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Major depressive disorder (MDD) is amongst the most devastating psychiatric conditions
affecting several millions of people worldwide every year. Despite the importance of this
disease and its impact on modern societies, still very little is known about the etiological
mechanisms. Treatment strategies have stagnated over the last decades and very little
progress has been made to improve the efficiency of current therapeutic approaches. In
order to better understand the disease, it is necessary for researchers to use appropriate
animal models that reproduce specific aspects of the complex clinical manifestations at
the behavioral and molecular levels. Here, we review the current literature describing
the use of mouse models to reproduce specific aspects of MDD and anxiety in males
and females. We first describe some of the most commonly used mouse models and
their capacity to display unique but also shared features relevant to MDD. We then
transition toward an integral description, combined with genome-wide transcriptional
strategies. The use of these models reveals crucial insights into the molecular programs
underlying the expression of stress susceptibility and resilience in a sex-specific fashion.
These studies performed on human and mouse tissues establish correlates into the
mechanisms mediating the impact of stress and the extent to which different mouse
models of chronic stress recapitulate the molecular changes observed in depressed
humans. The focus of this review is specifically to highlight the sex differences revealed
from different stress paradigms and transcriptional analyses both in human and animal
models.

Keywords: stress, rodents, sexual dimorphism, resilience, susceptibility, behavioral stress responses,
transcription profiles/signatures

INTRODUCTION

Major depressive disorder (MDD) represents one of the top causes of disability worldwide (Vos
et al., 2017). Recent studies estimate that more than 20% of the population worldwide will be
affected at least once in their life by depressive episodes which ultimately translates into a major
burden on modern societies (Alonso et al., 2004). Despite the importance of the disease, little
progress has been made in understanding the etiologies of MDD. However, recent progress with
fast-acting antidepressant molecules shows promising perspectives in the treatment of this disorder
(Berman et al., 2000; Thelen et al., 2016; Mandal et al., 2019; Polis et al., 2019; Ouyang et al., 2021).
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From a clinical perspective, MDD is a highly heterogenous
disease defined by complex clinical manifestations including
depressed mood or irritability, anhedonia, grief, guilt, apathy,
self-injury, indecision, and concentration disorders. This also
includes psychomotor retardation, vegetative symptoms with
sleep, appetite, and stress hormone dysregulation that is
associated with either gain or loss of weight, suicidal ideation,
and cognitive disorder (American Psychiatric Association, 2003).
These clinical features are expressed and shared by both men and
women with MDD despite important sex differences (Weissman
and Klerman, 1977; Nolen-Hoeksema, 1987; Salk et al., 2017;
Eid et al., 2019). Past and recent epidemiological studies show
that the prevalence of MDD is about 20% in a lifetime with
a higher incidence in women, and females are two-three times
more susceptible than males. Women also exhibit earlier age
of onset (Kessler et al., 1993), higher symptom severity from
childhood (Kessler et al., 2007; Marcus and Flynn, 2008; McLean
et al., 2011; Avenevoli et al., 2015), and higher rates of depressive
episodes (Bertschy et al., 2016) than men. At the clinical
level, men and women diagnosed with MDD express more
or less the same symptoms although their prevalence varies
in a sex-specific fashion. For instance, aggression, substance
abuse, and risk-taking behaviors are more prevalent in males
(Martin et al., 2013), while women with MDD exhibit higher
rates of comorbid anxiety (Regier et al., 1990; Kessler et al.,
1994; Schuch et al., 2014). A higher prevalence of atypical
depression is also observed in women. In men and women, this
is defined by the expression of reactive mood to environmental
cues, increased appetite, hypersomnia, leaden paralysis, and
interpersonal rejection sensitivity. While MDD in women is
defined by a higher prevalence of internalized disorders such as
ruminating and emotionality, externalized symptoms are more
common in men including constraint and aggressive behavior
(Krueger et al., 2001).

Crucial insights into the molecular and functional
mechanisms underlying differences between males and
females with MDD have resulted from studies performed
in human populations or post-mortem tissue, some of
which have forged our pathophysiological conception of
the disease (Rajkowska, 2003; Tham et al., 2011; Zhao
et al., 2019). For instance, studies have revealed functional,
morphological, and molecular changes affecting the activity
of several brain regions in MDD (Frodl et al., 2008;
Ramezani et al., 2014; Lu et al., 2016; Li et al., 2021). These
studies alone have generally provided limited mechanistic
insights into the pathophysiological processes underlying the
expression of the disease. Mechanistic insights have also been
obtained using animal models of stress or depressive-like
behaviors. Indeed, past decades have seen the development
of several animal models of stress-induced depressive-like
behaviors. These models have mostly been developed
based on McKinney and Bunney’s criteria (McKinney
and Bunney, 1969) of external validity that was later
refined by Willner (Willner, 1984, 1991) as predictive, face,
and construct validity. This has led to the development
of a wide variety of mouse models based on physical,
psychosocial, and/or genetic paradigms, each reproducing

common and distinct aspects of stress and anxiety-like
behaviors in humans (Deussing, 2006; Abelaira et al., 2013;
Planchez et al., 2019).

With technological developments to map transcriptional
profiles induced by different types of stress, these models
provide unique insights into the transcriptional programs that
underly the expression of complex behavioral phenotypes in
MDD. Importantly, by combining human and mouse data,
these studies are now providing highly translational insights
into the morphological and functional impact of stress and the
function of the brain while highlighting some of the molecular
mechanisms underlying these effects (aan het Rot et al., 2009;
Duman and Voleti, 2012; Penninx et al., 2013). However, most
of the research on this topic has been performed in males,
predominantly leaving females understudied for years. Several
of the most widely used mouse models of stress and anxiety
were originally developed in males; only very recently have
the models been revisited to include female cohorts (Lopez
and Bagot, 2021). This will provide new opportunities to
better understand the common but also distinct mechanisms
underlying the development and expression of anxiety and
depressive-like behaviors in males and females.

In this review, we first elaborate on the behavioral features
exhibited by mouse models of stress with an emphasis on their
respective validity in bothmales and females.We then discuss the
most recent findings generated by genome-wide transcriptional
studies in both human and mouse models. We also review
the main findings that describe the transcriptional impact of
different types of chronic stress inmales and females. Along these
lines, we draw important parallels with findings from studies
in humans with MDD to evaluate the capacity of these models
to reproduce the transcriptional signatures associated with the
expression of the human disease in a sex-specific fashion.

ANIMAL MODELS OF DEPRESSION

The clinical heterogeneity of MDD and anxiety has always
represented a challenge in selecting appropriate mouse models.
According to McKinney and Bunney (1969), animal models
should mimic the human condition (face validity), be relevant
to human pathological mechanisms (construct validity), and
demonstrate drug efficacy (predictive validity). In this context:
(1) face validity refers to the capacity of a model to reproduce
the phenomenological, behavioral, anatomical, or phenotypic
properties observed in human patients; (2) construct validity
refers to the stress paradigm (psychosocial, physical, etc.) to
explain theoretically what humans experience in real life; and
(3) predictive validity refers to the capacity of pharmacological
or non-pharmacological treatments to rescue anxiety and
depressive-like behaviors as it would in humans (Willner, 1984,
1991; McKinney, 2001; Willner and Mitchell, 2002; Nestler and
Hyman, 2010). Additional features have since then been included
in these criteria including mechanistic (common underlying
mechanisms in humans and animals), homological (adequate
species and strains), and pathogenic (challenges triggering the
expression of the pathological state) validity (Belzung and
Lemoine, 2011). In the following section, we start by describing
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some of the most widely used mouse models of anxiety- and
depressive-like behaviors to evaluate their respective capacity to
achieve high levels of validity in both males and females.

Chronic Unpredictable/Variable Stress
Models of stress based on the administration of physical stressors
refer to the idea that low levels of chronic and unpredictable
physical stress, mimicking daily-life stress exposure in humans,
trigger the expression of anxiety and depressive-like behaviors
in individuals (Kendler et al., 1998, 1999; Haroon et al., 2012).
Indeed, clinical and epidemiological studies report that mild
but repeated stressors throughout life increase vulnerability to
anxiety and depression in men and women (Kessler et al.,
1985). Examples of these models that rely on the repeated
administration of physical stressors include chronic mild stress
(CMS; Katz et al., 1981; Katz, 1982; Forbes et al., 1996; Willner,
2016), chronic unpredictable stress (CUS; Monteiro et al.,
2015), chronic unpredictable mild stress (CUMS; Frisbee et al.,
2015; Burstein and Doron, 2018), and chronic variable stress
(CVS; Willner et al., 1992; Hodes et al., 2015; Labonté et al.,
2017) models. CUMS/CMS involves continuous (6–8 weeks)
unpredictable exposure to stressful stimuli including wet cage,
damp bedding, bedding removal, cage tilt, alterations of
light/dark cycle, shallow water bath, restraint, and predator
sounds/smells (Katz et al., 1981; Willner, 2016). CVS involves
daily exposure to mild foot shocks, tail suspension, or tube
restraint for 3 weeks (LaPlant et al., 2009; Hodes et al., 2014;
Labonté et al., 2017). Importantly, each model induces a complex
phenotype defined by anxiety, behavioral despair, and anhedonia
in bothmales and females. Additionally, subchronic CVS (sCVS),
consisting in exposing mice to 6 days of stress rather than
21 days, has been shown to induce an anxiety and depressive-like
phenotype in females but not males, mimicking variations in
stress susceptibility in both sexes (Hodes et al., 2015; Fatma and
Labonté, 2019). The chronic restraint stress (CRS) has often been
used as an alternative to CUMS or CVS. However, the nature of
the paradigm, along with the type of behavioral consequences
induced by CRS, challenges its construct and face validity
criteria. Males seem to respond to CRS in a time-dependent
manner (Selye, 1976; Beck and Luine, 1999, 2002; Gomez
et al., 2012; Gomez, 2013), which confirms the allostatic load
concept (McEwen and Stellar, 1993), while females demonstrate
a resilient phenotype (Bowman et al., 2001; Bowman and Kelly,
2012). Chronic treatment with antidepressants reverses these
depressive-like phenotypes (Stone et al., 1984; Ulloa et al., 2010;
Yu et al., 2012).

Learned Helplessness
Learned helplessness is a model in which animals are exposed to
unpredictable stress, after which they develop behavioral deficits
in escaping aversive situations. Subjecting mice to situations
in which they have no control (e.g., electroshocks) results in
motivational, cognitive, and emotional deficits (Abramson et al.,
1978). The behavioral deficits induced by learned helplessness
are characterized by anxiety, anhedonia, and behavioral despair
in males and females (Caldarone et al., 2000; Anisman and
Merali, 2001; Chourbaji et al., 2010) that can be reversed by

the administration of fast-acting antidepressants drugs (Ramaker
and Dulawa, 2017). Additionally, not all mice in this model
display helplessness (22%), with a high percentage (78%)
exhibiting resilience regardless of the mice’s sex (Kim et al.,
2016), further supporting the face validity. However, it should
be noted that controversial aspects restrict its usage (Teasdale,
1978). Indeed, it has been suggested that learned helplessness
may rely on the motivation to avoid aversive challenges (Maier
et al., 1976; Dweck and Wortman, 1982; Kuhl, 1984), rather
than inducing a robust emotional response (Beck, 1967, 1987;
Abramson et al., 1989; Rose and Abramson, 1992; Possel and
Thomas, 2011; Liu et al., 2015). Even though this model
reproduces certain behavioral aspects of anxiety and depression
in humans, further validation is required to truly reproduce the
emotional responses associated with anxiety and MDD in men
and women.

Social Isolation
Psycho-social stress refers to any situation that threatens the
psychological need of being affiliated with others and tomaintain
social self (Cannon, 1932). This can range from social evaluation
of performance achievement to social devaluation such as
bullying (Björkqvist, 2001; Silver and Teasdale, 2005; Brunstein
Klomek et al., 2007; Nedg et al., 2011; Vinkers et al., 2014). In
animals, this concept has been modeled by different approaches
but mainly through prolonged social isolation (SI; Panksepp
et al., 1991). SI has a high construct validity and is highly relevant
to the study of human depression and anxiety disorders (Costello
and Kendrick, 2000; Heinrich and Gullone, 2006; Wallace et al.,
2009). SI also achieves good face validity from a behavioral
perspective. For instance, losing a partner or chronic SI induces
the expression of depressive-like behaviors in monogamous
prairie voles, notably anhedonia, with females being more
sensitive to isolation (Grippo et al., 2007). Prolonged SI also
induces sex-specific depressive and anxiety-like behaviors such
as despair, compulsive and obsessive behaviors, and cognitive
defects in a wide range of species including mice, rats, flies,
birds, and monkeys (Mercier et al., 2003; Cacioppo et al., 2006;
Nonogaki et al., 2007; Apfelbeck and Raess, 2008; Cacioppo and
Hawkley, 2009; Han and Richardson, 2010; Makinodan et al.,
2012; Amiri et al., 2014; Hom et al., 2017; Tan et al., 2019; Rogers
et al., 2020). Interestingly, rather than inducing social avoidance,
socially isolated mice have been reported to interact more
with their congeners (Lefebvre et al., 2020). Furthermore, when
returned to social groups, the behavioral alterations induced by
SI are rapidly rescued by social interactions (Zhao et al., 2021).
Nonetheless, several molecular alterations that reproduce the
human condition have been reported in socially isolated animals,
further supporting the face validity of this model. Yet, most of
these studies have been performed in males (Lu et al., 2003; Liu
et al., 2012; Siuda et al., 2014; Cole et al., 2015; Ieraci et al., 2016).

Chronic Social Defeat Stress
The chronic social defeat stress (CSDS) animal model reproduces
the context of bullying and excessive competitive behaviors
in a social environment. In humans, these stressors are
strongly associated with a significant increase in adverse mental
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health consequences and elevated suicide rates (Meltzer et al.,
2011). CSDS involves submitting a mouse, either male or
female, to repeated bouts of physical subordination followed by
prolonged sensory stressors (odor, vocalization, intimidation)
without physical contact (Berton et al., 2006; Golden et al.,
2011; Harris et al., 2018). By design, it represents a model
combining physical and psychosocial bases. Given that male
mice are naturally not aggressive with female congeners,
protocol adaptations have been proposed to study the impact
of chronic social stress in females. One involves luring the
resident male by masking the females’ scent and pheromones
(Harris et al., 2018). Consequently, the resident males impose
repeated bouts of physical aggression on the intruder females.
Another approach involves triggering aggressive behaviors
in resident male mice by chemogenetically activating the
ventromedial hypothalamus. This results in prolonged aggressive
behaviors toward female intruders (Takahashi et al., 2017).
Interestingly, male and female mice that endure CSDS develop
phenotypes of susceptibility or resilience to social stress.
This confirms the high levels of face validity. Susceptibility
to social stress in both sexes is defined by the expression
of social withdrawal, anhedonia, anxiety, behavioral despair,
cognitive impairments, and metabolic alterations (Takahashi
et al., 2017; Harris et al., 2018). In contrast, resilient animals
do not express social withdrawal nor anhedonia but exhibit
anxiety-like behaviors (Krishnan et al., 2007; Golden et al.,
2011; Takahashi et al., 2017; Harris et al., 2018). Importantly,
susceptibility-related behavioral deficits can be rescued by the
administration of conventional and fast-acting antidepressant
molecules supporting the predictive validity of this model
in both males and females (Hare et al., 2017; Hashimoto,
2019).

It should be noted that susceptibility and resilience to social
stress are greatly influenced by the mouse’s genetic background
(Goyens and Noirot, 1975; Kudryavtseva and Bakshtanovskaya,
1989; Kudryavtseva, 1994; Fuchs et al., 2001; Berton et al., 2006;
Huhman, 2006; Miczek et al., 2008; Golden et al., 2011; Laine
et al., 2018). The original CSDS protocol (Berton et al., 2006;
Golden et al., 2011) was designed with the C57BL/6J mouse
strain and reported a rate of resilience to social stress around
30% to 40% (Berton et al., 2006; Golden et al., 2011). However,
studies that compared different inbred mouse strains reported
varying proportions, with 23% of BALB/c, 19% of 129, and 5%
of D2 mouse strains being resilient to CSDS (Dadomo et al.,
2011; Razzoli et al., 2011; Savignac et al., 2011; Laine et al., 2018).
Together, this suggests that the genetic background in mice has
an important impact on the coping strategies with social stress,
and more work should be performed with male and female mice
to test whether the same conclusions stand.

Vicarious Chronic Social Defeat Stress
Interestingly, CSDS paradigm variations are now used to study
the impact of witnessing social defeat in mice. The vicarious
CSDS model (Warren et al., 2013; Sial et al., 2016; Iñiguez
et al., 2018) consists of having mice witnessing conspecifics
during repeated bouts of social defeat. As such, it relies
on emotional and psychological stressors with an important

social component. The model induces a variety of behavioral
alterations including decreased social interaction, anxiety, weight
loss, and increased corticosterone levels (Warren et al., 2013;
Qi et al., 2022) expressed in a transient but also prolonged
fashion. Similar to the CSDS model, susceptible and resilient
phenotypes are also produced. Antidepressant treatments
improved the depressive-like behaviors (Savignac et al., 2011;
Yoshioka et al., 2022).

Social Instability Stress
Another model with a strong psychosocial component is the
social instability stress (SIS) model (Schmidt et al., 2008; Green
and McCormick, 2013; Scharf et al., 2013; Yohn et al., 2019)
where, male and female mice are exposed to unstable social
hierarchies every 3 days for 7 weeks, and results in the expression
of depressive- and anxiety-like behaviors. Anhedonia is a striking
feature of the SIS model while hormonal stress response and
novelty response remain unchanged (Dadomo et al., 2011). These
effects are reversed by fluoxetine in both sexes (Yohn et al.,
2019). This paradigm doesn’t discriminate between resilient and
susceptible phenotypes.

Early-Life Stress
Models such as maternal separation in mice (Plotsky and
Meaney, 1993; Meaney, 2001; Millstein and Holmes, 2007) and
variations in maternal behavior in rats (Champagne et al., 2003;
Brunelli et al., 2015) are also commonly used to reproduce the
impact of early-life stress (ELS) on the capacity to deal with
stress later in life. In humans, early life trauma, childhood abuse,
and parental neglect have significantly been associated with the
development of mood disorders (Negele et al., 2015; Lippard and
Nemeroff, 2020) in men and women. In rodents, ELS during
postnatal development results in lifelong cognitive and emotional
alterations that interfere with animals’ ability to react and cope
with subsequent stressful events (Everson-Rose et al., 2003). For
instance, separated pups are more submissive, and generally
seek passive coping strategies later in life (Ménard et al., 2016).
Similarly, maternal separation inmice increases the susceptibility
to social and physical stress in adulthood in both males and
females (Tsuda and Ogawa, 2012; Rana et al., 2015).

Male and female pups raised by mothers that provide low
levels of licking and grooming early in life also develop anxious
and depressive-like behaviors during adulthood, as opposed to
pups raised with high licking and grooming mothers (Liu et al.,
1997; Caldji et al., 1998; Zhang et al., 2005). Variations in
maternal care can also be induced by either the destruction of
the nests or the reduction of nesting material available to the
pups (Brunson et al., 2005; Cui et al., 2006; Ivy et al., 2008;
Rice et al., 2008). Indeed, these manipulations increase maternal
anxiety that trigger deficient and abusive maternal care (Dalle
Molle et al., 2012; Murthy and Gould, 2018). Pups raised in
these conditions exhibit anxiety- and depressive-like behaviors in
adulthood, supporting the translational validity of this approach
(Ivy et al., 2008; Wang et al., 2011; Raineki et al., 2012; van
der Kooij et al., 2015) although negative results have also been
described (Brunson et al., 2005; Rice et al., 2008; van der Kooij
et al., 2015).
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Environmental and Genetic Constructs
Models based on genetic considerations are also used to study
anxiety and depressive-like behaviors in both sexes. For instance,
the Flinders Sensitive rat strain displays behavioral changes such
as diminished appetite, psychomotor retardation, as well as sleep
and immune alterations that resemble specific aspects of clinical
MDD attributes in males and females (Overstreet et al., 2005;
Dalla et al., 2009; Kokras et al., 2009; Kokras and Dalla, 2014).
However, these rats do not exhibit anhedonia, one of the main
clinical manifestations of MDD (Overstreet andWegener, 2013).
Wistar Kyoto rats are hypertensive and exhibit high anxiety-like
behavior in control conditions (Will et al., 2003; McAuley
et al., 2009). Males exhibit anhedonia, hypophagia, and weight
loss/gain, while these characteristics in females are absent (Burke
et al., 2016). Similarly, rats with high (bHR) and low (bLR)
levels of exploratory activity in novel environments (Clinton
et al., 2011) are used to reproduce aspects of internalizing and
externalizing behaviors associated with psychiatric conditions
such as anxiety and MDD. High responder rats (bHR) are often
highly exploratory, disinhibited, hyperactive and aggressive while
low responders (bLR) exhibit hypo-locomotion, anxiety, and
depressive-like behaviors to novelty (Stead et al., 2006; Flagel
et al., 2010, 2014; Stedenfeld et al., 2011; Prater et al., 2017; Birt
et al., 2021). Importantly, these features in both strains begin
in early developmental phases, supporting both the construct
and face validity of this model. However, as for most models,
the majority of studies performed with these rat lines have been
accomplished in males.

Overall, these models support the idea that distinct stress
types induce common behavioral phenotypes but also distinct
behavioral responses (i.e., social withdrawal, anhedonia,
behavioral despair, etc.; Figure 1). It also suggests that no single
mouse model can reproduce the full complexity of anxiety
and MDD conditions in humans. Rather, one should consider
using a model to reproduce one specific aspect, symptom,
and/or clinical manifestation of the disease. One also needs
to know if these models can reproduce the molecular and
transcriptional alterations associated with the human condition.
In the next section, we elaborate on the capacity of these models
to reproduce not only some of the behavioral features relevant
to the disease in humans, but also the transcriptional alterations
affecting the brain of men and women suffering from anxiety
and depression.

SEX-SPECIFIC MOLECULAR
ALTERATIONS IN MDD

In addition to its capacity to reproduce behavioral features
relevant to a human condition, a model’s face validity also
relates to its ability to replicate the molecular alterations
associated with the disease. This important aspect has been
investigated by several groups over the past years, most
often using gene candidate approaches (Fatma and Labonté,
2019). Historically, this strategy has been mostly applied to
the study of males. Nevertheless, there has been a recent
interest in the identification of molecular mechanisms that

FIGURE 1 | Schematic representation of a circle diagram regrouping the
main symptoms (anxiety, social withdrawal, behavioral despair, metabolic
dysregulation, and anhedonia) characterizing stress responses in a variety of
animal models in males and females. Some unknown results remain,
particularly for the resilient group of the vicarious CSDS model, as well as the
controversial results concerning the anxiety displayed or not in the social
instability model. Abbreviations: CVS/CUMS, chronic variable stress/chronic
unpredictable mild stress; CSDS, chronic social defeat stress; SI, social
isolation; ELS, early life stress.

could underly some aspects of the sexual differences in the
expression of anxiety and MDD in men and women. With
the availability of genome-wide approaches, combined with the
development of highly comprehensive computational strategies,
recent studies revealed the transcriptional structures that define
stress responses.

Transcriptional Studies in Human
Post-mortem Tissue
Global analyses of the male transcriptome in MDD have revealed
several gene-related alterations to different pathways including
the glutamatergic, GABAergic, serotonergic, and polyaminergic
systems across several cortical and subcortical brain regions
(Choudary et al., 2005; Sequeira et al., 2007, 2009, 2012;
Klempan et al., 2009; Bernard et al., 2011; Duric et al., 2013).
Other studies of cortical regions reported alterations in lipid
metabolism, immune response, ATP synthesis, regulation of
transcription and translation, fibroblast growth factor signaling,
and cell proliferation (Evans et al., 2004; Iwamoto et al.,
2004; Kang et al., 2007; Tochigi et al., 2008; Klempan
et al., 2009; Lalovic et al., 2010). Furthermore, changes in
the regulation of the hypothalamic–pituitary–adrenal (HPA)
axis and in the control of circadian rhythms have been
reported in the hypothalamus (Wang et al., 2008) and
cortical/subcortical regions (Li et al., 2013). However, fewer
studies have assessed female transcriptional regulation in MDD.

Frontiers in Behavioral Neuroscience | www.frontiersin.org 5 May 2022 | Volume 16 | Article 845491

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Touchant and Labonté Transcriptional Signatures in Stress and MDD

The large majority of these studies adopted a candidate gene
approach, showing alterations in brain-derived neurotrophic
factor (BDNF), GABAergic, somatostatin (SST), cholinergic,
serotonergic, and glutamatergic systems as well as alterations
in mitochondrial, energy metabolism, and circadian rhythms in
cortical and limbic regions (Boldrini et al., 2008; Szewczyk et al.,
2009; Goswami et al., 2010; Lin et al., 2011; Guilloux et al.,
2012; Tripp et al., 2012; Bassi et al., 2015; Gray et al., 2015;
Seney et al., 2015).

Unfortunately, very few studies directly compared male and
female transcriptional profiles. This leaves little comprehension
of the molecular mechanisms underlying the expression of
the disease in both sexes. The extent to which transcriptional
signatures differ between males and females in MDD was
assessed by a series of studies published recently. Using RNAseq,
Labonté et al. (2017) compared transcriptional signatures across
six post-mortem brain regions frommen and women with MDD
reporting roughly 5%–10% of genes differentially expressed in
males and females across all six brain regions. Not only was
there a small overlap reported between men and women with
MDD, but the directionality of the effects was often opposite in
different brain regions. A similar lack of overlap was reported
in independent studies also performed on post-mortem brain
samples from men and women with MDD (Seney et al., 2018;
Girgenti et al., 2021). More recently, analyses of peripheral blood
cell samples from MDD patients reported mostly an overlap of
the transcripts regulated by the glucocorticoid receptor activation
in both men and women. But genetic variants acting on
downstream epigenetic and regulatory elements were regulated
in a sex-specific manner. This finding was correlated to the
transcriptional signatures found in post-mortem brain tissue and
the genome-wide association studies (GWAS) analyses showing
an enrichment of these variant transcripts associated with MDD
(Moore et al., 2021).

These results have been further expanded by the use
of network-based approaches. Combined with conventional
differential gene expression analyses, network-based approaches
provide detailed data-driven molecular classifications associated
with specific pathological states such as Alzheimer’s disease
(Zhang et al., 2013), autism (Parikshak et al., 2013; Willsey
et al., 2013), post-traumatic stress disorder (Breen et al., 2015),
neurodegenerative diseases (Narayanan et al., 2014), stress in
mice (Bagot et al., 2016, 2017; Labonté et al., 2017; Lorsch
et al., 2018, 2019; Scarpa et al., 2020; Walker et al., 2022a),
and MDD in humans (Labonté et al., 2017; Scarpa et al.,
2020). This strategy revealed the existence of male and female
MDD-specific gene networks modulating stress susceptibility in
a sex-specific fashion via the activity of hub genes controlling
distinct functional pathways. For instance, the authors identified
the gene encoding for DUSP6 in females and EMX1 in males
as drivers of stress susceptibility in a sex-specific fashion.
The downregulation of DUSP6 in the medial prefrontal cortex
(mPFC) increased stress susceptibility while its overexpression
rescued stress-induced depressive and anxiety-like behavioral
deficits in females but not males (Labonté et al., 2017). This was
associated with changes in the activity of the ERK intracellular
signaling cascade and in the activity of pyramidal neurons in the

mPFC of females but not males. Alternatively, the overexpression
of EMX1 in the mPFC increased depressive and anxiety-like
behavioral responses in males but not females. This was also
consistently associated with a potentiation of pyramidal neuron
activity in a sex-specific fashion (Labonté et al., 2017). It should
be emphasized that DUSP6 was consistently downregulated in
the mPFC of both women with MDD and stressed female mice
after CVS. Additionally, an increased phosphorylation of ERK
was found in females from both species in pyramidal neurons
but not GABAergic interneurons. DUSP6 downregulation in the
mPFC, while increasing stress susceptibility, also reproduced
a large proportion of the transcriptional changes observed
in depressed and stressed females. Together, these findings
highlight the contribution of DUSP6 in the mPFC as a female-
specific driver of stress susceptibility, and strongly supports the
capacity of CVS to reproduce specific behavioral and molecular
aspects of MDD in a sex-specific fashion.

Similar analyses with human cohorts also revealed a major sex
difference in the expression of long non-coding RNAs (lncRNAs;
Issler et al., 2020). Issler and colleagues recently revealed
regulation of lncRNAs associated with depression in brain region
and in a sex-specific fashion. Roughly 3% of differentially
expressed lncRNA were commonly affected in men and women
withMDD, similar to the levels reported above for protein coding
genes (5%–10%; Labonté et al., 2017). The authors identified the
primate-specific lncRNA LINC00473 as a potential sex-specific
mediator of depression in females specifically. The analyses
revealed that this lncRNA was consistently downregulated
across brain regions in women but not men with MDD, and
its expression was strongly correlated with protein coding
genes previously associated with MDD including DUSP6, ARC,
NR4A1, EGR1, and EGR2 (Orsetti et al., 2008; Covington et al.,
2010; Li et al., 2015; Labonté et al., 2017). Interestingly, the
downregulation of LINC00473 in the mPFC was sufficient to
rescue the social withdrawal induced by CSDS, and anxiety-
and compulsive-like behaviors induced by CVS in females but
not males (Issler et al., 2020). The authors further provided
functional data suggesting that the pro-resilient effects induced
by the downregulation of this lncRNA are associated with a
reduction of the activity of pyramidal neurons (Issler et al., 2020).
Interestingly, these effects are similar to what was reported with
the downregulation of DUP6 in females’ mPFC (Labonté et al.,
2017), by impacting the activity of the CREB pathway known
for its involvement in MDD (Carlezon et al., 2005). Whether
these effects may be mediated by similar intracellular cascades
or not, these results suggest that lncRNAs, while interacting with
protein coding genes, are involved in the control of depressive-
and anxiety-like behaviors in humans and mice.

More recently, insights into the transcriptional signatures
associated with depressive traits and states have been made
(Shukla et al., 2021). Using RNAseq from the anterior cingulate
gyrus, Shukla and colleagues investigated transcriptional
signatures from four different cohorts during: a first depressive
episode; remission after the first episode; recurrent episodes,
or remission after recurrent episodes. Interestingly, these
analyses highlighted several patterns of differentially expressed
genes, some of which showed consistent changes across every
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phase, but also robust patterns oscillating between episodes
and remission phases. Importantly, only minimal overlap was
found between genes found in the episode and remission
phases. Further deconvolution analyses suggested that a cluster
of genes co-expressing GABAergic markers such as SST, VIP
(vasoactive intestinal peptide), and CRH (corticotrophin-
releasing hormone) displayed phasic changes according to the
disease states. This suggests that changes in interneuron function
in the mPFC may be involved in the transition from state to
trait phases in men’s MDD. Unfortunately, this study included
only a limited number of samples from women, that prevented
the authors to perform sex-specific analyses. It would be wrong
to assume these findings are applicable to women with MDD,
as transcriptional signatures from men and women with MDD
differ. More work will be required to identify the transcriptional
signatures defining state and trait MDD in the female brain.
Nevertheless, these findings are consistent with previous studies
performed in humans and mouse models of stress and support
the alteration of the GABAergic signaling as a potential driver
of depressive-like behaviors (Tripp et al., 2012; Soumier and
Sibille, 2014; Hodes et al., 2015; Lin and Sibille, 2015; Shepard
et al., 2016; Fee et al., 2017; Fuchs et al., 2017; Czéh et al.,
2018; Shepard and Coutellier, 2018; Todorović et al., 2019;
Girgenti et al., 2021). By dissociating transcriptional changes
identified with depressive state and trait, these findings represent
a significant step forward in the understanding of the molecular
mechanisms underlying the expression and the consolidation of
the disease.

Transcriptional Studies in Mouse Models
It is interesting to note that a number of studies confirmed the
capacity of different types of stress to reproduce a significant
proportion of the molecular alterations associated with MDD in
both sexes. For instance, consistent low transcriptional overlap
has been reported in the mPFC and nucleus accumbens (NAc)
of males and females after CVS (Hodes et al., 2015; Labonté
et al., 2017). Several functional pathways have also been shown
to be enriched with differentially expressed genes (DEG) in
both human MDD and stressed males and females (Labonté
et al., 2017; Scarpa et al., 2020). These changes result from
alterations in the epigenetic regulation of gene expression that
include modifications at the DNA methylation level. Indeed,
the overexpression of the DNA methyltransferase 3 alpha
(Dnmt3a) in the NAc was shown to increase stress susceptibility
in both sexes while its downregulation made female mice
resilient to 6 days of variable stress with no effect in males
(Hodes et al., 2015). Interestingly, these behavioral effects were
associated with significant transcriptional alterations distinctly
affecting males and females. CVS was also shown to alter
the regulation of microRNA (miRNA) expression discernably
in males and females (Pfau et al., 2016). Previous analyses
using RNAseq to screen miRNA profiles in males and females
that underwent CVS revealed highly sex-specific signatures
proposing that susceptibility and resilience to sCVS exhibited
by males and females may result from a complex remodeling of
miRNA signatures affecting coding genes. This was suggested for
lncRNAs in human brains as well (Issler et al., 2020).

A similar reorganization of transcriptional structures was
observed following CSDS (Bagot et al., 2016, 2017; Lorsch et al.,
2018, 2019; Scarpa et al., 2020). In addition to what extent
stress changes transcriptional profiles in the brain, these studies
confirmed that resilience is a mechanism involving the activation
of specific transcriptional programs required to elaborate and
consolidate appropriate behavioral strategies to cope with stress.
This was reported both at the differential expression and the
gene network levels (Bagot et al., 2016, 2017; Lorsch et al., 2018,
2019; Scarpa et al., 2020), similar to what was observed in human
MDD, but also after CVS and SI (Labonté et al., 2017; Seney
et al., 2018; Scarpa et al., 2020). However, none of these studies
included females, limiting their interpretation to males only. At
the differential expression level, the number and identity of genes
differentially expressed across brain regions were drastically
different between males susceptible and resilient to CSDS (Bagot
et al., 2016, 2017; Scarpa et al., 2020). The transcriptional
organization of gene networks was also different between both
phenotypes, with distinct gene networks being associated with
the expression of stress susceptibility and resilience in males
after CSDS. Importantly, the behavioral contribution of these
gene networks was confirmed by a series of behavioral and
functional studies. The susceptible-specific hub genes encoding
for the Dickkopf Like Acrosomal Protein 1 (Dkkl1) and the
neurogenic differentiation transcription factor 2 (NeuroD2),
increased susceptibility to social stress, and induced behavioral
despair and anxiety-like behaviors when overexpressed in the
ventral hippocampus (vHPC) but not in the mPFC of male
mice (Bagot et al., 2016). Overexpression of the gene sidekick
cell adhesion molecule 1 (Sdk1), in the vHPC also promoted
depressive and anxiety-like behavioral features to social stress.
However, its overexpression in the mPFC induced pro-resilient
effects in male mice (Bagot et al., 2016). Interestingly, the
behavioral effects observed after the overexpression of these
genes were associated with changes in neuronal activity in the
vHPC. The overexpression of both Dkk1l and Sdk1 increased
spontaneous excitatory postsynaptic current frequency with no
effect on amplitude (Bagot et al., 2016). Furthermore, the
overexpression of these two hub genes induced a significant
reorganization of the transcriptional structure of their respective
gene networks in the vHPC (Bagot et al., 2016). Overall, this
suggests that the regulation of specific hub genes promotes
the expression of stress susceptibility by imposing functional
changes in the activity of specific neuronal populations via a
reorganization of its own network transcriptional structure. As
these findings apply to males only, more work is needed to
define the transcriptional profiles underlying the expression of
susceptibility and resilience to social stress in female mice.

Further research on the transcriptional organization of gene
networks in susceptible and resilient mice identified the Esr1
gene, encoding for the estrogen receptor 1, as an upstream
regulator that drives resilience to social stress in the NAc.
The overexpression of Esr1 in the NAc generated a robust
pro-resilient phenotype in males exposed to CSDS and in
females that experienced sCVS (Abelaira et al., 2013). These
behavioral changes coincided with a consistent reorganization
of transcriptional signatures. The authors noted a major
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overlap between transcriptional signatures from males after
Esr1 overexpression and resilient but not susceptible males
after CSDS. In contrast, no significant overlap was observed
between transcriptional signatures from males and females after
Esr1 overexpression, suggesting that the molecular mechanisms
underlying the expression of resilience induced by Esr1 may
differ in males and females. It is also important to consider
that Esr1 may indeed be a driver of stress resilience but only in
CSDS; classically, CVS in males and females does not induce the
expression of a resilient phenotype. Further work is needed to
address these important questions.

Lorsch et al. (2019) identified the transcription factor Zinc
finger protein 189 (Zfp189) as an additional driver of resilience
to social stress in the mPFC. The analyses revealed that Zfp189
is one of the most connected key drivers within a resilient-
specific gene network, and significantly upregulated in the mPFC
of resilient mice after CSDS. Consistently, the human homolog
ZNF189 was significantly downregulated in the mPFC from
MDD post-mortem tissue. Interestingly, the overexpression of
Zfp189 in the mPFC was shown to trigger pro-resilient responses
when administered before stress exposure and rescued the
susceptible phenotype when injected after exposure to CSDS
consistent with a pro-resilient and antidepressant-like role for
this key-driver. Further analyses confirmed that the pro-resilient
effect of Zfp189 was mediated by a specific reorganization of
its own gene network, which is associated with resilience in
the mPFC. More importantly, the authors showed that this
effect was driven through direct interactions with CREB. Despite
that Zfp189 and its gene network have been identified in
males, CREB knockdown (KO) induced the expression of a
depressive-like phenotype to social stress in males and sCVS in
females. The expression of Zfp189 in CREB KO mice rescued
these effects in both sexes (Lorsch et al., 2019). These results
strongly support the role of Zfp189 as a driver of resilience
to stress in both sexes, regardless of the type of stress used.
Finally, the direct relationship of both proteins was shown
through an elegant set of experiments that combined CRISPR
gene editing with behavioral assessment. The authors used a
specific strategy to specifically target CREB and Zfp189 to either
associate or segregate them in order to induce or prevent
their physical interactions. Interestingly, targeting CREB to
Zfp189 via this approach increased resistance to social stress
while creating a repressive environment around Zfp189 gene
loci. This decreased its expression in the mPFC and induced
a pro-susceptible phenotype in male mice. Together these
analyses provide substantial evidence for the role of Zfp189 in
mediating pro-resilient effects via a complex molecular cascade
that involves direct interactions with CREB in the mPFC.

ELS has also been recently shown to induce different
transcriptional changes across brain regions of males and
females. This series of analyses was based on the two-hit stress
model in mice: postnatal stress that occurs during postnatal
days 10–20 increases susceptibility to social stress later in life
(Peña et al., 2017, 2019). These behavioral effects have been
associated with a series of transcriptional changes affecting
several brain regions differently, including the ventral tegmental
area (VTA), NAc, and mPFC in males and females, depending

on the history of previous ELS. These analyses suggest that
ELS primes molecular programs in different brain regions
to be in a depressive-like state, thus being more plastic to
a significant reorganization when challenged by additional
stress during adulthood (Peña et al., 2017, 2019), or even
drug abuse in a sex-specific fashion (Walker et al., 2022a).
These findings led to the identification of specific genes as
upstream regulators of transcriptional structures in these brain
regions driving stress responses in a sex-specific fashion. While
the genes encoding for alpha-synuclein (SNCA) and beta
catenin (CTNNB1) were both predicted upstream regulators in
female VTA and NAc, the orthodenticle homeobox 2 encoding
gene, Otx2, was the highest-ranked upstream regulator of the
pro-depressive transcriptional signature in males’ VTA (Peña
et al., 2017, 2019). The functional and behavioral implication of
Otx2 as an upstream regulator of pro-depressive transcriptional
signatures was further assessed by a series of behavioral
experiments following its viral modification directly in the
VTA. Transient Otx2 overexpression in the VTA of juvenile
male mice blocked susceptibility to adult social defeat and
rescued the downregulation of several Otx2 targets in this brain
region (Peña et al., 2017). The transient juvenile suppression
of Otx2 expression in the VTA recapitulated the effects of
postnatal stress on the expression of susceptibility to social
stress during adulthood, which is associated with significant
changes in the expression of its downstream target genes. It is
important to note that these effects were specifically associated
with the juvenile developmental period, as the overexpression
of Otx2 during adulthood only partially rescued behavioral
and transcriptional effects, while its downregulation failed to
induce behavioral susceptibility and changes in Otx2 target gene
expression (Peña et al., 2017).

Further analyses suggest that these effects may be mediated
at least in part by epigenetic changes. Indeed, several targets
of Otx2 in the VTA were predicted to be enriched with the
presence of the open chromatin mark H3K4me3 (Peña et al.,
2017). Similar observations have been made concerning the
epigenetic mechanisms mediating the effects of ELS in the NAc
of males and females (Kronman et al., 2021). Kronman and
colleagues showed that ELS induces a significant suppression
of the repressive histone mark H3K79 specifically in males
(Kronman et al., 2021). These effects were accompanied by
cell-type-specific changes in the expression of the H3K79 writer
and eraser, Dot1l and Kdm2b, respectively, in the NAc following
a developmental trajectory. The expression of both genes
was significantly increased in D2-expressing medium spiny
neurons (MSN) of both males and females, an effect that
was not seen early postnatally (PND21) but that became
significant at a later developmental stage (PND35). This
was maintained until adulthood, suggesting an incubation
effect of ELS across developmental stages. Interestingly,
Dot1l downregulation in D2-MSNs reversed the behavioral
consequences of ELS-mediated behavioral susceptibility, while
its overexpression in the same neuronal population replicated
the behavioral phenotype induced by ELS in males, and to
a lower extent in females. Conversely, the overexpression
of Kdm2b in D2 expressing MSNs reversed ELS-induced
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behavioral phenotypes, whereas its downregulation increased
stress susceptibility in males exclusively. As shown before with
other key drivers and upstream regulators, the transcriptional
profiles initiated by ELS were strikingly similar to those induced
by Dot1l overexpression and inversed to Dot1l downregulation
in D2 MSNs. Interestingly, further analyses were done to address
the discrepancy between the upregulated expression ofDot1l and
the downregulation of H3K79me2 in whole NAc after ELS. The
results showed that the upregulation of Dot1l is associated with
increased deposits of H3K79me2 at more genomic sites, but the
loss of H3K79me2 found at a subset of sites is more important.
This loss could be due to the coordinated induction of Kdm2b in
the NAc.

Interspecies Transcriptional Studies
Each of these studies provides valuable evidence that distinct
mouse models are useful in testing the contribution of specific
genes and transcriptional programs on behavioral responses to
chronic stress. However, they still do not directly compare the
extent of how they can accurately reproduce the transcriptional
signatures relevant to MDD in the brain. This precise question
was recently addressed by comparing the RNAseq transcriptional
profiles generated from human post-mortem brain samples and
three models of chronic stress including CVS, SI, and CSDS
(Labonté et al., 2017; Scarpa et al., 2020). These analyses revealed
a significant overlap between transcriptional alterations in the
mPFC and NAc from human MDD and stressed mice, with
each of the chronic stress paradigms capturing distinct aspects
of MDD abnormalities. At the differential expression level, CVS
and SI were shown to better reproduce the human conditions in
the NAc and mPFC (Scarpa et al., 2020). It should be mentioned
that these analyses have been done by controlling for the effect of
sex. Indeed, not every dataset included females, and sex-specific
analyses were not possible which limits the interpretation of these
results. Nevertheless, these findings are consistent with previous
comparative studies showing that both males and females that
experienced CVS reproduce a significant proportion of the
differential expression profiles observed in men and women
with MDD (Labonté et al., 2017). These analyses also revealed
a significant number of functional pathways that are enriched for
DEGs in humans with MDD, and each of the different mouse
models of stress. This suggests that the behavioral consequences
of stress may be mediated by similar functional pathways in both
species (Scarpa et al., 2020).

Importantly, network-based approaches provided similar
conclusions. Consistent with previous studies (Tsaparas et al.,
2006; Monaco et al., 2015; Eidsaa et al., 2017), all three
mouse models were shown to share a significant level of
co-expression structure in the mPFC and the NAc, although
it is accepted that the human transcriptome acquired a certain
complexity throughout evolution that is not shared in mouse
(Pembroke et al., 2021). This approach identified gene networks
sharing common co-expression structures associated with MDD
and stress and enriched with genes differentially expressed in
human and mouse models. For instance, the authors reported
a gene network associated with the function and structure of
oligodendrocytes (Scarpa et al., 2020). Interestingly, impaired

myelin-related gene expression, along with reduced myelin
thickness, have been reported in the cortex from suicide
completers with a history of child abuse (Lutz et al., 2017;
Tanti et al., 2018, 2021). Similarly, prolonged social isolation and
social stress in mice have been shown to change oligodendrocyte
gene expression that interferes with myelin integrity in the
mPFC (Liu et al., 2012; Zhang et al., 2016). Amongst all the
genes in this network, Gab1 was identified as a hub gene
preserved in humans with MDD and each of the three mouse
models of chronic stress. Gab1 is also known to enhance
PI3K/AKT activation and to extend the duration of Ras/MAPK
signaling (Kiyatkin et al., 2006). Additionally, it was shown to
indirectly trigger myelination by increasing the expression of
Egr2 when activated by the protein kinase A (PKA; Ghidinelli
et al., 2017). Altered oligodendrocyte function in MDD has
also been supported by a recent study using single nuclei
RNA sequencing to probe changes in gene expression across
every cell type found in the mPFC of men with MDD
(Nagy et al., 2020). Amongst all genes found differentially
expressed, the majority were found in oligodendrocytes and
a subpopulation of deep layer excitatory cells in the mPFC.
Based on their predictions, the authors concluded that the
relationship between these two clusters of cells could be
explained in part by impairments in fibroblast growth factor
signaling, steroid hormone receptor cycling, immune function,
and cytoskeletal regulation, which could underly changes in
mPFCsynaptic plasticity (Nagy et al., 2020). These results are also
consistent with previous results showing metabolic, functional,
and morphological changes in the mPFC with depression and
chronic stress (Hare and Duman, 2020).

Overall, these studies suggest that each mouse model can
reproduce common but also unique molecular features relevant
to the expression of the disease in humans with no unique model
better than the others (Table 1; Figure 2). In other words, the
decision for an appropriate model should be based not only on
its capacity to reproduce certain behavioral aspects, but also its
capacity to reproduce the transcriptional alterations relevant to
the human condition. However, as female transcriptional data
are not consistently available for each model, it is impossible
to predict whether this capacity applies to both males and
females. This cannot be simply addressed by directly overlapping
human and mouse profiles, as important considerations such
as gene orthology, correlation structures, and connectivity need
to be taken when comparing the transcriptional structures
of two different species. Additional clinical variables such as
age, hormonal status, and pathological comorbidities that are
difficult to account for in human post-mortem studies are
also important considerations when performing interspecies
sex-specific studies. Nevertheless, based on previous findings
from human and mouse studies (Labonté et al., 2017; Lorsch
et al., 2018, 2019; Scarpa et al., 2020), it is tempting to speculate
that both males and females would reproduce specific aspects
of the human condition, but most likely not the same. More
work will be required to address this important question and
consolidate the benefits of using mouse models to study specific
molecular mechanisms underlying the expression of MDD in
both sexes.
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TABLE 1 | Summary of recent transcriptomic analyses done by RNA-sequencing characterizing transcriptional profiles in human MDD post-mortem brains and different animal models of depressive-like behaviors.

Transcriptional studies in humans from post-mortem tissues:

Human sex samples
(M/W)

Sample size Region of Interest Main Findings Studies

M & W 26 MDD (13 M & 13 W)
and 22 Ctrl (13 M & 9 W);
A cohort of 32 M
(15 MDD & 17 Ctrl); A
cohort of 18 W (6 MDD &
12 Ctrl)

vmPFC, OFC, dlPFC,
aINS, NAc, vSUB

Low transcriptional
overlap and divergent
gene network structures
between males and
females across brain
regions

Labonté et al. (2017)

M & W 50 MDD (26 M &
26 controls, 24 W &
24 Ctrl)

dlPFC, sgACC, BLA Low transcriptional
overlap between males
and females across brain
regions

Seney et al. (2018)

M & W 143 samples from 46 Ctrl
(26 M & 20 W), 52 PTSD
(26 M & 26 W), and
45 MDD (27 M & 18 W)

PFC, AMY, HIPP, dlPFC Divergent transcriptomic
signatures between
PTSD and MDD. Low
transcriptional overlap
between males and
females

Girgenti et al. (2021)

M & W; adolescents &
children (M & W)

Cohort 1: 289 samples
from 93 W (48 MDD &
45 Ctrl) and 1960 M
(81 MDD & 115 Ctrl);
Cohort 2: 584 children
and adolescents with
350 MDD & 234 Ctrl;
Cohort 3: 1774 samples
from 879 MDD & 756 Ctrl

Blood samples analysis
associated with six brains
regions of interest. Only a
significant result with
BA25/ACC is presented

High overlap of the GR
transcripts between
sexes with only an
enrichment of the eQTL in
females

Moore et al. (2021)

M & W Cohort of 50 MDD & Ctrl OFC, dlPFC, vmPFC,
NAc, aINS, vSUB

LINC00473 is a
sex-specific mediator of
depression in females
specifically

Issler et al. (2020)

M & W with few
proportions of W

90 samples (20 Ctrl,
20 MDD, 15 in remission
after one episode, 20 in
recurrent episodes &
15 remissions after
recurrent episodes)

dlPFC/ACC Changes in interneurons
function in the mPFCare
involved in the transition
from state to trait in MDD

Shukla et al. (2021)

M & W 78 samples (27 MDD
suicided with CA,
25 without CA & 26 Ctrl)

ACC CA induces epigenetic
reprogramming of myelin
in adults

Lutz et al. (2017)

M & W 36 samples (18 MDD with
CA & 18 MDD without
CA)

vmPFC Long-term changes in
connectivity related to
imbalance of
oligodendrocytes and
myelin remodeling in
MDD patients with CA

Tanti et al. (2018)
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TABLE 1 | Continued

Transcriptional studies in humans from post-mortem tissues:

Human sex samples
(M/W)

Sample size Region of Interest Main Findings Studies

M & W 11 Ctrl from 9 M & 2 W,
26 MDD without CA
from 14 M & 12 W,
12 MDD with CA from
9 M & 3 W

vmPFC/BA11-12 Decreased
neuroplasticity of
cortical circuits through
the enhancement of
developmental
OPC-mediated PNN
formation in MDD
patients with CA

Tanti et al. (2021)

M 34 samples (17 MDD &
17 Ctrl)

dlPFC Significant differential
expression of
oligodendrocytes
associated with
dysregulation of
excitatory neurons in
MDD

Nagy et al. (2020)

Transcriptional studies in mouse models:

Animals Models Sample size Age Region of Interest Main Findings Studies

C57BL/6J M & F mice CVS 40 mice (10 M/groups,
& 10 F/groups)

8 weeks vmPFC and NAc DUSP6 and EMX1 are
drivers of stress
susceptibility in a
sex-specific manner

Labonté et al. (2017)

C57BL/6J M & F mice CVS 3-5 mice/groups 8 weeks OFC, dlPFC, vmPFC,
NAc, aINS, vSUB

LncRNA LINC00473 is
a sex-specific mediator
of depression in
females specifically

Issler et al. (2020)

C57BL/6J M & F mice sCVS 48 (4 mice/library &
3 libraries/sex/stress
condition)

8-12 weeks NAc Low overlap between
transcriptional profiles
in the NAc and PFC in
stressed males and
females

Hodes et al. (2015)

C57BL/6J M & F mice sCVS 60 (5 mice/library &
3 libraries/sex/stress
condition)

8 weeks NAc Little overlap of the
transcriptional and
post-transcriptional
profiles between sexes

Pfau et al. (2016)

C57BL/6J M mice CSDS 12 (4 mice/library &
3 libraries/sex/stress
condition)

8 weeks vHIP, PFC, NAc, AMY Overexpression of two
specific hub genes
induced a significant
reorganization of the
transcriptional structure
of their respective gene
networks in the vHIP

Bagot et al. (2016)
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TABLE 1 | Continued

Transcriptional studies in mouse models:

Animals Models Sample size Age Region of Interest Main Findings Studies

C57BL/6J mice CSDS 10 Ctrl, 8 resilient, 14
non-responders to
treatments (8 + 6),
6 susceptible,
12 responders to
treatments (6 + 6)

PFC, NAc, HIP, AMY Transition from
susceptible to resilient
transcriptional profiles
following
pharmacological
treatments

Bagot et al. (2017)

C57BL/6J mice CSDS (M), CVS (F) 27 mice (6-8M
mice/groups & 6-7 F
mice/groups)

8 weeks NAc, PFC Estrogen receptor 1 is
an upstream regulator
that drives resilience to
social stress

Lorsch et al. (2018)

C57BL/6J M & F mice CSDS (M) & sCVS (F) 10 mice (5/groups) 8 weeks PFC, vHIP, BLA, NAc Zfp189 is a hub gene
driving resilience to
social stress

Lorsch et al. (2019)

C57BL/6J M & F mice ELS (MS and limited
nesting) alone or
followed by STVS or
CSDS

4-6 mice/groups
5-6 mice/groups

Adult mice VTA, NAc, PFC ELS primes molecular
programs toward a
reorganization when
challenged by stress
during adulthood

Peña et al., 2019

C57BL/6J M mice 2-hit stress model,
CSDS

3 mice/groups/sex Adult and adolescent
mice

VTA Otx2 overexpression
rescued depressive-like
behaviors and reversed
Otx2-targets gene
expression

Peña et al. (2017)

C57BL/6J M & F mice CSDS, ELS 2 mice/groups/sex 10-12 weeks for CSDS NAc ELS induces a sex and
cell type specific
reorganization of
H3K79 profiles

Kronman et al. (2021)

Interspecies transcriptional studies:

Subjects Models Age Sample size Region of Interest Main Findings Studies

C57BL/6J mice; M & F
humans

CSDS, SI, CVS MDD: 45+/-17 years
old & Ctrl: 48+/-17

26 MDD (13 M & 13 W),
22 Ctrl (13 M & 9 W);
10 CVS mice/sex; 30 SI
M & 15 M Ctrl; 11 M
CSDS/phenotypes

PFC & NAc CVS, SI and CSDS
reproduce common but
also unique
transcriptional changes
relevant to the
expression of MDD

Scarpa et al. (2020)

Abbreviations: M, men/males; W, women; F, females; PTSD, post-traumatic stress disorder; MDD, major depressive disorder; Ctrl, controls; CA, child abuse; eQTL, cis-expression quantitative trait loci; LncRNA, long non-coding RNA;
sCVS, subchronic variable stress; CVS, chronic variable stress; CSDS, chronic social defeat stress; ELS, early life stress; MS, maternal separation; STVS, subthreshold variable stress; SI, social isolation; OPC, oligodendrocytes progenitor
cells; PNN, perineuronal nets; vmPFC, ventromedial prefrontal cortex; OFC, orbitofrontal cortex; dlPFC, dorsolateral prefrontal cortex; aINS, anterior insula; NAc, nucleus accumbens; vSUB, ventral subiculum; sgACC, subgenual anterior
cingulate cortex; AMY, amygdala; HIPP, hippocampus; mPFC, medial prefrontal cortex; vmPFC, ventromedial prefrontal cortex; vHIP, ventral hippocampus; PFC, prefrontal cortex; BLA, basolateral amygdala; VTA, ventral tegmental area;
BA, Brodmann area; ACC, anterior cingulate cortex.
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FIGURE 2 | Males and females with MDD or stress share minimal
transcriptional overlap across brain regions. These sex differences may be
driven by biological factors such as sex chromosomes and hormonal
variations. Similar differences are also observed at the gene network level
where sex-specific transcriptional networks are associated with the
expression of MDD in either males or females in humans but also with the
expression of stress susceptibility or resilience in stressed male and female
mice. These transcriptional changes interfere with the activity of several
molecular, biological, and cellular processes such as neuronal activity,
epigenetic and transcriptional regulation, the function of the HPA axis, and
immune response. Ultimately, this leads to the expression of converging
depressive-like behaviors in males and females sharing similar symptomatic
and behavioral features. The orientation of the arrows next to listed genes
indicates whether gene expression is upregulated or downregulated in the
depressed/stressed conditions. ♂: male symbol, ♀: female symbol.

CONCLUSION

Fundamental research using animals is an absolute necessity to
improve our understanding of complex human conditions. Here,
we have reviewed the strengths and weaknesses of some of the
most widely used models to study the molecular and functional
impact of chronic stress on the expression of depressive and
anxiety-like behaviors. Amongst the multiple conclusions that
can be drawn, no unique model can fully reproduce the human
condition. Indeed, the clinical manifestation of the disease
varies between individuals either qualitatively or quantitatively

(Soderlund and Lindskog, 2018) which cannot be accounted
for in animals. Several complex behavioral features and traits
related to the disease cannot be evaluated without falling
into anthropomorphic considerations. Furthermore, the clinical
representation of the disease keeps evolving throughout the
pathological process (Zahn-Waxler et al., 2000). Thus, rather
than mimicking MDD and anxiety in mice as a whole, one
should consider modeling specific aspects of the disease that
can be accurately reproduced and quantified in mice and more
importantly differently in each mouse model.

Nevertheless, data strongly support the use of animal models
to study the molecular mechanisms underlying the expression
of stress susceptibility and resilience in both males and females,
although only a few studies properly integrated females in their
analysis. As of now, studies investigating the transcriptional
programs underlying the expression of MDD and anxiety in
humans have revealed drastic differences between men and
women. This should be considered carefully since the lack of
overlap in DEG between stressed males and females should not
always be interpreted as a sign of sex differences (Mukamel,
2022). With the development of novel approaches combining the
assessment of differential expression profiles with transcriptional
overlap, gene ontology and gene network-based approaches
integrating correlation structures and connectivity measures, the
sum of converging evidence is strongly supporting the existence
of true sex differences in the transcriptional organization of
gene networks across the brain that may drive the expression
of behavioral alterations in a sex-specific fashion (Labonté et al.,
2017; Lorsch et al., 2018, 2019; Seney et al., 2018; Walker et al.,
2022a,b).

Most importantly, the transcriptional signatures associated
with each type of stress share common core features but
also unique aspects relevant to the human condition. In this
sense, types of stress with psychosocial constructions affect
the brain transcriptome differently than other stress types
relying on physical paradigms. In perspective, this is in line
with our understanding of how environmental challenges
are impacting brain activity through epigenetic mechanisms
(Fatma and Labonté, 2019) and adds to the importance of
considering not only the behavioral features but also the
molecular systems affected by different types of stress when
choosing an appropriate mouse model. Ultimately, this choice
may have a crucial impact on behavioral, morphological,
functional, and molecular findings. For instance, transcriptional
alterations that increase the activity of mPFC neurons have been
shown to promote stress susceptibility in animals undergoing
CVS (Labonté et al., 2017; Issler et al., 2020) while changes
that induce similar functional impacts on mPFC activity have
been associated with resilience and anti-depressant properties
in the CSDS model (Bagot et al., 2016). Similarly, certain
transcriptional changes triggering stress susceptibility in females
induce no effect in males and the opposite has also been shown
(Labonté et al., 2017).

Probably the most important remaining question is what
are the mechanisms underlying these differences either at
the behavioral or transcriptional levels. Amongst the different
potential players, sex chromosomes and gonadal hormones come
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to mind. Both X and Y chromosomes contain genes encoding
for different chromatin writers and erasers as well as several
transcription factors (Sene et al., 2013; Seney et al., 2013; Dossat
et al., 2017). These genes are crucially involved in various
developmental processes and are likely to be impacted differently
by environmental factors and ultimately by hormonal influences
(Puralewski et al., 2016; Jaric et al., 2019). Similarly, molecular
processes and emotional responses are also importantly regulated
by gonadal hormones which broaden the contribution of
sex-specific biological correlates underlying stress responses in
males and females (Bangasser and Cuarenta, 2021; Bhargava
et al., 2021; Rainville et al., 2022). More recently, FCG mice
were used to dissect the behavioral and transcriptional impact of
gonadal hormones and sex chromosomes over stress responses
in males and females (Paden et al., 2020). Interestingly, results
show that XX male carriers recapitulate XX females’ behavioral
profiles. Similar findings were also reported for XY female
carriers and XY males. At the transcriptional level, 25% of
the differences between males and females were related to sex
chromosomal influences while 23%–31% of these differences
were associated with gonadal hormones (Paden et al., 2020).
Interestingly, despite the extent of the transcriptional differences,
the authors reported that a large proportion of the transcriptional
changes in males and females were in fact clustered on similar
functional pathways (Paden et al., 2020). This is very similar to
the findings reported in human post-mortem tissue (Labonté
et al., 2017; Seney et al., 2018; Girgenti et al., 2021) and
supports the idea that common functional pathways may be
impacted in males and females with MDD but via different
genes. However, the contribution that sex chromosomes and
gonadal hormones have, especially during crucial developmental
phases, remains unknown andmore work will be required to fully
understand the complex interplay between sex chromosomes,
gonadal hormones, and transcriptional programs in controlling

the development of emotional responses in stressed males and
females (Paden et al., 2020; Seney and Logan, 2021).

Overall, this suggests that several transcriptional programs
are in place to control neuronal activity and brain function
and these programs are affected distinctly by different types of
stress in males and females. As of now, only the tip of the
iceberg has been revealed and much more work is needed to
provide a better understanding of the molecular mechanisms
underlying stress susceptibility and resilience in males and
females. While work in human populations is crucial to drive
this initiative, animal models remain one of the best strategies to
provide mechanistic insights into the effects. With this in mind,
future work should consider using these approaches to reveal
the transcriptional signatures underlying specific symptomatic
profiles in humans. With the knowledge that each of the models
can accurately reproduce specific behavioral and molecular
aspects ofMDD and anxiety inmales and females, such initiatives
should provide interesting insights into the systems to target
more precisely in order to treat specific symptoms, rather than
the complex syndrome.
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