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Average reward rates enable
motivational transfer across
independent reinforcement
learning tasks
Kristoffer C. Aberg* and Rony Paz

Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel

Outcomes and feedbacks on performance may influence behavior beyond the

context in which it was received, yet it remains unclear what neurobehavioral

mechanisms may account for such lingering influences on behavior. The

average reward rate (ARR) has been suggested to regulate motivated behavior,

and was found to interact with dopamine-sensitive cognitive processes, such

as vigilance and associative memory encoding. The ARR could therefore

provide a bridge between independent tasks when these are performed in

temporal proximity, such that the reward rate obtained in one task could

influence performance in a second subsequent task. Reinforcement learning

depends on the coding of prediction error signals by dopamine neurons and

their downstream targets, in particular the nucleus accumbens. Because these

brain regions also respond to changes in ARR, reinforcement learning may

be vulnerable to changes in ARR. To test this hypothesis, we designed a

novel paradigm in which participants (n = 245) performed two probabilistic

reinforcement learning tasks presented in interleaved trials. The ARR was

controlled by an “induction” task which provided feedback with a low

(p = 0.58), a medium (p = 0.75), or a high probability of reward (p = 0.92),

while the impact of ARR on reinforcement learning was tested by a second

“reference” task with a constant reward probability (p = 0.75). We find that

performance was significantly lower in the reference task when the induction

task provided low reward probabilities (i.e., during low levels of ARR), as

compared to the medium and high ARR conditions. Behavioral modeling

further revealed that the influence of ARR is best described by models which

accumulates average rewards (rather than average prediction errors), and

where the ARR directly modulates the prediction error signal (rather than

affecting learning rates or exploration). Our results demonstrate how affective

information in one domain may transfer and affect motivated behavior in

other domains. These findings are particularly relevant for understanding

mood disorders, but may also inform abnormal behaviors attributed to

dopamine dysfunction.
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Introduction

Negative information, such as bad news or negative
feedback, may affect behavior in subsequent everyday-life
tasks that are unrelated to the received information. Despite
being relevant for understanding the impact of, for example,
mood-related dysfunctions on cognitive performance, few
studies investigated the neurocomputational correlates of how
information received in one task may linger and affect behavior
in other unrelated tasks.

One theory posits that motivated behavior depends on the
average reward rate (ARR), such that vigilance and response
rates increase in contexts were rewards are frequently provided
(Niv, 2007; Niv et al., 2007). In support, human research report
that response vigor (Guitart-Masip et al., 2011; Rigoli et al.,
2016), as well as memory encoding success (Aberg et al., 2017,
2020), are affected by ARRs. Accordingly, the ARR may provide
a bridge which enables recently received affective information
(e.g., negative news or feedbacks) to temporally extend and
influence subsequent motivational states and task performances.

The motivational impact of average reward levels was
coupled with BOLD signal in a midbrain region pertaining
to the loci of dopamine neurons (Aberg et al., 2020), while
other studies report associations between ARRs and dopamine
release in the nucleus accumbens (Hamid et al., 2016; Mohebi
et al., 2019). Reinforcement learning depends on the neural
representation of prediction errors (i.e., the mismatch between
an actual and a predicted outcome; Sutton and Barto, 2018),
which are coded by midbrain dopamine neurons and their
downstream targets, including the nucleus accumbens (Rutledge
et al., 2010; Hart et al., 2014; Schultz, 2016). Accordingly,
reinforcement learning tasks may be particularly vulnerable to
manipulations of average reward levels.

Moreover, average reward levels may affect learning
performance via different computational mechanisms, e.g., via
altered learning rates, decision biases, or reward processing, and
this may be due to an accumulation of prediction errors (Eldar
and Niv, 2015) or rewards (Aberg et al., 2020). To disentangle
the impact of average reward on these different computational
mechanisms, we designed and confronted a number of different
behavioral models.

Here, participants performed two reinforcement learning
tasks presented in interleaved trials. An “inducer” task was
used to control the ARR by providing probabilistic rewards
with a low, medium, or a high probability. A “reference”
task, with a constant (medium) reward probability, was used
to estimate the impact of ARRs on learning performance in
the different conditions. In three separate experiments, we
observed lower learning performance in the reference task
when it was presented together with an inducer task that
provided probabilistic rewards with a low probability (as
compared to medium and high probabilities). Furthermore,
careful behavioral modeling revealed that the impact of ARRs

was best described by models which (i) accumulate average
rewards (rather than prediction errors), and (ii) allow the ARR
to directly modulate the prediction error signal (rather than
learning rates or decision making biases).

Abnormal reinforcement learning patterns may play a role
in the acquisition and maintenance of dysfunctional behaviors
in relation to psychiatric and neurological disorders (Maia
and Frank, 2011). Therefore, understanding how reinforcement
learning is affected by transfer of affective information between
tasks, and how these related to motivated behaviors and interact
with the dopamine system, is relevant for psychopathology.

Materials and methods

Participants

The study followed the declaration of Helsinki and was
approved by the Institutional Review Board (IRB) of the
Weizmann Institute. Informed consent was provided before the
start of the testing. In total, 245 participants were recruited via
Amazon Mechanical Turk (n experiment 1/2/3 = 63/79/103).
Inclusion criteria consisted of being older than 18 years,
speaking English fluently, and having completed more than 95%
of previously started assignments on the Amazon Mechanical
Turk platform. Each participant could only perform one of
the three experiments, and were recruited via identical ads on
the Amazon Mechanical Turk platform, and their participation
was decided on a first-come-first-served bases. Participants
were excluded from the data analysis if their average overall
performance on the last four trials was less than 0.6, if they failed
to respond on more than 20 trials, or if they exhibited more
than two response sequences where the same button was pressed
more than ten times in a row. After applying these exclusion
criteria, data from 148 participants were included in the analyses
(n experiment 1/2/3 = 50/58/40).

Task and procedure

Participants performed probabilistic reinforcement learning
tasks, where in each trial one object in a pair of objects was
selected (Figure 1A). Probabilistic feedback was then presented
based on the reward/punishment probability assigned to the
selected object. For example, as illustrated in Figure 1A,
selecting the apple would yield positive feedback with
probability pReward, while selecting the pear would yield
negative feedback with probability pPunishment . In the present
study, pReward was always equal to pPunishment . Critically,
to control the ARR, here defined as average rewards per
trials, an “inducer” task was performed in interleaved trials
together with a “reference” task. The “inducer” task provided
positive feedback with pReward set to either high (11/12,
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FIGURE 1

Task description and learning performance. (A) In each trial, participants selected one of two options in a pair. One object provided positive
feedback with probability pReward, while the other object provided negative feedback with probability pPunishment. Here, pReward was always equal
to pPunishment. (B) Illustration of a trial. (C) Learning curves for the reference tasks, collapsed across the three experiments. The inset also shows
performance for the inducer tasks with low- and high reward probabilities. Inducer/reference tasks are, respectively denoted by bold / narrow
lines. (D) Learning curves for the reference task in the three experiments separately. (E) Average learning performance for the reference tasks
across trials 9–12 collapsed across the three experiments. (F) Average learning performance for the reference tasks across trials 9–12 separately
for the three experiments. ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, p < 0.10, ns p > 0.10. All error bars indicate the standard error of the mean.

pReward∼0.92), medium (9/12, pReward = 0.75), or low (7/12,
pReward∼0.58), while for the “reference” task pReward was
always set to medium (9/12, pReward = 0.75). In other words,
the ARR was, respectively highest and lowest in conditions
where the inducer task provided a high/low probability of
reward.

Each trial started with a display of two images for a
maximum of 1.5 s (Figure 1B). After selection, the selected
object was marked for the remainder of the 1.5 s, followed by
a feedback displayed for 1 s. A fixation cross was then displayed
for 1 s before the start of the next trial. If participants failed to
respond within 1.5 s, a screen displaying the sentence “Too Slow!
–2 points” was displayed for 3 s.

Each task was performed for 12 trials in each block (for
a total of 24 trials per block, i.e., 12 inducer task trials +12
reference task trials), and the order of trials for each task
within a block was interleaved in a pseudorandom fashion,
such that no task was repeated for more than three trials in
a row (e.g., . . . Inducer-Reference-Reference-Inducer-Inducer
. . . is correct, while . . . Inducer-Reference-Reference-Reference-
Reference . . . is incorrect).

Each participant performed five blocks of trials for each
of the three conditions (i.e., five blocks each with pReward
of the inducer task set to high, medium, and low), for a
total of 15 blocks and 360 trials. The order of blocks was
pseudorandomized with the limitation that one block of each
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condition had been performed before repeating a condition
(e.g., . . . Low-High-Medium, Low-Medium-High, Medium-
High-Low . . . is a correct example of three possible sequential
blocks, while . . . Low-Low-Medium, High-Low-Medium, High-
High-Medium . . . is an example of an incorrect sequence of
three blocks). In each task, a new pair of objects were presented
for a total of 32 different pairs of objects (15 blocks of two
interleaved tasks in the experiment proper +1 training block).

Before the start of the experiment, participants received
explicit instructions on how to perform the task. For example,
in experiment 1 the instructions were:

“Two objects will be presented in each trial, one to the left
and one to the right. Select the object on the left by pressing
the ’LeftArrow’ key and the object on the right by pressing
the ’RightArrow’ key. Selecting an object results in one of the
following types of feedback:

+1: you gained 1 point.

−1: you lost 1 point.

Importantly! Collecting points will earn you a monetary
bonus.

One object in each pair is more likely to give better feedback
than the other.

Increase your bonus by learning which are the best objects.

Each pair of objects is presented for 1.5 s. Beware! If your
response is too slow, you will lose 2 points.

Press the SPACE bar to start the task.”

After having read the instructions, participants performed
one training block before continuing to the experiment proper.
The experiments lasted less than 30 min, and participants
were paid $2 for their participations and up to $2 extra as a
performance-based bonus.

Experiments
Three different experiments were conducted, all based

on the procedure described above, but with different
feedback values.

Experiment 1

Positive/negative feedbacks were, respectively +1/−1 points
for both the inducer tasks and the reference task.

Experiment 2

Positive/negative feedbacks were set to +1/−1 points for the
reference task, while positive/negative feedback was +0.6/−0.6
for the inducer task with high pReward, +1/−1 for the inducer
task with medium pReward, and +3.0/−3.0 for the inducer task
with low pReward. These specific feedback values provided the
same average number of points if the best option is selected in all
trials (i.e., low pReward: 7 × 3/12 + 5 × − 3/12 = 0.5 points/trial;
medium pReward: 9 × 1/12 + 3 × − 1/12 = 0.5 points/trial; high
pReward: 11× 0.6/12 + 1×− 0.6/12 = 0.5 points/trial).

Experiment 3

Positive/negative feedbacks were set to +1/0 points for both
the inducer tasks and the reference task. This experiment is
identical to experiment 1, except that the negative (−1 point)
feedback was replaced by a neutral (0 point) feedback.

Behavioral modeling

All models are based on the Q-learning algorithm (Watkins
and Dayan, 1992), where the expected value Qi(t) of the selected
option i in trial t is updated by the mismatch between the
expected value and the actual outcome R(t), i.e., the prediction
error δQ(t), scaled by the learning rate αQ.

Qi (t + 1) = Qi (t) + α ∗ δQ(t) (1)

δQ (t) = R(t) − Qi(t) (2)

For all models, the probability p of selecting option i in trial
t is modeled using a soft-max choice probability function:

pi (t) =
eQi(t)∗βQ∑
i eQi(t)∗βQ

(3)

The decision weight βQ determines how strongly a decision
is affected by expected values, such that small values of βQ

allows for more stochastic decisions/exploration (Gershman,
2018; Wilson and Collins, 2019).

A popular derivation of the Q-learning algorithm separates
the learning rates for feedbacks that are better or worse than
expected (i.e., positive and negative prediction errors):

Qi (t+1) = Qi (t)+αδQ+ ∗ δQ (t) , if δQ (t) > 0 (4)

Qi (t+1) = Qi (t)+αδQ− ∗ δQ (t) , if δQ (t) < 0 (5)

While these two models provide good fits to behavior in
similar tasks (Frank et al., 2009; Aberg et al., 2015), neither
model allows two interleaved tasks to interact (i.e., performance
on one task is independent from the feedbacks received in other
tasks). For this reason, we created a new set of models which
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allows the ARR µ to, respectively modulate the learning rate α,
the decision weight βQ, and the prediction error signal δQ:

α (t) = α0 ∗ (1+µ (t)) (6)

βQ (t) = β0 ∗ (1+µ (t)) (7)

δQ (t) = R(t)− Qi (t)+µ(t) (8)

The manipulations in Equations 6, 7, and 8, respectively
allows larger values of µ to increase the learning rates, reduce
exploration, and boost the prediction error signal.

Furthermore, the average reward may affect behavior in two
separate ways. First, via the average accumulation of prediction
errors (Eldar and Niv, 2015):

µPE (t+1) = µPE (t)+αµ ∗ (δQ (t)− µPE (t)) (9)

Second, via the average accumulation of rewards (Aberg
et al., 2020):

µR (t+1) = µR (t)+αµ ∗ (R (t)− µR (t)) (10)

To determine which of these two mechanisms that provide
the best fit to behavior in our study, the two different
ways of estimating µ, i.e., µPE and µR, were included in
different models.

Finally, based on the suggestion of one reviewer, we
also included a model which tracks positive and negative
outcomes in separate streams (Lin et al., 2020). Specifically,
expected negative (Qnegative) and positive (Qpositive) outcomes
are, respectively updated following negative (Rnegative) and
positive (Rpositive) feedbacks:

Qi,positive (t+1) = λ+ ∗ Qi, positive (t)+α ∗ δQ, positive(t) (11)

δQ, positive (t) = w+ ∗ Rpositive(t)− Qi, positive (12)

Qi,negative (t+1) = λ− ∗ Qi, negative (t)+α ∗ δQ, negative(t)
(13)

δQ, negative (t) = w− ∗ Rnegative(t)− Qi, negative (14)

This model allows the subjective weighting of negative and
positive feedbacks via the free parameters w− and w+, as well
as the discounting of previous positive and negative outcomes
via the free parameters. λ+ and λ−. Decisions are made by
considering the combination of positive and negative expected
outcomes:

Qi,total = Qi,positive+Qi,negative (15)

Of note, some modifications of the original model were
necessary to enable its fit to behavior in the present task. First,
the original model presumes that both positive and negative

feedbacks are presented in each trial, while in the present
study only one feedback-type was presented. For this reason,
when positive or negative feedbacks were received, Rnegative

or Rpositive was, respectively set to 0. Second, in the original
model the option with the largest total expected outcome
[i.e., argmax(Qtotal)] is deterministically selected, an unrealistic
assumption for human behavior in probabilistic reinforcement
learning tasks. For this reason, decisions were modeled using
the softmax probability function (Equation 3), with Qtotal as the
input. Importantly, this option still allows deterministic decision
making (as would be indicated by fitting a very large β Q).

In total, nine different models were fitted to behavior:

• The canonical “ØØ-α” model, which is made up of
Equations 1–3 with two free parameters: A learning rate α

and a decision weight β Q.
• The “ØØ-αPE+,−” model, which is made up of Equations

2–5 with three free parameters: Two separate learning rates
for negative and positive prediction errors αδQ−, αδQ+, and
a decision weight β Q.
• The “ØØ-αR+,−” model, which is made up of Equations 3

and 11–14 with six free parameters: A learning rateα, two
separate discount factors for negative and positive expected
outcomes λ−, λ+, two separate weights for negative and
positive outcomes w−, w+, and a decision weight β Q.
• The “FB-PE” model, which is made up of Equations 1,

3, 8, and 9 with three free parameters: A learning rate
α, a learning rate for average reward αµ, and a decision
weight β Q.
• The “α-PE” model, which is made up of Equations 1–3, 6,

and 9 with three free parameters: A constant learning rate
term (for when the average reward is zero) α0, a learning
rate for average reward αµ, and a decision weight β Q.
• The “β-PE” model, which is made up of Equations 1–3,

7, and 9 with three free parameters: A learning rateα, a
constant decision weight (for when the average reward is
zero) β0, and a learning rate for average reward α µ .
• The “FB-R” model, which is made up of Equations 1,3,

8, and 10 with three free parameters: A learning rate α,
a learning rate for average reward αµ, and a decision
weight β Q.
• The “α-R” model, which is made up of Equations 1–3, 6,

and 10 with three free parameters: A constant learning rate
term (for when the average reward is zero) α0, a learning
rate for average reward αµ, and a decision weight β Q.
• The “β-R” model, which is made up of Equations 1–3, 7, and

10 with three free parameters: A learning rateα, a constant
decision weight (for when the average reward is zero) β0,
and a learning rate for average reward αµ .

In summary, the “ØØ-α,” “ØØ-αPE+,−,” and the “ØØ-
αR+,−“ models presume no impact of ARRs on performance. By
contrast, the “FB-PE,” “α-PE,” and “β-PE” models allow the ARR
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to affect performance via an accumulation of prediction errors
across tasks, while the “FB-R,” “α-R,” and “β-R” models allow the
ARR to affect performance via an accumulation of feedbacks.
Further, “FB-x,” “α-x,” and “β-x” models, respectively presume
that the ARR affects performance by influencing the prediction
error signal, the learning rate, and the decision weight.

All models were fitted to behavior and confronted using
a hierarchical Bayesian inference (HBI) method (Piray et al.,
2019). The HBI concurrently fits the free parameters and
compares the considered models (while also correcting for
differences in model complexity), something which allows
constraining individual fits to group-level hierarchical priors.
Additionally, the random effects approach used by the HBI
calculates both group-level statistics and model evidence based
on the posterior probability that the model explains each
subject’s choice data. The HBI method provides fitted model
parameters for each subject, as well as protected exceedance
probabilities for each set of compared models. The exceedance
probability estimates the probability that a model is the most
frequent model to explain the observed behaviors, as compared
to all other considered models (Rigoux et al., 2014). The
protected exceedance probability (PXP) is more conservative, by
taking into account the possibility that none of the compared
models is supported by the data. To further demonstrate the
robustness of the model selection procedure, we also report
the model frequency, which is how often each model was
determined to be the “best” model across participants.

To ensure that the parameters included in the selected model
are meaningful, the values of the parameters used to simulate
behaviors need to be successfully recovered when re-fitting
the model to these simulated behaviors (Wilson and Collins,
2019). To confirm that this is the case, we randomly selected
values of model parameters within the range of the fitted values
obtained from the selected model, and generated the behavior of
1,000 virtual participants. Next, the selected model was re-fitted
to the generated behaviors, and correlation coefficients were
calculated between the generating and the recovered parameters.
For a parameter to be meaningful, these correlations should be
significantly positive.

Results

Behavioral results

Low average reward rate in the induction task
reduces learning performance in the
independent reference task

Learning curves collapsed across experiments are shown in
Figure 1C, and for each experiment individually in Figure 1D.
Learning performance for the reference task in each condition
was defined as the average hit rate across the last third of the
trials (i.e., trials 9–12). The average learning performance for

the reference task in the different conditions collapsed across
experiments are shown in Figure 1E, and for each experiment
separately in Figure 1F.

To assess the impact of the ARR manipulation on learning
performance in the reference tasks, and potential differences
between experiments, the data from all participants were added
to a mixed-factor ANOVA with between-subject Experiment
(experiment 1–3) and Condition (inducer task with low,
medium, and high reward probability). The results indicate a
significant main effect of Condition [F (2,290) = 8.96, p< 0.001,
η2

p 0.058, ANOVA], but no main effect of Experiment [F
(2,145) = 2.62, p = 0.077, η2

p 0.035, ANOVA], nor interaction
between Experiment and Condition [F (4,290) = 0.60, p = 0.665,
η2

p 0.008, ANOVA]. For a full ANOVA table, see Table 1.
The main effect of condition was due to significantly lower
learning performance for the reference task in the low average
reward condition, as compared to both the medium and the
high average reward conditions [Figure 1E; low versus medium:
t (147) = −4.063, 95% CI = −0.062, −0.022, p < 0.001, Cohen’s
d = 0.334, two-tailed t-test; low versus high: t (147) = −3.236,
95% CI = −0.063, −0.015, p = 0.002, Cohen’s d = 0.266, two-
tailed t-test]. By contrast, there was no difference in learning
performance for the reference task in the medium and high
average reward conditions [t (147) = 0.273, 95% CI = −0.017,
0.022, p = 0.785, Cohen’s d = 0.023, two-tailed t-test]. Notably,
learning performance for the reference task in the low average
reward condition was consistently lower in each experiment
separately (for ANOVAs and t-tests, see Table 2).

In summary, supporting our predictions of an interaction
between the inducer task and the reference task, we observed
significantly lowered learning performance when the reference
task was paired with an inducer task which provided low
average reward. Furthermore, because these effects were
observed in each of the three experiments, it cannot be
attributed to differences in average reward magnitudes (tested
in experiment 2) or increased salience attributed to negatively
valued feedbacks (tested in experiment 3). Put simply, our data

TABLE 1 Mixed-effect ANOVA for the average hit rate as a function of
Experiment (experiment 1, 2, and 3) and Condition (low, medium, and
high reward probability).

Sum of
squares

df Mean
square

F P-value η2
p

(Intercept) 274.92 1 274.92 5491.1 <0.001

Experiment 0.262 2 0.131 2.615 0.077 0.035

Error 7.260 145 0.050

Condition 0.156 2 0.078 8.959 <0.001 0.058

Experiment×
condition

0.021 4 0.005 0.597 0.665 0.008

Error 2.528 290 0.009

df: Degrees of Freedom.
F: F-statistic.
η2

p : Partial eta-squared.
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TABLE 2 Repeated measures ANOVAs for the average hit rate as a function of Condition (low, medium, and high reward probability) for each
experiment separately.

Sum of squares df Mean square F/t P-value η2
p/d

Experiment 1

Repeated measures ANOVA

(Intercept) 102.09 1 102.09 2465.4 <0.001

Error 2.029 49 0.041

Condition 0.065 2 0.033 3.926 0.023 0.080

Error 0.814 98 0.008

Mean comparisons

Low versus medium −1.866 0.068 0.264

Low versus high −2.390 0.021 0.338

Medium versus high −1.181 0.243 0.167

Experiment 2

Repeated measures ANOVA

(Intercept) 111.58 1 111.58 2395.5 <0.001

Error 2.655 57 0.047

Condition 0.072 2 0.036 3.476 0.034 0.057

Error 1.185 114 0.010

Mean comparisons

Low versus medium −2.480 0.016 0.326

Low versus high −1.783 0.08 0.234

Medium versus high 0.538 0.593 0.071

Experiment 3

Repeated measures ANOVA

(Intercept) 69.76 1 69.76 1056.5 <0.001

Error 2.575 39 0.066

Condition 0.046 2 0.023 3.360 0.040 0.079

Error 0.529 78 0.007

Mean comparisons

Low versus medium −2.881 0.006 0.456

Low versus high −1.393 0.172 0.220

Medium versus High 1.091 0.282 0.172

df: Degrees of Freedom.
F/t: F-statistic/t-statistic.
η2

p /d: Partial eta-squared/Cohen’s d.

suggest interactions between two independent tasks performed
in temporal proximity. Next, we turned to behavioral modeling
to elucidate specific computational mechanism that may be
touched by the ARR.

Modeling results

Parameter fitting and model selection was performed
concurrently using a HBI method (Piray et al., 2019). To select
a model, we utilized the PXP, which estimates the likelihood of a
model providing the best explanation of the observed behaviors,
as compared to all other considered models, while also taking
into account the possibility that none of the compared models is
supported by the data.

The PXPs for the tested models are shown in Figure 2A,
with the largest PXP obtained for the “FB-R” model. In brief,
the “FB-R” model presumes (i) that the ARR modulates the
prediction error signal, and (ii) that manipulations of the ARR
affects behavior via an accumulation of reward. Notably, the
“FB-R” model obtained the highest PXP also when the analysis
was repeated for each experiment separately (Figure 2B). For
visualization purposes, the three parameters of the “FB-R”
model are shown in Figure 2C. To demonstrate that these
model parameters are meaningful (Wilson and Collins, 2019),
we successfully recovered parameter values used to generate
simulated behaviors (Figure 2D; see section “Materials and
methods” for a description of this procedure).

One critical question is whether the “FB-R” model is capable
of reproducing observed behaviors of interest. Before testing
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FIGURE 2

Behavioral modeling. (A) Protected exceedance probabilities (PXP) when model parameters were fitted across all experiments. The highest PXP
was obtained for the FB-R model, where the average reward feedback influences the prediction error component of the model. The inset
shows the model frequencies. (B) PXP’s when model parameters were fitted in each experiment separately. In all experiments, the FB-R model
had the highest PXP. (C) The model parameters, when fitted across experiments. (D) Correlation coefficients between model parameters used
to generate behavior, and their recovered counterparts. (E) The average reward rate for the reference tasks in the different conditions.
(F) Model-fitted hit rates for the reference tasks, collapsed across the three experiments. The inset also shows performance for the inducer tasks
with low- and high reward probabilities. Inducer/reference tasks are, respectively denoted by bold / narrow lines. (G) Correlation between
actual- and model-fitted learning performance, averaged across all conditions and tasks. (H) Correlations between actual- and model-fitted
differences in learning performance for the reference task in the different conditions. ∗∗∗p < 0.001. All error bars indicate the standard error of
the mean.

this, we first display the “FB-R” model’s estimate of average
accumulated reward in each trial for the reference task in the
different conditions (Figure 2E). As would be expected, the
ARR increases when the inducer task provides higher reward
probabilities. Model-fitted hit rates are shown in Figure 2F. To
ensure that the selected model is capable of reproducing the
same behavioral effects of interest, we entered model-fitted hit
rates (averaged across trials 9–12) into the same mixed-effects
ANOVA as for actual behavior. As with actual behavior, there
was a significant main effect of Condition [F (2,290) = 7.217,
p < 0.001, η2

p 0.047, ANOVA], and even though the model
suggests a main effect of Experiment [F (2,145) = 3.847,
p = 0.024, η2

p 0.050, ANOVA], there was no interaction between
Experiment and Condition [F (4,290) = 0.170, p = 0.954,

η2
p 0.002, ANOVA]. For a full ANOVA table and comparisons

between model-fitted means, see Table 3.
These results indicate that the model captures group-level

behaviors. However, a good model should also be able to
capture inter-individual differences in behavior. For this reason,
we first averaged learning performance across the last third
of the trials across all conditions, and found a positive and
significant correlation between actual- and model fitted learning
performance (Figure 2G; Pearson’s r = 0.968, p < 0.001). Next,
we correlated actual and model-fitted learning performances for
our behavioral effects of interest, namely the differential hit rates
for the reference task in the different conditions. All correlations
were significant and positive [Low vs. Medium: Figure 2H,
Pearson’s r = 0.596, p< 0.001; Low vs. High: Figure 2I, Pearson’s
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r = 0.569, p < 0.001; Medium vs. High: Figure 2J, Pearson’s
r = 0.632, p< 0.001]. In other words, the “FB-R” model provides
good fits to behavior, both on the group- and on the individual
level.

In summary, we show that including the ARR in the
model improves model fits. Moreover, the model with the most
parsimonious fit presumes that ARR affects the prediction error
signal via the accumulation of reward. These results extend
the behavioral results by highlighting specific computational
mechanism that is affected by manipulations of the ARR.

Discussion

In three separate tasks, we observed reduced learning
performance in a “reference” task when it was interleaved with
an “inducer” task that provided a low probability of reward.
These results support the notion that affective information
obtained in one task lingers and affects performance in
other, temporally proximal tasks, even when these tasks are
independent. These results extend previous research showing
that the ARR affects task performance across trials within the
same task (Guitart-Masip et al., 2011; Rigoli et al., 2016; Aberg
et al., 2017, 2020). As such, these studies may suggest a general
role for the ARR in enabling interactions between temporally
proximal events.

What cognitive mechanism(s) may be responsible for such
interactions? It has been suggested that the ARR affects intrinsic
motivation, e.g., low ARR reduces intrinsic motivation (Niv,
2007; Niv et al., 2007; Hamid et al., 2016). The evolutionary
advantage of such a mechanism is that, for example, it enables
the ability to preserve energy when resources (e.g., food/water)
are scarce via a reduced motivation to exert effort. Additionally,
it may provide a signal which regulates foraging behaviors
(Constantino and Daw, 2015). The present study suggests that
motivational transfer occurs not only across trials within the
same task, but also across different tasks. An interesting topic
for future studies is to what extent a low ARR contributes to
exploratory decisions or task-switching.

The present study defines ARR as rewards per trial, but
another option is to calculate it as rewards per time (i.e., the
opportunity cost of time; Niv et al., 2007). While the two
definitions are highly correlated in the present study (because
trial durations are more or less constant), this distinction may
be particularly important in the context of associative memory
formation because large inter-trial intervals, which causes a
reduction in the ARR per time, was found to improve associative
memory performance (Lattal, 1999; Gallistel and Gibbon, 2000).
While this result seemingly contrasts with our previous results
(Aberg et al., 2017, 2020), we observe that large inter-trial
intervals affords additional memory processes that might act to
enhance memory performance, e.g., memory rehearsal (Reitich-
Stolero and Paz, 2019). Yet, similarities and differences between

the behavioral impact of average reward per time and per trial
need to be addressed in future studies. For example, to test for
motivational transfer of ARRs per time, the present task could
be modified with an inducer task that applies different inter-trial
intervals to manipulate the ARR per time.

Goal-directed motivation may depend on three factors,
namely outcome controllability, outcome value, and effort
cost (Grahek et al., 2019). In the present study, the cost
of exerting effort was arguably similar across the different
conditions. In addition, because all behavioral effects were
similar across experiments with different outcome values, an
effect which could be explained by the contextual scaling of
available rewards (Palminteri et al., 2015), the impact of outcome
values on motivation was negligible. By contrast, the different
reward probabilities associated with the inducer task in the
different conditions may have influenced the perceived outcome
controllability (e.g., perceived controllability was large / small
when reward probabilities were large / small). In other words,
while the present study set out to test the following chain of
events: “Average reward rate in inducer task -> Motivation -
> Learning in reference task” path, we may actually have tested
another chain of events, namely “Average reward rate in inducer
task -> Perceived control in inducer task -> Motivation ->
Learning in reference task.” Put simply, the reduced learning
performance for the reference task in the condition with low
reward probabilities may have been due to a transfer of reduced
motivation induced by low perceived control in the inducer
task. To test the motivational transfer of motivation induced
by perceived control, an experiment could be conducted where
the inducer task manipulates perceived control without altering
the ARR. Such an experiment would test the chain “Perceived
control inducer task ->Motivation -> Learning in independent
task.”

Low perceived controllability has been associated with a
variety of anxiety-related disorders, such as generalized anxiety
disorder, post-traumatic stress disorder, panic disorder, social
anxiety disorder, and obsessive-compulsive disorder (Gallagher
et al., 2014), as well as depression (White, 1959; Abramson
et al., 1989), and an increased vulnerability to develop a mental
disorder (Barlow, 2000; White et al., 2006). Accordingly, the
present study may inform psychopathology by showing that
perceived control reduces intrinsic motivation, and how this
may transfer to affect other independent behaviors. A potential
flip-side of this research is that increasing the perception of
control may also transfer and boost other motivated behaviors.
Yet, future studies are clearly needed to investigate potential
interactions between ARRs and perceived control, as well as the
link between such interactions and inter-individual differences
in personality traits and mental disorders.

The behavioral modeling revealed that the impact of ARRs
on behavior is due to an alteration of the prediction error
signal, rather than affecting learning rates or the tendency to
make more exploratory decisions. This result resonates with
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TABLE 3 Repeated measures ANOVAs for the model-fitted average hit rate as a function of Condition (low, medium, and high reward probability).

Sum of squares df Mean square F/t P-value η2
p/d

Mixed-effects ANOVA

(Intercept) 292.13 1 292.13 7453.3 <0.001

Experiment 0.302 2 0.151 3.847 0.024 0.050

Error 5.683 145 0.039

Condition 0.036 2 0.018 7.217 <0.001 0.047

Experiment x Condition 0.002 4 <0.001 0.170 0.954 0.002

Error 0.720 290 0.003

Mean comparisons

Low versus medium −2.185 0.031 0.180

Low versus high −3.608 <0.001 0.297

Medium versus high −1.771 0.079 0.146

df: Degrees of Freedom.
F/t: F-statistic/t-statistic.
η2

p /d: Partial eta-squared/Cohen’s d.

our previous research showing that the ARR affected the neural
correlates of feedback processing (Aberg et al., 2020), and
suggestions that ARRs are coded in low tonic dopamine levels
(Niv, 2007; Niv et al., 2007). However, recent evidence suggests
that ARRs are associated with dopamine release in the nucleus
accumbens (Hamid et al., 2016; Mohebi et al., 2019), but not
with the activity of midbrain dopamine neurons (Mohebi et al.,
2019). This seemingly surprising result, given that the nucleus
accumbens receives dense projections from midbrain dopamine
neurons (Ikemoto, 2007), indicates a complex relationship
between ARRs, motivation, dopamine, and learning, which is
still a hot topic for on-going research (for a recent insightful
review, see Berke, 2018). Yet, because prediction errors are
coded by midbrain dopamine neurons (Schultz, 2016) and the
nucleus accumbens (Rutledge et al., 2010; Hart et al., 2014), it
could be predicted that the impact of ARRs on reinforcement
learning in the present tasks involves altered prediction error
coding within these brain regions.

Behavioral models which included a factor that allowed the
average rate to affect behavior consistently outperformed models
which allowed no interaction between tasks. This result supports
the notion of motivational transfers between tasks and trials, and
therefore highlights the importance of including this interaction
in future studies. For example, reinforcement learning tasks are
sometimes presented in a block-wise fashion, but at other times
in an inter-leaved fashion. Different models may therefore be
needed to model behavior in these conditions in order to capture
behavioral variability that can be attributed to motivational
transfer between tasks. Another thing to consider is that while
the ARR was here determined by the different feedbacks, it
seems reasonable that an individual’s perceived performance
may also contribute to the ARR. For example, intuition dictates
that performing a difficult or effortful task would eventually
lead to a drop in motivation, as compared to easier tasks,
even without the presentation of explicit performance feedback.

Interestingly, in visual perceptual learning, interleaving trials
of a difficult task with trials of an easier tasks impedes
learning, even in the presence of performance feedbacks (Aberg
and Herzog, 2009, 2010). Future studies need to address
the relationship between externally and internally generated
performance feedbacks and motivational transfer via the ARR.

Limitations

A first limitation is that both the inducer- and the reference
task were reinforcement learning tasks, and therefore depended
on the same neurocomputational mechanisms, e.g., prediction
errors and the brain regions that code them. It therefore remains
unknown whether our findings can be replicated using two
different, e.g., two non-learning tasks or the combination of a
learning- and a non-learning task. Even further, to what extent
can ARRs obtained in a computerized game transfer and affect
real-life motivated behaviors?

Second, we did not observe a difference in behavior between
the conditions where the induced reward probability was
medium and high, suggesting a non-linear relationship between
ARRs and motivation. One explanation could be that the
perceived difficulty/perceived controllability was similar for the
medium and high average reward conditions (but different as
compared to the low reward probability condition). Another
option is that even if the difficulty/controllability is perceived as
different, the motivational impact of medium and high reward
probabilities could be similar. Supporting these notions, it was
recently reported that the optimal rate of reward for binary
classification learning was around 85% (Wilson et al., 2019),
a value which is positioned rather in-between the medium
(0.75) and the high (∼0.92) reward probabilities used in the
present task. Yet, because we did not acquire any self-reported
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assessments about task-difficulties, this issue remains a topic for
future studies.
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