chosen arm:

R← reward(A)

Update N(A)← N(A)+ 1

Update Q(A)← Q(A)+ [R− Q(A)]/N(A)

until last trial

Algorithm 1. ε-greedy for a k-armed bandit

3. Results and discussion

The foraging performance of both biological and computational

models after 21 trials is shown in Figure 1 and Table 2. The data

(mean± SE) are presented for each group based on the average

rewards obtained by the individuals. For each individual, the average

reward stands for the sum of its obtained payoffs divided by the

maximum possible score (21 in this case).

FIGURE 1

Foraging performance after 21 trials: average rewards (mean± SE)

from both fish and simulation groups organized by mean normalized

cortisol or equivalent mean epsilon ε̄.

TABLE 2 Average rewards from both fish and simulation groups after 21

trials.

Group ε-greedy (mean± SE) Betta splendens
(mean± SE)

1 0.2946± 0.1031 0.2976± 0.0346

2 0.4048± 0.0899 0.4034± 0.0548

3 0.4650± 0.0605 0.3690± 0.0500

4 0.3165± 0.0271 0.2054± 0.0425

5 0.2687± 0.0307 0.3165± 0.0200

It can be seen in Figure 1 and Table 2 that the results obtained

with the fish and with the corresponding computer simulations are

in close agreement, which allows us to suggest that the ε-greedy

algorithm is indeed capable of estimating the foraging performance

of the Siamese Fighting Fish, Betta splendens. Moreover, it also

supports the assumption that the algorithm can be used to investigate

the effects of physiological parameters on foraging behavior. By

observing the results in Figure 1, it can be verified that the normalized

cortisol level and the parameter ε show a good correlation with

respect to the average reward obtained in the corresponding groups.

In both cases, a reduced average reward is associated with low and

high values of ε (or the normalized basal cortisol, in the biological

model), while an optimal value maximizes foraging performance. In

fact, this variability can be explained from the algorithm’s point of

view, since ε is linked to exploratory bias, and its optimal value is

related to the best exploration/exploitation tradeoff for each foraging

task.

As expected, extreme levels of basal cortisol, both on the right

and on the left, lead to a lower foraging performance, according to an

inverted-U pattern. This inverted-U shape is commonly seen in the

relationship between glucocorticoids and performance in cognitive

functions such as learning and decision making (Salehi et al., 2010;

Schilling et al., 2013). As a matter of fact, both low and high cortisol

levels are linked to cognitive dysfunction (Maripuu et al., 2014).

It has been shown that cases of major depression correlate with a

very low level of cortisol (Keilp et al., 2016), which cannot stimulate
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FIGURE 2

Evolution of cumulative rewards for both fish and simulation groups: solid lines depicting mean values and shaded areas representing the standard errors.

(A) Fish from Group 1 (mean cortisol of 0.0289) over 21 trials. (B) Fish from Group 2 (mean cortisol of 0.1413) over 21 trials. (C) Fish from Group 3 (mean

cortisol of 0.4103) over 21 trials. (D) Fish from Group 4 (mean cortisol of 0.8137) over 21 trials. (E) Fish from Group 5 (mean cortisol of 0.9251) over 21

trials. (F) Five simulation groups over 400 trials. Observing the evolution of payo�s, two di�erent patterns of reward accumulation can be clearly

identified: while for lower values of cortisol payo�s increase progressively throughout the trials, as can be seen in (A, B), for intermediate and high values

the cumulative rewards reaches a stable plateau more quickly, as shown in (C–E). Long-term simulation results presented in (F) confirm these trends

observed with fish.

normal body and brain functioning, including motivation. On the

other hand, high cortisol levels are related to chronic stress, and

also associated with poor performance (Lupien et al., 2018). Thus,

inspecting the cortisol data, such variation was already expected, as

well as its relationship with the performance of the fish in the learning

task. The biological relevance here concerns the ability of animals

to learn and respond appropriately to environmental demands, i.e.,

animals that are in a situation of low or high levels of cortisol (derived
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from some previous situation experienced by them) may present

performance impairment and threat to fitness.

Like cortisol, other factors that influence foraging can affect

the animal’s ability or the way it learns, for example, the speed to

make associations (Wang et al., 2015). As suggested by Raoult et al.

(2017), low-stress fish show higher levels of activity and explore the

environment more than high-stress fish, which leads to learning the

reward location as a result of their proactive coping style (Koolhaas

et al., 1999).

It should be noted that the slight discrepancies observed for

intermediate and higher values of mean epsilon/cortisol in Figure 1

and Table 2 are likely due to the low number of trials, which can

lead to a greater performance variability, especially in cases where a

more exploratory behavior is involved. Moreover, in Group 4 (with

corresponding mean normalized cortisol of 0.8137) it happened that

25% of the individuals (4 out of 16) did not accumulate any reward,

which ended up reducing the average reward of the entire group

and increasing its discrepancy in relation to computer estimate. For

comparison purposes, in the other groups, at most one fish did not

accumulate a reward, which led to a closer agreement between the

data obtained with the fish and the algorithm. In order to make this

relationship even clearer, the correlation coefficient between the data

obtained with the fish and with the epsilon-greedy algorithm can be

calculated for two different scenarios:

1. With all groups included, where r = 0.62 (moderately correlated)

is obtained;

2. With all groups except Group 4, where r = 0.81 (highly correlated)

is obtained.

As a matter of fact, it is known that foraging performance

can be improved through learning, which in fish is most easily

measured by the number of exposures required (Warburton,

2003). However, this learning efficiency is heavily influenced

by the complexity of the task, which can make the minimum

number of trials range from <10 to more than 200 to reach

an asymptote (Hughes et al., 1992). For practical reasons,

associative tasks involving fish models are usually repeated 20

times (Luchiari et al., 2015) of which significant behavioral

changes (learning) begin to occur around the 12th trial. In

addition, internal factors such as hormone levels also affect the

animals’ performance.

Furthermore, if the evolution of cumulative rewards over trials

is inspected, two distinct patterns can be clearly observed. The

results (mean± SE) obtained with Betta splendens and ε-greedy

are presented in Figure 2. In Figures 2A, B, for instance, it can

be seen that for lower values of basal cortisol the payoffs increase

progressively over the trials, while for intermediate and high values

the cumulative rewards reaches a stable plateau more quickly, as

shown in Figures 2C–E. The ε-greedy algorithm in this context can

also help to confirm this trend in the long term (see Figure 2F).

The simulation of the five groups along 400 trials shows that the

best foraging performance is shifted to the left as the number

of trials increases. That is, if we select specific numbers of trials,

we will see that the best foraging performance, as the number of

trials increases, will gradually be obtained by individuals with lower

levels of basal cortisol. This suggests that the exploratory behavior

associated with higher basal cortisol levels is initially favored, but as

the number of trials increases, individuals with lower basal cortisol

levels, i.e., prone to exploitation, tend to perform better. Further

experiments involving more trials, different types of mazes and even

other biological models are expected to corroborate this conjecture.

It is worth mentioning that our biological results echo work on

individuals’ differences in speed-accuracy tradeoffs (Raoult et al.,

2012, 2017; Mamuneas et al., 2015), indicating that corticosteroids

modulate the learning performance. It also suggests that individuals

with different basal corticoid levels employ distinct learning strategies

and may need different number of trials to reach the same level

of performance.

Moreover, our findings endorse that multi-armed bandits can be

a reasonable framework to evaluate foraging decisions, as suggested

by Morimoto (2019). We show that the ε-greedy turns out to

be a simple tool but capable of describing both qualitatively and

quantitatively the animal behavior in foraging tasks. By means of a

stochastic approach, the algorithm allows the exploratory behavior to

be uniformly spread across all trials. This is an essential feature to

capture the ability of animals to make decisions in an ever-changing

dynamic environment.

Finally, it is important to highlight that this synergy between

computer and biological sciences can benefit both areas. In fact,

much of the work done on machine learning has been guided

by the research on animal cognition and behavior. Biologically

inspired schemes have indeed allowed the development of more

efficient algorithms for autonomous robots (Bessa et al., 2017,

2018). Furthermore, considering that decision-making algorithms

are already quite widespread in our society, with applications ranging

from targeted advertisements and recruitment choices to medical

diagnoses and prison sentences, it is crucial and urgent to better

understand their capabilities and limitations. In this sense, animal

behavior can provide powerful insights and end up helping to design

more efficient and ethical algorithms.
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