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Alternative use of suvorexant
(Belsomra R©) for the prevention
of alcohol drinking and seeking
in rats with a history of alcohol
dependence
Francisco J. Flores-Ramirez*, Jessica M. Illenberger,
Glenn E. Pascasio, Alessandra Matzeu, Barbara J. Mason and
Rémi Martin-Fardon

Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States

Alcohol use disorder (AUD) is one of the most treatment-resistant medical

conditions globally. The orexin (Orx) system regulates diverse physiological

processes, including stress, and is a system of interest for the development

of pharmaceuticals to treat substance use disorders, particularly AUD. The

present study tested the ability of the dual orexin receptor antagonist

suvorexant (SUV), marketed by Merck as Belsomra R©, for the treatment of

insomnia, to decrease alcohol self-administration and the stress-induced

reinstatement of alcohol-seeking behavior in male Wistar rats with a history of

alcohol dependence. Rats were trained to orally self-administer 10% alcohol

(30 min/day for 3 weeks) and were either made dependent via chronic

intermittent alcohol vapor exposure (14 h ON, 10 h OFF) for 6 weeks or

exposed to air (non-dependent). Starting on week 7, the effect of SUV (0–

20 mg/kg, p.o.) was tested on alcohol self-administration at acute abstinence

(8 h after vapor was turned OFF) twice weekly. A separate cohort of rats that

were prepared in parallel was removed from alcohol vapor exposure and then

subjected to extinction training for 14 sessions. Once extinction was achieved,

the rats received SUV (0 and 5 mg/kg, p.o.) and were tested for the footshock

stress-induced reinstatement of alcohol-seeking behavior. Suvorexant at 5,

10, and 20 mg/kg selectively decreased alcohol intake in dependent rats.

Furthermore, 5 mg/kg SUV prevented the stress-induced reinstatement of

alcohol-seeking behavior in dependent rats only. These results underscore

the significance of targeting the Orx system for the treatment of substance use

disorders generally and suggest that repurposing SUV could be an alternative

approach for the treatment of AUD.
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Introduction

Alcohol use disorder (AUD) is the most prevalent substance
use disorder, with 3 million deaths per year that are attributable
to alcohol (Grant et al., 2004, 2015; Hunt et al., 2020). In the
United States alone, it is the third leading cause of preventable
death, and according to the 2019 National Survey on Drug Use
and Health1, in the U.S., 14.5 million people aged 12 or older
(5.3% of this age group) had AUD. This includes 9 million
men (6.8% of men in this age group) and 5.5 million women
(3.9% of women in this age group). Treatments for AUD include
behavioral, psychosocial, and pharmacological approaches, with
the goal of reducing drinking and achieving and maintaining
long-term abstinence from alcohol use (Witkiewitz et al.,
2019). Only three pharmacological compounds have been
approved by the United States Food and Drug Administration
(FDA) for the treatment of AUD: disulfiram (acetaldehyde
dehydrogenase inhibitor), acamprosate (which may act as an
N-methyl-D-aspartate receptor agonist), and naltrexone (non-
specific opioid receptor antagonist; Rosner et al., 2010; Maisel
et al., 2013; Witkiewitz et al., 2019). These medications are
effective in a subset of AUD patients, and the development
and application of these compounds have helped improve
our understanding of AUD pharmacotherapeutics generally,
but alternative pharmacological avenues must continue to be
explored and tested to treat a greater proportion of AUD
patients.

The orexin (Orx; also known as hypocretin) hypothalamic
neuropeptide system has arisen as a system of interest to
develop AUD-specific therapeutics (Moorman, 2018). Orexin
has long been known to be involved in regulating a wide range
of physiological processes, including arousal, feeding, energy
expenditure, and stress-related behavior (de Lecea et al., 1998;
Sakurai et al., 1998; Sutcliffe and de Lecea, 2000; Mieda and
Yanagisawa, 2002; Berridge et al., 2010; Teske et al., 2010). More
recently, the Orx system has been implicated in highly motivated
behavior, in addition to negative aspects of behavior, which
together may underlie problematic alcohol use (Lawrence, 2010;
Mahler et al., 2012; Brown and Lawrence, 2013; Barson and
Leibowitz, 2016; Walker and Lawrence, 2017; Moorman, 2018;
Matzeu and Martin-Fardon, 2021). Although there is a dearth
of clinical research, some evidence suggests dysregulation of the
Orx system in patients with AUD. For example, individuals who
were diagnosed with AUD exhibited high blood levels of Orx
during early withdrawal (Bayerlein et al., 2011; Ziolkowski et al.,
2016). Importantly, these elevated Orx levels correlated with
stress-related symptomatology during that same time period of
withdrawal (von der Goltz et al., 2011).

Most of our understanding of the Orx system and its
specific contribution to alcohol dependence has come from
preclinical studies. Orexin was shown to promote excessive

1 https://www.niaaa.nih.gov

alcohol drinking when injected in the nucleus accumbens core
but not shell (Schneider et al., 2007; Brown et al., 2013),
ventral tegmental area but not substantia nigra (Srinivasan
et al., 2012), and the anterior but not posterior paraventricular
thalamus (Barson et al., 2015). Orexin cells are strongly recruited
during alcohol-seeking behavior. For example, in rodent models
of AUD, an increase in the activation of Orx neurons was
observed during the reinstatement of alcohol seeking that was
induced by alcohol-associated discriminative cues (Dayas et al.,
2008), discrete cues (Moorman et al., 2016), alcohol-associated
contexts (Hamlin et al., 2007; Millan et al., 2010), and stress
(yohimbine; Kastman et al., 2016).

The involvement of the Orx system in alcohol drinking and
seeking has been confirmed by pharmacological manipulations
of Orx receptor 1 (OrxR1) and OrxR2. The systemic blockade
of OrxR1 decreased alcohol drinking in a two-bottle choice
paradigm in high-alcohol-preferring Sprague Dawley rats
(Moorman and Aston-Jones, 2009), decreased alcohol self-
administration under an operant fixed-ratio schedule (Lawrence
et al., 2006; Richards et al., 2008; Moorman et al., 2017),
and decreased alcohol self-administration under a progressive-
ratio schedule (Jupp et al., 2011). The systemic administration
of an OrxR1 antagonist decreased alcohol-seeking behavior
that was induced by alcohol-related stimuli (Lawrence et al.,
2006; Martin-Fardon and Weiss, 2014; Moorman et al., 2017)
and decreased the stress (yohimbine)-induced reinstatement
of alcohol seeking (Richards et al., 2008). The peripheral
administration of an OrxR2 antagonist reduced alcohol but
not saccharin self-administration in rats (Shoblock et al.,
2011). The systemic administration of a dual orexin receptor
antagonist (DORA) decreased breakpoints and reduced alcohol
consumption under a progressive ratio schedule in alcohol-
preferring rats (Anderson et al., 2014).

Two general observations can be made based on the
literature with regard to the relationship between the Orx system
and alcohol dependence: (i) exposure to alcohol strongly recruits
the Orx system, and (ii) blocking Orx receptors (OrxR1, OrxR2,
and both) decreases alcohol use. Recent interest has been seen
in repurposing the FDA-approved DORA suvorexant (SUV),
marketed by Merck as Belsomra R©, for the treatment of insomnia
(James et al., 2017; Campbell et al., 2020b). In addition to
reducing drug craving (primarily via OrxR1), SUV may have
the additional benefit of indirectly reducing relapse risk by
normalizing sleep disturbances (primarily via OrxR2) that are
commonly observed in AUD patients (Koob and Colrain, 2020).

One of the features of AUD is the significant increase
of alcohol consumption (heavy drinking) to relieve or avoid
withdrawal symptoms (Koob and Colrain, 2020). Moreover,
knowing that stress is a major factor that contributes to the
chronic relapsing and compulsive nature of substance use
disorder, including AUD (Stephens and Wand, 2012), the
present study’s objectives were to test the effect of SUV on two
aspects of AUD: (i) the increase in alcohol consumption in
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alcohol-dependent rats and (ii) the stress-induced reinstatement
of alcohol seeking.

Materials and methods

Animals

A total of 32 male Wistar rats (Charles River Laboratories,
Hollister, CA, USA), weighing 150–170 g upon arrival, were
housed two per cage in a humidity- and temperature-controlled
vivarium on a reverse 12/12 h light/dark cycle (lights OFF at
8:00 a.m., lights ON at 8:00 p.m.) with free access to food and
water. Before beginning the experimental procedures, the rats
were given 1 week to acclimate to the housing and handling
conditions. All behavioral procedures were conducted during
the dark cycle (i.e., between 8:00 a.m. and 8:00 p.m.). All
animal procedures were conducted in strict adherence to the
National Institutes of Health Guide for the Care and Use of
Laboratory Animals (National Research Council, 2013) and
Animal Research: Reporting In Vivo Experiments Guidelines
(Percie du Sert et al., 2020). The animal procedures were
approved by the Institutional Animal Care and Use Committee
of The Scripps Research Institute.

Drugs

Suvorexant (Belsomra R©; Merck, Whitehouse Station, NJ,
USA) pills (20 mg) were crushed and dissolved in a Vitamin
E TPGS (D-α-Tocopherol polyethylene glycol 1,000 succinate;
Mazuri, Richmond, IN, USA) 20% solution (Cox et al., 2010;
Guo et al., 2013; Ehlers et al., 2020). Once homogenized,
to maximize bioavailability of the compound, SUV was
administered orally (p.o.) at doses of 0, 5, 10, and 20 mg/kg in a
volume of 5 ml/kg. The 0 mg SUV dose consisted of only vehicle
that was used to dissolve SUV.

Alcohol self-administration training

Alcohol self-administration training was conducted as
previously reported (Matzeu and Martin-Fardon, 2020; Flores-
Ramirez et al., 2022). Notably, no saccharin or sucrose fading
procedure was required to induce voluntary alcohol intake.
After the 1 week housing acclimation period and for the
remainder of the training procedure (Figure 1A), the rats
were given access to alcohol in standard operant conditioning
chambers (29 × 24 × 19.5 cm; Med Associates, St. Albans,
VT, USA) during daily 30 min self-administration sessions
(for 3 weeks; Figure 1A) on a fixed-ratio 1 (FR1) schedule of
reinforcement, in which responses on the right lever resulted in
the delivery of 0.1 ml of 10% (w/v) alcohol (prepared in tap water

from 95% w/v alcohol) and the brief (0.5 s) illumination of a cue
light above the lever. Responses on the left inactive lever were
recorded, but they resulted in no programed consequences.

Chronic intermittent alcohol vapor
exposure

Once self-administration training (21 sessions) was
completed, half of the rats (n = 16) were made alcohol-
dependent via chronic intermittent alcohol vapor exposure, and
the other half were exposed to air only (n = 16; non-dependent
group). During dependence induction (6 weeks; Figure 1A),
the rats underwent daily cycles of 14 h of alcohol vapor ON
and 10 h OFF. Blood alcohol levels (BALs) were measured
using a gas chromatography-headspace blood analyzer (Agilent
Technologies, Santa Clara, CA, USA). Blood alcohol levels
(BALs) ranged between 150 and 250 mg%. For 3 weeks, the
rats remained undisturbed, apart from measuring BALs during
the last 30 min of vapor exposure (on Thursday) and scoring
somatic signs of withdrawal (at 8 h of abstinence) once weekly
(on Wednesday; Figure 1B). Behavioral signs of withdrawal
were measured by a laboratory assistant who was blind to the
experimental conditions using a scale that was adapted from an
original report by Macey et al. (1996). These withdrawal signs
included measures of ventromedial limb retraction, vocalization
(i.e., irritability to touch), tail stiffness, abnormal gait, and body
tremors. Each of these behaviors were assigned a score of 0–2,
based on severity: 0 = no signs, 1 = moderate, and 2 = severe.
To confirm alcohol dependence and assess withdrawal severity,
the sum of the five scores (0–10) was used as a quantitative
measure. This approach was used because this model of
alcohol dependence is well-known to lead to motivational
and somatic signs of withdrawal in rats (Vendruscolo and
Roberts, 2014). Baseline withdrawal scores were measured
before the last training session (Day 21). At weeks 4, 5, and 6
of alcohol vapor exposure (Figure 1C), the animals underwent
30 min FR1 alcohol self-administration sessions 8 h after the
alcohol vapor was turned OFF and when blood and brain
alcohol levels are negligible, three times per week (Monday,
Wednesday, and Friday). Baseline self-administration levels
were obtained by averaging the last three self-administration
training sessions. Air-exposed animals (non-dependent) were
subjected to the same BALs assessment, withdrawal testing, and
alcohol self-administration sessions during weeks 4–6 as the
dependent subjects.

Effects of suv on alcohol
self-administration

Starting on week 7 of chronic intermittent alcohol vapor
exposure (Figure 1A, Left panel), the effects of SUV (0, 5, 10,
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FIGURE 1

Timeline of the experimental procedures. (A) Male Wistar rats underwent 3 weeks of alcohol self-administration (SA) training. Upon the
completion of training, baseline somatic withdrawal signs were recorded. (B) The rats were scored for somatic withdrawal signs during acute
abstinence (8 h after the vapor was turned OFF on Wednesday), and blood alcohol levels were recorded 30 min before the alcohol vapors were
turned OFF (on Thursdays) between weeks 1 and 3 of chronic intermittent alcohol vapor exposure. (C) The rats underwent self-administration
sessions three times per week (Monday, Wednesday, and Friday) during acute abstinence (8 h after alcohol vapor was turned OFF) between
weeks 4 and 6 of chronic intermittent alcohol vapor exposure. (D) Effect of SUV on alcohol self-administration. Between weeks 7 and 9, one
group of rats was tested with all doses of SUV (0, 5, 10, and 20 mg/kg) at an acute abstinence point, in random order using a Latin-square design
every other session. On days between testing, the rats underwent regular self-administration sessions, without SUV. (E) Effect of SUV on
stress-induced reinstatement of alcohol-seeking behavior. After week 6 of dependence induction, a separate group of rats was removed from
alcohol vapor exposure and underwent daily extinction sessions. Once extinction was achieved, the rats were tested for the intermittent
footshock stress-induced reinstatement of alcohol-seeking behavior. BAL, blood alcohol level; EXT, extinction; SA, self-administration; SUV,
suvorexant; WDS, somatic withdrawal signs; W, week; Abst, abstinence.

and 20 mg/kg) on alcohol self-administration were evaluated in
half of the rats (n = 16; Figure 1D). Suvorexant was administered
orally (p.o.) 30 min before the start of the self-administration
sessions at an acute abstinence point (8 h after the alcohol vapor
was turned OFF). To control for possible order effects of SUV
dosing on self-administration, each animal was tested with all
doses of SUV in random order using a Latin-square design
every other session. On days between testing, the rats underwent
regular self-administration sessions, without pharmacological
administration.

Extinction training and stress-induced
reinstatement

The other half of the rats (n = 16) that were used for
the stress-induced reinstatement experiment and were prepared
in parallel (see Figure 1A, Right panel). After the 6 weeks
of chronic intermittent alcohol vapor exposure, the rats were
removed from the alcohol vapor chambers and started a
3 weeks abstinence period (Figure 1A, Right panel). During
these 3 weeks, the rats underwent extinction training (30 min
session, five times/week, for a total of 14 sessions over 3 weeks;
Figure 1E). These extinction sessions were identical to the
alcohol self-administration sessions, but alcohol was withheld.
For habituation to the footshock stress procedure, the rats were

placed in the operant chambers 15 min before each session. At
the end of this 15 min period, both levers were extended into the
operant chambers, and the extinction session began.

Twenty-four hours after the last extinction training session,
the rats were tested for the reinstatement of footshock stress-
induced alcohol-seeking behavior (Figure 1A, Right panel).
Specifically, 30 min before testing, the rats were given SUV (0 or
5 mg/kg, p.o.) and left undisturbed until placed in the operant
chambers and subjected to footshock stress (15 min; variable
intermittent electric footshock, 0.5 mA; duration, 0.5 s; mean
shock interval, 40 s; (Martin-Fardon et al., 2000; Zhao et al.,
2006; Sidhpura et al., 2010; Matzeu and Martin-Fardon, 2020;
Flores-Ramirez et al., 2022). Two minutes after the termination
of footshock, the levers were extended into the chamber, and
responses were recorded for 30 min. Each animal was tested
only once with vehicle or 5 mg/kg SUV according to a between-
subjects design. The 5 mg SUV dose was selected because it
was found to be the lowest effective dose at reducing alcohol
self-administration in the alcohol-dependent group of rats.

Statistical analysis

The acquisition of alcohol self-administration during the
3 weeks of training was analyzed using a two-way repeated-
measures analysis of variance (ANOVA), with session and
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lever (i.e., active vs. inactive) as within- and between-
subjects factors, respectively. Total alcohol intake (g/kg) during
self-administration training was analyzed using a one-way
repeated-measures ANOVA. Self-administration during chronic
intermittent alcohol vapor exposure (i.e., baseline vs. weeks
4, 5, and 6) was analyzed using two-way repeated-measures
ANOVA, with time and alcohol dependence as independent
factors. Chronic intermittent alcohol vapor exposure’s effect on
somatic withdrawal signs was analyzed using a Kruskal-Wallis
test, followed by Dunn’s tests. The effect of SUV on alcohol self-
administration was analyzed using two-way repeated-measures
ANOVA, with alcohol dependence and treatment (i.e., 0 vs. 5,
10, and 20 mg/kg SUV) as sources of variance. Finally, stress-
induced reinstatement was analyzed using a two-way ANOVA,
with alcohol dependence (i.e., non-dependent vs. dependent)
and treatment (i.e., 0 vs. 5 mg/kg SUV) as independent factors.
Significant interactions and main effects in the ANOVAs were
followed by the Tukey post-hoc test. The data are expressed as
the mean + SEM. Values of p < 0.05 were considered statistically
significant. The statistical analyses were performed using Prism
8 software (GraphPad, San Diego, CA, USA).

Results

Alcohol self-administration training
and escalation

Over 21 sessions of training (30 min/day), all the
rats acquired alcohol self-administration (two-way repeated-
measures ANOVA; time: F1,651 = 1546, p < 0.05; lever:
F20,651 = 2.01, p < 0.05; time× lever interaction: F20,651 = 9.67,
p < 0.05; Figure 2A). Tukey’s multiple-comparison post hoc
test confirmed that active lever presses were significantly higher
than inactive lever presses starting in session 2 (p < 0.05).
Additionally, overall intake remained stable throughout the 21
training sessions (p > 0.05; Figure 2B).

During weeks 4, 5, and 6 of chronic intermittent alcohol
vapor exposure, alcohol-dependent rats exhibited an increase in
the number of responses on the active lever (p < 0.05, Tukey
post-hoc tests vs. baseline following two-way repeated-measures
ANOVA; time: F3,90 = 9.81, p < 0.05; alcohol dependence:
F1,30 = 19.69, p < 0.05; time × alcohol dependence interaction:
F3,90 = 7.69, p < 0.05; Figure 2C). No differences in inactive
lever responses were observed (p > 0.05; Figure 2C). Alcohol
intake, a measure that was obtained by averaging the intake
data that were recorded Monday, Wednesday, and Friday of
that week also increased (p < 0.05, Tukey post-hoc tests vs.
baseline following two-way repeated-measures ANOVA; time:
F3,90 = 2.95, p < 0.05; alcohol dependence: F1,30 = 21.15,
p < 0.05; time × alcohol dependence interaction: F3,90 = 13.19,
p < 0.05; Figure 2D).

During weeks 4, 5, and 6, alcohol-dependent rats exhibited
significantly higher somatic withdrawal signs at an acute
abstinence point (8 h after vapors were off; p < 0.05, Dunn’s
test vs. baseline following Kruskal-Wallis non-parametric test:
χ2(7) = 88.69, p < 0.05; Figure 2E).

Effects of suv on alcohol intake

After the 6 weeks of dependence induction, the ability
of SUV to reduce alcohol self-administration was evaluated.
In non-dependent rats, SUV pretreatment did not affect
alcohol self-administration, regardless of dose. However, SUV
administration significantly decreased the number of responses
at the active lever at the 5, 10, and 20 mg/kg doses
in alcohol-dependent rats (p < 0.05, Tukey post-hoc tests
vs. vehicle following two-way repeated-measures ANOVA;
dose: F3,39 = 44.33, p < 0.05; alcohol dependence × dose:
F3,39 = 5.85, p < 0.05; Figure 3A). Importantly, no differences
in inactive lever responses were observed, regardless of
that rats’ history of alcohol dependence and/or SUV dose
(p > 0.05; Figure 3A). The effect of SUV was similar when
assessing alcohol intake (p < 0.05, Tukey post-hoc tests vs.
vehicle following two-way repeated-measures ANOVA; alcohol
dependence: F1,13 = 5.03, p < 0.05; dose: F3,39 = 15.46, p < 0.05;
alcohol dependence× dose: F3,39 = 9.62, p < 0.05; Figure 3B).

Stress-induced reinstatement

Under vehicle condition (i.e., 0 mg/kg SUV; Figure 4)
stress precipitated the reinstatement of alcohol-seeking behavior
in both non-dependent and dependent rats. Of note, even
though the reinstatement of alcohol-seeking observed in both
groups was similar, it was was prevented by the administration
of 5 mg/kg SUV only in rats with a history of alcohol
dependence (Tukey post-hoc test following two-way ANOVA;
treatment: F1,13 = 11.69, p < 0.05; alcohol dependence:
F2,13 = 20.62, p < 0.05; treatment × alcohol dependence
interaction: F2,13 = 4.52, p < 0.05; Figure 4). No differences
in inactive lever responses were observed, regardless of the
rats’ history of alcohol dependence and/or treatment condition
(p > 0.05; Figure 4).

Discussion

The present study assessed the ability of SUV, an FDA-
approved DORA for the treatment of insomnia, to be
repurposed to reduce alcohol self-administration in animals
with a history of alcohol dependence. This study also tested
SUV’s ability to decrease the stress-induced reinstatement
of alcohol-seeking behavior in alcohol-dependent rats.
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FIGURE 2

Time course of alcohol self-administration acquisition during the 3 weeks of training and escalation of drinking during weeks 4–6 of chronic
intermittent alcohol vapor exposure. (A) Rats acquired self-administration over the 21 training sessions. (B) Alcohol intake remained stable
throughout the 21 training sessions. (C) At weeks 4–6 of chronic intermittent alcohol vapor exposure, the alcohol-dependent group of rats
exhibited a significant increase in the number of responses on the active lever. No differences in inactive lever responses were observed.
(D) Alcohol intake also increased during weeks 4–6 of intermittent alcohol vapor exposure. (E) An increase in somatic withdrawal signs was
observed in dependent rats on weeks 4–6 of chronic intermittent alcohol vapor exposure during acute abstinence. The data are expressed as
mean + SEM. ***p < 0.05, vs. inactive lever; *p < 0.05, vs. respective baseline. BSL, baseline; W, week.

Alcohol-dependent rats exhibited an increase in alcohol
self-administration (i.e., escalation) during alcohol dependence
that was induced by chronic intermittent alcohol vapor
exposure, which is consistent with several previous studies
(O’Dell et al., 2004; Vendruscolo and Roberts, 2014; Matzeu
et al., 2018a; Matzeu and Martin-Fardon, 2020). In agreement
with previous reports, exposure to intermittent footshock stress
reliably reinstated previously extinguished alcohol-seeking

behavior (Le et al., 1999; Martin-Fardon et al., 2000; Matzeu
and Martin-Fardon, 2020; Flores-Ramirez et al., 2022). Notably,
SUV significantly reduced alcohol self-administration only in
alcohol-dependent rats. Furthermore, SUV selectively blocked
the stress-induced reinstatement of alcohol-seeking behavior in
alcohol-dependent rats. These results support the hypothesis
that both OrxR1 and OrxR2 play significant roles in drug
self-administration and the reinstatement of drug-seeking
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FIGURE 3

Effect of SUV (0, 5, 10, and 20 mg/kg) on alcohol self-administration. (A) The administration of SUV (5, 10, and 20 mg/kg) significantly decreased
the number of responses at the active lever in dependent rats at all doses tested and did not produce any effects in non-dependent rats. No
differences in inactive lever responses were observed. (B) Similarly, intake was reduced in dependent rats at all doses tested and did not produce
any effects in non-dependent rats. The data are expressed as the mean + SEM. *p < 0.05, vs. 0 mg/kg. SUV, suvorexant.

FIGURE 4

Effect of SUV (0 and 5 mg/kg) on stress-induced reinstatement
of alcohol-seeking behavior. Intermittent footshock stress
induced alcohol-seeking behavior in rats that received vehicle
(0 mg/kg) in both the dependent and non-dependent groups.
The administration of SUV prevented the stress-induced
reinstatement of alcohol seeking in dependent rats but not in
non-dependent rats. No differences in inactive lever responses
were observed. The data are expressed as the mean + SEM.
*p < 0.05, vs. respective EXT; +p < 0.05, vs. respective 5 mg/kg
SUV. EXT, extinction; SUV, suvorexant.

behavior (Plaza-Zabala et al., 2012, 2013; Uslaner et al., 2014),
further implicating the Orx system in maladaptive motivation,
reflected by an increase in the motivation to drink and seek

alcohol during dependence (Moorman and Aston-Jones, 2009;
Moorman et al., 2017). Altogether, the results highlight the
significance of targeting the Orx system for the treatment of
substance use disorders, and SUV could be repurposed for the
treatment of AUD.

Alcohol-dependent rats in the present study exhibited an
increase in alcohol self-administration and greater somatic
withdrawal signs during weeks 4–6 of intermittent alcohol
vapor exposure. These results mirror findings that rats with a
history of alcohol dependence exhibit an increase in alcohol self-
administration (i.e., escalation) and somatic and motivational
signs of withdrawal that are characteristic of dependence,
which are observable at 6–8 h of abstinence from alcohol
vapor (Roberts et al., 1996; O’Dell et al., 2004; Vendruscolo
and Roberts, 2014; Matzeu et al., 2018a; Matzeu and Martin-
Fardon, 2020). The present results add to the growing body of
literature that shows that intermittent exposure to alcohol vapor
elicits behavioral and neurobiological signs of dependence. One
explanation is that these changes in neurobehavioral systems,
especially those that underlie response inhibition and reward-
and stress-related behavior, contribute to hyperkatifeia and thus
negative reinforcement, whereby dependent subjects seek relief
from negative symptoms that are exacerbated during alcohol
withdrawal, further motivating them to seek and take alcohol,
particularly during times of heightened stress (Koob, 2014).

The present results showed that 5, 10, and 20 mg/kg
SUV significantly and selectively decreased alcohol self-
administration in rats with a history of alcohol dependence,
without affecting alcohol intake in non-dependent rats. These
results are consistent with previous reports that manipulations
of the Orx system, via the pharmacological blockade of OrxR1
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and OrxR2, influence alcohol consumption in rodents (for
review, see Kim et al., 2012). Indeed, systemic administration
of the OrxR1 antagonist SB334867 decreased voluntary home-
cage alcohol consumption (Moorman and Aston-Jones, 2009;
Anderson et al., 2014) and reduced operant self-administration
(Lawrence et al., 2006; Richards et al., 2008; Jupp et al.,
2011). Similarly, the OrxR2 antagonist LSN2424100 decreased
home-cage alcohol consumption in alcohol-preferring (P) rats
and alcohol-preferring C57BL/6J mice (Anderson et al., 2014).
Furthermore, the DORA almorexant (ACT-078573) reduced
alcohol self-administration under both fixed- and progressive-
ratio schedules of reinforcement and reduced home-cage
alcohol drinking in rats and mice (Srinivasan et al., 2012;
Anderson et al., 2014). The present findings, together with the
extant literature, provide further evidence that the Orx system
is a prominent player in the increase in alcohol consumption
under conditions of alcohol dependence. The data further
suggest that the Orx system is dysregulated as a function of
alcohol exposure, demonstrated by the selective effect of SUV to
decrease alcohol self-administration only in alcohol-dependent
rats.

Intermittent footshock stress induced alcohol-seeking
behavior in non-dependent and dependent rats under the
vehicle condition (i.e., 0 mg/kg SUV), at a similar magnitude,
even though alcohol dependent rats displayed greater active
lever responses during dependence induction (X̄ = 81 ± 5
vs. X̄ = 46 ± 4, respectively at week 6). Importantly, 5 mg/kg
SUV prevented the stress-induced reinstatement of alcohol-
seeking behavior in dependent rats only. In agreement with
the present findings, previous studies showed that peripheral
(Martin-Fardon and Weiss, 2014) and central (intra-prelimbic
cortex) injections of the OrxR1 antagonist SB334867 decreased
reinstatement that was induced by alcohol-related stimuli
(Martin-Fardon and Weiss, 2014; Brown et al., 2016), and that
systemic SB334867 administration also reduced yohimbine
(stress) induced reinstatement (Richards et al., 2008). More
recently, an injection of the DORA TCS1102 in the posterior
paraventricular nucleus of the thalamus prevented the footshock
stress-induced reinstatement of alcohol-seeking behavior in
alcohol-dependent rats only (Matzeu and Martin-Fardon,
2020). Altogether, these findings indicate that the Orx system
plays a pivotal role in motivational aspects of alcohol-seeking
behavior, and the antagonism of its target receptors may be an
effective treatment to reverse Orx dysregulation that is induced
by exposure to alcohol. Dysregulation of the Orx system by
chronic alcohol is consistent with clinical observations in
individuals with AUD who present high plasma Orx levels
during acute withdrawal (Bayerlein et al., 2011; Ziolkowski
et al., 2016) that were correlated with exacerbations in affect-
and stress-related symptomatology (von der Goltz et al., 2011).

An interesting finding was that SUV administration
selectively decreased alcohol taking and seeking in alcohol-
dependent rats. A recurring theme in the expanding Orx

literature is that the pharmacological blockade of OrxRs is more
effective in subjects with high motivation for alcohol seeking or
when alcohol drinking is exacerbated (i.e., alcohol preference
or dependence induction). For example, the administration
of an OrxR1 antagonist decreased alcohol self-administration
and reinstatement behavior in rats that were trained to exhibit
high motivation for alcohol (Moorman and Aston-Jones, 2009;
Moorman et al., 2017) and in rats that were bred for high alcohol
preference (Lawrence et al., 2006; Dhaher et al., 2010; Anderson
et al., 2014). OrxR1 blockade selectively decreased escalated
alcohol drinking in dependent but not non-dependent mice
(Lopez et al., 2016), and blockade of both OrxR1 and OrxR2
decreased alcohol drinking in dependent rats in agreement
with the present study (Aldridge et al., 2022). Ultimately,
two recent studies from our group (Matzeu and Martin-
Fardon, 2020; Flores-Ramirez et al., 2022) also found that
the effects of a DORA on alcohol-seeking behavior are more
robust in dependent animals than in non-dependent animals.
A possible explanation for this phenomenon is that the unique
contribution of Orx transmission to motivational aspects of
alcohol taking and stress-induced alcohol seeking does not
play a significant role until anti-reward systems are sufficiently
engaged or recruited. Thus, in animals that are highly motivated
to consume alcohol (e.g., alcohol-dependent animals), Orx
transmission is potentially compromised and promotes the
incentive for alcohol drinking and seeking through negative
reinforcement mechanisms. Collectively, these findings may
have significant clinical implications. Treatment with SUV may
be beneficial for decreasing alcohol craving and relapse in
individuals who have been diagnosed with AUD.

Although Orx is exclusively produced in the hypothalamus
(HYP), including the lateral HYP, dorsomedial HYP, and
perifornical area (Baldo et al., 2003; DiLeone et al., 2003;
Winsky-Sommerer et al., 2004), Orx neurons project
throughout the brain, densely innervating an array of
brain regions that are involved in arousal, motivation, and
responsivity to stress-related stimuli (Peyron et al., 1998; Baldo
et al., 2003; Grafe and Bhatnagar, 2018). Although systemic
approaches to understand how the Orx system influences
motivational processes that underlie compulsive alcohol
taking and seeking have been successful, it is important to
also uncover unique contributions of discreet brain regions.
Previous research showed that OrxR1 blockade in the ventral
tegmental area (VTA) decreased the cue-induced reinstatement
of alcohol seeking (Brown et al., 2016), and that intra-VTA
DORA administration decreased alcohol self-administration
(Srinivasan et al., 2012). Furthermore, targeted OrxR1 blockade
in the medial prefrontal cortex decreased the cue-induced
reinstatement of responding for alcohol, and the blockade of
OrxR1 in the nucleus accumbens shell decreased alcohol self-
administration (Lei et al., 2016), and decreased alcohol-seeking
when the blockade occurred in the lateral HYP (Campbell
et al., 2020a). The direct administration of a OrxR2 antagonist
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in the central nucleus of the amygdala decreased alcohol
intake in mice (Olney et al., 2017), whereas an infusion of
the DORA TCS1102 in the posterior paraventricular nucleus
of the thalamus prevented the stress-induced reinstatement of
alcohol-seeking behavior (Matzeu and Martin-Fardon, 2020).
These findings suggest that Orx system activity throughout a
wide system of brain regions is key in mediating behaviors
that are related to alcohol taking and seeking. The present
study administered SUV only systemically, but the brain regions
mentioned above likely play a significant role, which requires
further testing to delineate the exact anatomical and network
bases of the behavioral effects of SUV.

One limitation of the present study was that female
rats were not included in our experimental design, which
limits generalizability of the results. The literature shows well-
established sex differences in alcohol intake and preference
in two-bottle choice tests (Li and Lumeng, 1984; Blanchard
et al., 1993; Walker et al., 2008), differences in BALs
after self-administration and somatic withdrawal signs during
intermittent alcohol vapor exposure (Matzeu et al., 2018b), and
differences in reactivity to rewarding and aversive properties
of alcohol (Torres et al., 2014). Furthermore, orexins have
also been found to mediate sex-dependent effects in stress
responsivity (Grafe et al., 2017). Future studies should elucidate
possible sex-specific effects of SUV on alcohol taking and
seeking. Another possible limitation of this study is the relatively
small number of rats used for testing SUV on the stress
induced-reinstatement of alcohol-seeking behavior (n = 4/dose).
Although the probability exists that a substantially larger cohort
of rats might yield a different result, previous research from our
laboratory argues against this possibility. In fact, it was shown
that TCS1102, another DORA is more efficacious at reducing
stress-induced reinstatement of alcohol-seeking behavior in rats
with a history of alcohol dependence (Matzeu and Martin-
Fardon, 2020; Flores-Ramirez et al., 2022), strongly supporting
the beneficial effects of targeting both OrxR1 and OrxR2
to prevent stress-induced craving and relapse in individuals
suffering form AUD. Individuals who are prescribed SUV for
the treatment of insomnia are taking the medication before
bedtime and are advised not to consume alcohol because of their
possible additive effects, which may result in increased risk of
somnolence (Sun et al., 2015). Therefore, an important concern
will be the time during the day when SUV is administered to
be the most efficacious at treating AUD and minimize daytime
somnolence. In this context, several clinical trials with SUV have
been initiated (i.e., ClinicalTrials.gov Identifier: NCT04229095
and NCT03897062) and further clinical research is warranted
to determine the safest approach to administer SUV to patients
suffering of AUD.

In summary, the present findings demonstrate that the
administration of SUV, a currently FDA-approved treatment for
insomnia, selectively decreased alcohol self-administration and
the stress-induced reinstatement of alcohol-seeking behavior

in animals with a history of dependence. The present results
highlight the significance of targeting the Orx system for
the treatment of substance use disorders and suggest that
repurposing SUV could be a good alternative for the treatment
of AUD to prevent compulsive-like drinking and stress-induced
craving and relapse.
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