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Introduction: Dopamine has been increasingly recognized as a key

neurotransmitter regulating fear/anxiety states. Nevertheless, the influence of

sex and estrous cycle differences on the role of dopamine in fear responses

needs further investigation. We aimed to evaluate the effects of sulpiride (a

dopaminergic D2-like receptor antagonist) on contextual fear conditioning in

females while exploring the influence of the estrous cycle.

Methods: First, using a contextual fear conditioning paradigm, we assessed

potential differences in acquisition, expression, and extinction of the

conditioned freezing response in male and female (split in proestrus/estrus

and metestrus/diestrus) Wistar rats. In a second cohort, we evaluated the

effects of sulpiride (20 and 40 mg/kg) on contextual conditioned fear in

females during proestrus/estrus and metestrus/diestrus. Potential nonspecific

effects were assessed in motor activity assays (catalepsy and open-field tests).

Results: No sex differences nor estrous cycle effects on freezing behavior

were observed during the fear conditioning phases. Sulpiride reduced freezing

expression in female rats. Moreover, females during the proestrus/estrus

phases of the estrous cycle were more sensitive to the effects of sulpiride than

females in metestrus/diestrus. Sulpiride did not cause motor impairments.

Discussion: Although no sex or estrous cycle differences were observed in

basal conditioned fear expression and extinction, the estrous cycle seems to

influence the effects of D2-like antagonists on contextual fear conditioning.
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conditioned fear, freezing, sulpiride, dopamine, proestrus/estrus, metestrus/diestrus,
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Introduction

Anxiety-related disorders are complex heterogeneous
mental disorders and important causes of health-related
burden worldwide (American Psychiatric Association, 2013). A
frequent observation is that the prevalence of these disorders
is substantially higher in women than in men (McLean et al.,
2011; Bandelow and Michaelis, 2015; Craske et al., 2017). While
several biological processes are thought to contribute to sexual
dimorphism in anxiety disorders, past and recent evidence
suggests that sex steroids, as well as their fluctuations in brain
systems, are key in mediating these pathological states (Maeng
and Milad, 2015; Li and Graham, 2017; Nouri et al., 2022).

Likewise, animal model studies have revealed that females
respond to stress and/or fear differently from males (Johnston
and File, 1991; Imhof et al., 1993; Scholl et al., 2019; Knight
et al., 2021) and dependent on circulating levels of sex
steroids (Frye et al., 2000; Marcondes et al., 2001; Gouveia
et al., 2004; Lovick, 2014). Therefore, sex steroids may play
a role in modulating neurotransmitter systems involved
in anxiety-related pathological states. Nevertheless, most
studies with animal models are carried out predominantly
with males, and their results are generalized to females
(Bangasser and Cuarenta, 2021; Shansky and Murphy,
2021). Thus, potential differences between the sexes remain
largely unexplored.

Aversive conditioning is one of the most used behavioral
paradigms to study fear in rodents (LeDoux, 2014; Fanselow
and Wassum, 2015; Izquierdo et al., 2016; Haaker et al.,
2019). Regarding sex differences in fear conditioning, conflicting
results have been reported. Several studies have shown no sex
differences in fear conditioning (Milad et al., 2009a; Cossio et al.,
2016; Machado Figueiredo et al., 2019; Carvalho et al., 2021).
In contrast, higher conditioned freezing in male compared to
female rats (Graham et al., 2009; Daviu et al., 2014; Urien
and Bauer, 2022) and increased freezing in females (Baran
et al., 2009; Blume et al., 2017) have also been found. When
considering the estrous cycle, some studies have indicated low
estrogen phases in females to be associated with heightened
sensitivity to stress and impaired consolidation of extinction
memory (Markus and Zecevic, 1997; Milad et al., 2009a; Zeidan
et al., 2011). Others, however, have observed no effects of
the estrous cycle on fear conditioning (Cossio et al., 2016;
Machado Figueiredo et al., 2019; Carvalho et al., 2021). In
fact, we found no sex differences or estrous cycle influence on
tone-cued fear conditioning, but female rats displayed lower
extinction retention when compared to males in contextual
fear conditioning independently of the estrous cycle phase
(Reimer et al., 2018).

Several lines of evidence have indicated that dopamine is a
key neurotransmitter in fear conditioning (Pezze and Feldon,
2004; De la Mora et al., 2010; Lee et al., 2017; Stubbendorff and
Stevenson, 2021). Our group has demonstrated an important

involvement of signaling at D2-like dopaminergic receptors
in the expression of conditioned fear in rats (De Oliveira
et al., 2006, 2009; De Souza Caetano et al., 2013; De Vita
et al., 2021). Additionally, the fear response to conditioned
stimuli appeared to depend on the activation of the ventral
tegmental area–basolateral amygdala dopaminergic connections
(De Oliveira et al., 2011, 2013, 2014, 2017; De Souza Caetano
et al., 2013). Other studies, on the other hand, have pointed to
the importance of D2-like receptors in the nucleus accumbens
and infralimbic cortex for fear extinction (Holtzman-Assif et al.,
2010; Mueller et al., 2010; Zbukvic et al., 2017). All these studies,
however, have overlooked the involvement of dopaminergic
mechanisms in conditioned fear in females.

Since there are sex and estrous cycle-dependent fluctuations
in dopamine concentration and dopaminergic receptor
expression in fear conditioning-relevant brain regions (Xiao and
Becker, 1994; Staiti et al., 2011; Locklear et al., 2016; Kokras
et al., 2018; Cullity et al., 2019), the present study aimed to
explore the involvement of dopamine in conditioned fear in
females. For this, we evaluated the effects of blocking D2-like
dopaminergic receptors on the expression and extinction of
contextual conditioned fear in female rats at different phases of
the estrous cycle.

Materials and methods

Animals

Twenty-four male (310–440 g) and 126 female (220–310
g) Wistar rats (8–12 weeks old) from the animal facility of
the Federal University of São Carlos (UFSCar) were used. Rats
were housed in groups of four per cage (polypropylene boxes,
40 × 33 × 26 cm), under a 12/12 h dark/light cycle (lights on
at 07:00 h), at 23 ± 2◦C, and given ad libitum access to water
and rat chow. Experiments were carried out during the light
phase of the cycle, between 9:00 and 12:00 h. All procedures were
performed in accordance with the National Council for Animal
Experimentation Control and were approved by the Committee
for Animal Care and Use of the Federal University of São Carlos
(Protocol No. 5717160919).

Assessment of the estrous cycle phase

To assess female rats’ estrous cycle, vaginal smears were
taken daily in the morning (09:00 h), starting 10 days before
the beginning of the behavioral assays. Vaginal epithelial cell
samples were obtained with an inoculation loop, which was
initially sterilized in a flame, dipped in 0.9% saline, and
then gently inserted into the rat’s vagina. Samples were then
smeared onto a microscope glass slide and stained with a
staining set (Panótico Rápido, Laborclin, PR, Brazil). After
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drying, slides were examined under a light microscope. Each
phase was identified based on the proportion of epithelial
cells, cornified cells, and leukocytes observed in the vaginal
smear (Cora et al., 2015; Maeng et al., 2015). Proestrus is
characterized by the presence of nucleated cells; in estrus,
there is a higher prevalence of cornified, non-nucleated cells;
metestrus has equivalent portions of leukocytes, cornified cells,
and nucleated epithelial cells; diestrus is characterized by the
predominance of leukocytes. The experiments were performed
on animals that had completed at least two regular cycles.
Rats were grouped by follicular (proestrus/estrus) or luteal
(metestrus/diestrus) phases (Reimer et al., 2018), based on
the test day of the conditioned fear protocol or the day
of the motor evaluation for the catalepsy and open field
tests. Sex hormone concentrations were not measured in the
present study.

Drugs

The dopaminergic D2-like antagonist sulpiride (Tocris
Bioscience, Bristol, UK) was first mixed in 2% Tween
80 and then dissolved in physiological saline (0.9%) to
obtain concentrations of 20 and 40 mg/ml. Physiological
saline containing 2% Tween 80 served as vehicle control.
Injections were administered in a constant volume of 1 ml/kg,
intraperitoneally (i.p.), 15 min before the beginning of the tests.
The doses (20 and 40 mg/kg) and injection times were based
on previous studies (De Oliveira et al., 2006; Carvalho et al.,
2009; De Souza Caetano et al., 2013; De Vita et al., 2021). The
investigator was blind to the treatment condition of each rat;
drugs were prepared and stored in vials labeled with codes by a
different investigator than the one who performed the behavioral
experiments and data analysis.

Contextual fear conditioning

The experimental protocol for contextual fear conditioning
was based on Reimer et al. (2018) and De Vita et al.
(2021). Contextual fear conditioning procedures took place
in standard conditioning chambers (Insight, SP, Brazil).
Chamber-A (dimensions: 26 × 20 × 20 cm) was made
with white metal walls and ceiling, and a rod floor (5 mm
in diameter, spaced 1.5 cm apart) connected to a shock
generator (Eltrones, SC, Brazil). Chamber-B (32 × 30 × 30 cm)
consisted of stainless steel sides with a clear Plexiglas front,
back, and top, with an opaque white polypropylene floor.
Conditioning chambers were enclosed in sound-attenuation
boxes (66 × 43 × 45 cm; Grason-Stadler, MN, USA).
Chamber-A was equipped with a fan providing constant
background noise. Alcohol (20%) was used as a mild scent
in Chamber-A; acetic acid (2%) odor was added to Chamber-

B. Animals’ behavior was recorded with digital video cameras
positioned in front of the chambers. Videos were evaluated by
a blind rater after the tests were completed. Freezing behavior
was scored as an index of the contextual fear conditioning
and it was operationally defined as the total absence of
movements, except those required for respiration, for at least 6 s
per episode.

Catalepsy bar test

The apparatus and testing procedures used for the catalepsy
test have been described in detail elsewhere (Colombo et al.,
2013; Barroca et al., 2019; Waku et al., 2022). Briefly, a
horizontal acrylic bar (30 cm in length and 1 cm in
diameter) was positioned 8 cm above the floor of a standard
polypropylene box (40 × 33 × 26 cm). The animal’s forepaws
were carefully positioned on the bar, while their hind paws
remained on the ground. The latency to step down from
the horizontal bar was measured 15 and 45 min after
drug administration.

Open-field test

During the interval between the catalepsy bar tests, the
animals underwent the open-field test. The experimental
protocol for the open-field test was based on Reimer et al.
(2012) and De Vita et al. (2021). Locomotor activity was
assessed in a circular arena consisting of a transparent acrylic
enclosure (60 cm in diameter, 50 cm in height, floor divided
into 12 sections). Rats were placed in the middle of the
arena and left for a 15-min period of free exploration. The
session was recorded by a camera positioned above the open-
field. At the end of the test, the total number of crossings
(number of floor sections crossed) and rearings (standing with
forepaws raised in the middle of the arena or against the walls)
were analyzed.

Experiment 1: contextual fear as a
function of sex and estrous cycle in
female rats

Initially, we aimed at validating our protocol while exploring
the influence of sex and estrous cycle on contextual fear
conditioning (Figure 1A). For that, rats were divided into
two groups: Same Context and Different Context groups. Both
groups underwent training in Chamber-A. During the training
session, animals were placed individually into the experimental
chamber and, after a habituation period of 5 min, 10 1-s
unsignaled footshocks (0.6 mA, inter-trial interval 30–90 s)
were presented. Each animal was removed 2 min after the
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last footshock and returned to its home cage. The training
session lasted approximately 15 min. After 24 h, animals were
submitted to the test session, without shock presentation; the
Same Context group was reexposed to Chamber-A while the
Different Context group was placed into Chamber-B. Animals
remained in the behavioral chambers for 10 min. The retest
session was performed 24 h after the test session. Animals were
again re-exposed to the same chambers used during the test
session for a total of 10 min.

Experiment 2: involvement of D2-like
dopaminergic receptors in the
expression and extinction of conditioned
fear in female rats

Experiment 2’s fear conditioning protocol followed the same
procedures described for Experiment 1, in which rats were
submitted to three consecutive sessions (training, test, and
retest) spaced by 24 h each, but no different context group was
used this time (Figure 2A). Briefly, animals were submitted to
training in Chamber-A for aversive conditioning. On the second
day (test session), animals received i.p. injections of vehicle or
drug treatment and, after 15 min, they were reexposed to the
Chamber-A for 10 min. Twenty-four hours after the test, rats
were once again placed in Chamber-A for 10 min (retest session),
for evaluation of extinction recall. Potential nonspecific effects of
sulpiride on motor behavior were evaluated in the same animals.
For this, 48 h after the end of the fear conditioning retest session,
animals were subjected to the open-field and catalepsy bar tests
(Figure 3A).

Analysis of results

All analyses were conducted using R version 4.0.5 (R
Core Team, 2020) and Rstudio version 1.4.1717 (RStudio
Team, 2020). Prior to model fitting, we used the fitdistrplus
package version 1.1-8 (Delignette-Muller and Dutang, 2015)
to assess the distribution of each response variable by plotting
a Cullen-Frey diagram with 1,000 bootstraps. Additionally,
using the fitdistrplus’s fitdist plot function, we drew four
classical goodness-of-fit plots (i.e., density plot, CDF plot,
Q-Q plot, and P-P) to compare the fit of other candidate
distributions that are often used in fear conditioning paradigm
and motor function assessment analyses. Based on this, for
the fear conditioning experiments, beta regression analysis
was selected because it was a more appropriate fit to the
data distribution than the commonly used repeated measures
ANOVA. Behavioral scores were rescaled to between 0 and
1 using a min-max normalization. Generalized linear mixed
models (GLMMs) with logit link function and beta distribution
were used. For Experiment 1, rats’ identities were used as

random factors while Group (Same-Context and Different-
Context), Session (Test and Retest), and Sex (Male and
Female) or Phase (Proestrus/Estrus and Metestrus/Diestrus)
were used as fixed factors. For Experiment 2, rats’ identities
were used as random factors, Phase (Proestrus/Estrus and
Metestrus/Diestrus), Session (Test and Retest), and Treatment
(Saline, Sulpiride-20, Sulpiride-40) were used as fixed factors.
For the assessment of motor function, generalized linear
models (GLMs) with log link function and negative binomial
distribution were used to evaluate the frequency of crossings
and rearings. Phase (Proestrus/Estrus and Metestrus/Diestrus)
and Treatment (Saline, Sulpiride-20, Sulpiride-40) were used
as fixed factors. GLMMs with logit link function and beta
distributions were used to evaluate step-down latency in the
catalepsy test. Rats’ identities were used as random factors,
Phase (Proestrus/Estrus and Metestrus/Diestrus), Time (15-
and 45-min), and Treatment (Saline, Sulpiride-20, Sulpiride-
40) were used as fixed factors. Model fitting was performed
with the glmmTMB package version 1.1.3 (Brooks et al.,
2017). Likelihood ratio tests were conducted using car
package version 3.1-0 (Fox and Weisberg, 2019). Planned
a priori pairwise comparisons were tested using the emmeans
package 1.8.1-1 (Lenth, 2021) and Holm’s sequential Bonferroni
procedure was used to adjust the significance level due to the
multiple comparisons.

Results

Experiment 1: contextual fear as a
function of sex and estrous cycle in
female rats

Male and female rats submitted to the training and testing
procedures in the same cage (Same Context) spent more time
freezing than rats submitted to the test session in a cage
different from the one used for training (Different Context;
Figures 1B,C; Supplementary Figure 1). An analysis of variance
based on mixed beta regression indicated statistically significant
effects for Group (Different × Same-Context: χ2 = 35.57,
p < 0.05), Session (Test × Retest: χ2 = 19.27, p < 0.05),
and Sex (Male × Female: χ2 = 7.58, p < 0.05). Pairwise
comparisons using t-tests, corrected with Holm’s sequential
Bonferroni procedure, indicated that the same-context group
froze more than the different-context at the test session in both
males (t = −2.66, p < 0.05) and females (t = −7.52, p < 0.05).
During the retest, the same-context continued to freeze more
than the different-context group in females (t = −5.96, p < 0.05),
but not in males (t = 0.17, p > 0.05). Decreased freezing during
retest was observed for same-context males (t = −6.11, p < 0.05)
and females (t = −8.07, p < 0.05). Males and females did not
differ in the freezing response during the test session either

Frontiers in Behavioral Neuroscience 04 frontiersin.org

https://doi.org/10.3389/fnbeh.2022.1033649
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/journals/behavioral-neuroscience#articles
https://www.frontiersin.org


Alves et al. 10.3389/fnbeh.2022.1033649

FIGURE 1

Expression (test) and extinction (retest) of contextual conditioned fear did not differ between male and female rats. (A) Timeline of the
experimental procedure. (B,D) Mean percentage of freezing during test and retest sessions (time spent freezing during session/session duration
*100) for different-context (DC) and same-context (SC) groups. (C,E) Fear extinction index (FEI; % freezing exhibited during the final block of the
training session − % freezing exhibited during retest session). *p < 0.05: different from the DC group in the same session; #p < 0.05: different
from the same group during the test session; &p < 0.05: different from the male DC group at retest. Males: n = 12 for DC and SC; Females
proestrus/estrus (P/E): n = 12 for DC and 13 for SC; Females metestrus/diestrus (M/D): n = 13 for DC and 12 for SC.

for the same-context (t = −1.86, p > 0.05) or different-context
groups (t = 1.27, p > 0.05). During the retest, females of the
different-context group froze less than males (t = 2.75, p < 0.05),
but males and females of the same-context groups did not differ
from each other (t = −2.43, p > 0.05). No significant difference
between sexes was observed for the fear extinction index (FEI;
Male × Female: χ2 = 0.22, p > 0.05).

There was no difference in freezing between phases of
the estrous cycle for the same-context or different context
groups (Figures 1D,E). An analysis of variance based on
mixed beta regression indicated statistically significant effects
for Group (Different × Same-Context: χ2 = 17.10, p < 0.05),
Session (Test × Retest: χ2 = 10.76, p < 0.05), and Cycle-
Phase (Proestrus/Estrus × Metestrus/Diestrus: χ2 = 4.57,

p < 0.05). Pairwise comparisons using t-tests, corrected with
Holm’s sequential Bonferroni procedure, indicated that the
same-context group froze more than the different-context at
the test and retest sessions in both proestrus/estrus (test:
t = −6.12, p < 0.05; retest: t = −4.87, p < 0.05) and
metestrus/diestrus groups (test: t = −5.23, p < 0.05; retest:
t = −4.14, p < 0.05). Decreased freezing during retest
was observed for same-context proestrus/estrus (t = −6.28,
p < 0.05) and metestrus/diestrus females (t = −5.46, p < 0.05).
Proestrus/estrus and metestrus/diestrus females did not differ in
the freezing response during the test or retest sessions either for
the same-context (test: t = 0.95, p > 0.05; retest: t = 1.26, p >
0.05) or different-context groups (test: t = 1.97, p > 0.05; retest:
t = 2.14, p > 0.05). No significant difference between phases of
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FIGURE 2

Sulpiride decreased the expression of conditioned freezing in female rats. (A) Timeline of the experimental procedure. (B) Effects of sulpiride
20 and 40 mg/kg on the expression (test) and extinction (retest) of contextual conditioned freezing in female rats in proestrus/estrus (P/E) and
metestrus/diestrus (M/D). Mean percentage of freezing during test and retest sessions (time spent freezing during session/session duration*100).
(C) Fear extinction index (FEI; % freezing exhibited during the final block of the training session − % freezing exhibited during retest session).
*p < 0.05: different from the control group in the same session; #p < 0.05: different from the same group during the test session. Females P/E:
n = 14 for Control, 12 for Sul20, 13 for Sul40; Females M/D: n = 12 for Control, 12 for Sul20, 13 for Sul40.

the estrous cycle was observed for the fear extinction index (FEI;
Proestrus/Estrus × Metestrus/Diestrus: χ2 = 0.20, p > 0.05).

Experiment 2: involvement of D2-like
dopaminergic receptors in the
expression and extinction of conditioned
fear in female rats

Sulpiride decreased contextual conditioned freezing
response in female rats (Figure 2; Supplementary Figure 2).
An analysis of variance based on mixed beta regression
indicated statistically significant effects for Treatment
(Saline × Sulpiride-20 × Sulpiride-40: χ2 = 13.30, p < 0.05),
Session (Test × Retest: χ2 = 84.61, p < 0.05), but not for Cycle-
Phase (Proestrus/Estrus × Metestrus/Diestrus: χ2 = 2.97, p >
0.05). Pairwise comparisons using t-tests, corrected with Holm’s
sequential Bonferroni procedure, indicated decreased freezing
response for sul20 and sul40 compared to the control group
during the test session (t = 3.42, p < 0.05 and t = 3.50, p < 0.05,
respectively). Freezing response did not differ for sul20 and
sul40 compared to the control group during the retest session

(t = 2.65, p > 0.05 and t = 1.62, p > 0.05, respectively). Pairwise
comparisons also indicated decreased freezing during retest for
control (t = −7.00, p < 0.05), sul20 (t = −5.29, p < 0.05), and
sul40 (t = −3.91, p < 0.05) compared to the test session.

When considering the estrous cycle phases, pairwise
comparisons using t-tests, corrected with Holm’s sequential
Bonferroni procedure, indicated decreased freezing response for
sul40 in proestrus/estrus compared to the control group during
the test session (t = 2.92, p < 0.05), but not for sul20 in
proestrus/estrus (t = 2.32, p > 0.05) or sul20 and sul40 in
metestrus/diestrus (t = 2.51, p > 0.05 and t = 2.04, p > 0.05,
respectively). Freezing response did not differ for sul20 and
sul40 compared to the control group during the retest session
for proestrus/estrus (sul20: t = 2.66, p > 0.05; sul40: t = 1.95,
p > 0.05) or metestrus/diestrus (sul20: t = 1.08, p > 0.05; sul40:
t = 0.33, p > 0.05). Pairwise comparisons also indicated decreased
freezing during retest compared to the test session for control
in proestrus/estrus (t = −5.10, p < 0.05) and metestrus/diestrus
(t = −4.83, p < 0.05), and for sul20 and sul40 in proestrus/estrus
(t = −4.82, p < 0.05 and t = −3.19, p < 0.05, respectively),
but not for sul20 and sul40 in metestrus/diestrus (t = −2.55,
p > 0.05 and t = −2.30, p > 0.05, respectively). No significant
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FIGURE 3

Sulpiride 20 and 40 mg/kg did not affect motor performance in the open-field and catalepsy tests in female rats in proestrus/estrus (P/E) and
metestrus/diestrus (M/D). (A) Timeline of the experimental procedure. (B) The total number of crossings in the open-field test. (C) The total
number of rearings in the open-field test. (D) Latency to step-down in the catalepsy test 15 and 45 min after treatments. Females P/E: n = 11 for
Control, 12 for Sul20, 9 for Sul40; Females M/D: = 13 for Control, 12 for Sul20, 15 for Sul40.

differences were observed for the fear extinction index between
sul20 or sul40 and the control group during proestrus/estrus
(t = 0.46, p > 0.05; t = −1.40, p > 0.05, respectively) or
metestrus/diestrus (t = −2.48, p > 0.05; t = −1.15, p > 0.05,
respectively).

Sulpiride did not affect motor performance evaluated with
the open-field and catalepsy tests (Figure 3). For the open-field
test, analysis of variance based on mixed negative binomial
regression revealed no statistically significant for crossings
(Treatment—Saline × Sulpiride-20 × Sulpiride-40: χ2 = 3.15,
p > 0.05; Cycle-Phase—Proestrus/Estrus × Metestrus/Diestrus:
χ2 = 0.08, p > 0.05) or rearings
(Treatment—Saline × Sulpiride-20 × Sulpiride-40: χ2 = 0.78,
p > 0.05; Cycle-Phase—Proestrus/Estrus × Metestrus/Diestrus:

χ2 = 0.34, p > 0.05). Pairwise comparisons using t-tests,
corrected with Holm’s sequential Bonferroni procedure,
indicated no differences for crossings between sul20 or sul40 and
the control group during proestrus/estrus (t = 0.66, p > 0.05;
t = 0.04, p > 0.05, respectively) or metestrus/diestrus (t = 0.84, p
> 0.05; t = −1.18, p > 0.05, respectively). Pairwise comparisons
also indicated no differences for rearings between sul20 or
sul40 and the control group during proestrus/estrus (t = 1.17,
p > 0.05; t = 0.76, p > 0.05, respectively) or metestrus/diestrus
(t = −0.62, p > 0.05; t = −1.64, p > 0.05, respectively). For
the catalepsy test, an analysis of variance based on mixed beta
regression indicated statistically significant effects for Time
(15 × 45 min: χ2 = 7.80, p < 0.05), but not for Treatment
(Saline × Sulpiride-20 × Sulpiride-40: χ2 = 1.30, p > 0.05) or
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Cycle-Phase (Proestrus/Estrus × Metestrus/Diestrus: χ2 = 0.23,
p > 0.05). Pairwise comparisons using t-tests, corrected
with Holm’s sequential Bonferroni procedure, indicated no
differences between sul20 and the control group during
proestrus/estrus (15-min: t = 1.16, p > 0.05; 45-min: t = 0.33,
p > 0.05) or metestrus/diestrus (15-min: t = 0.16, p > 0.05;
45-min: t = 1.17, p > 0.05). Pairwise comparisons also indicated
no differences between sul40 and the control group during
proestrus/estrus (15-min: t = −1.09, p > 0.05; 45-min: t = −1.05,
p > 0.05) or metestrus/diestrus (15-min: t = 0.72, p > 0.05;
45-min: t = −1.56, p > 0.05).

Discussion

The present study aimed to evaluate the involvement of
dopamine D2-like receptors on contextual fear conditioning
in female rats. Blockade of D2-like receptors significantly
decreased the expression of freezing response in female
rats. Moreover, females in proestrus/estrus phases were
more sensitive to the effects of sulpiride than females in
metestrus/diestrus. These findings suggest a functional
interplay between the estrous cycle phase and dopaminergic
neurotransmission in fear conditioning. The effect of blocking
D2-like receptors was specific to the fear response, with no
motor impairment observed during the different phases of the
estrous cycle.

The protocol used for acquisition, expression, and extinction
of contextual conditioned fear was effective for both males
and females. This result is in line with other studies from our
group obtained using a similar protocol in male rats only (De
Souza Caetano et al., 2013; De Vita et al., 2021) and extends
the validity of our protocol to female rats. We did not verify
differences between the sexes or estrous cycle phases for the
expression and extinction of conditioned freezing, although
same-context females continue to freeze more in the retest
than different-context females. No differences were observed
in the fear extinction index. Literature has been reporting
mixed results regarding sex/estrous cycle differences in fear
conditioning paradigms. Previous studies have reported either
higher freezing expression in male rats (Graham et al., 2009;
Daviu et al., 2014; Urien and Bauer, 2022), female rats (Baran
et al., 2009; Blume et al., 2017), or no difference (Cossio
et al., 2016; Zhao et al., 2018; Machado Figueiredo et al.,
2019; Carvalho et al., 2021). There may be several explanations
for this, particularly regarding differences in methods, subject
strain, determination of gonadal hormonal status, and fear
conditioning protocol (e.g., cued or contextual CS) used in those
studies.

These potential inconsistencies are raising increasingly
important questions regarding the participation of different
neurotransmitter/neuromodulator/neurosteroid systems
influencing aversive learning and memory. Several pieces of

evidence point to different mechanisms by which fear processing
could diverge in male and female subjects. Neuronal activity in
the basolateral amygdala shows faster neuron firing rates and
greater excitatory synaptic input in females (Blume et al., 2017).
Different activation patterns in the hippocampus, amygdala,
and bed nucleus of the stria terminalis during fear conditioning
paradigms are found between male and female rats (Maren
et al., 1994; Blume et al., 2017; Keiser et al., 2017; Urien and
Bauer, 2022). Also, the distinct participation of neurotransmitter
systems regulating fear response, particularly endocannabinoid
(Morena et al., 2021), serotonergic and dopaminergic systems
(Mitsushima et al., 2006; Rey et al., 2014) have been described.

Previous works from our group have demonstrated that the
blockade of dopamine D2-like receptors with sulpiride impairs
fear expression in male rats (De Oliveira et al., 2011, 2013,
2017; De Souza Caetano et al., 2013; De Vita et al., 2021). Here,
sulpiride significantly reduced freezing response in female rats
in a similar fashion. Some studies reported that systemically
administration of the D2-like antagonists’ haloperidol and
raclopride to males have, however, increased freezing behavior
(Holtzman-Assif et al., 2010; Mueller et al., 2010). These studies
did not assess the motor side effects of these drugs or could
not dissociate the effects on freezing from impaired motor
behavior. Sulpiride’s effect on the freezing response observed in
females in the present study cannot be attributed to nonspecific
motor effects, as it neither affected animals’ performance in
catalepsy nor open-field tests. Likewise, we did not observe
motor effects in males using similar doses (De Vita et al., 2021).
Sulpiride’s effect on conditioned fear without adversely affecting
motor function suggests a stronger action of sulpiride on the
mesolimbic than in the nigrostriatal dopaminergic pathway.
In this direction, the atypical neuroleptic amisulpride, which
bears a close chemical and clinical resemblance to sulpiride,
showed greater selectivity for limbic than striatal dopaminergic
projections (Schoemaker et al., 1997).

In addition to demonstrating that sulpiride significantly
reduced freezing expression in female rats, we found that the
females’ responsiveness to sulpiride appears to be dependent
on the estrous cycle phase. A significant reduction in
the expression of contextual conditioned freezing behavior
after sulpiride administration was observed in females in
proestrus/estrus, but not in metestrus/diestrus. Sulpiride’s
lack of effect in metestrus/diestrus suggests that the brain’s
hormonal profile during proestrus/estrus favors the action
of the D2-like antagonist. We also observed estrous cycle-
dependent effects on contextual fear in a previous study in which
deficits induced by meta-chlorophenylpiperazine (mCPP)—a
serotonergic agonist—prevailed in metestrus/diestrus but not
proestrus/estrus or in males, suggesting that fluctuations in sex
hormones may also influence the action of serotonergic drugs
(Reimer et al., 2018).

Hormonal fluctuations throughout the cycle could lead to
differences in the response to pharmacological manipulations.
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It is possible, for example, that susceptibility to the effects of
sulpiride may result from differences in dopamine availability
or the expression of D2-like receptors (Xiao and Becker, 1994;
Thompson and Moss, 1997; Le Saux et al., 2006; Diekhof and
Ratnayake, 2016; Petersen et al., 2021). Our findings suggest
that D2-like receptors play an important role in the expression
of conditioned fear in females in proestrus/estrus in a manner
similar to that observed in previous studies with males (De
Oliveira et al., 2006, 2013; De Souza Caetano et al., 2013; De
Vita et al., 2021). The fact that female rats tested during higher
hormone levels respond to the pharmacological manipulation
similarly to males might be attributed to the role of estradiol,
in both sexes (Lebron-Milad and Milad, 2012; Graham and
Milad, 2013, 2014). Although it seems counterintuitive given
that estradiol levels in male rats would be comparable to those
found in low-estradiol females, many effects of testosterone
actually seem to be mediated by estradiol (Purves-Tyson
et al., 2007; Hammes and Levin, 2019; Zuloaga et al., 2020).
Estradiol in males can be synthesized via aromatization of
circulating testosterone as well as from testosterone produced
de novo by neurons and glia (Gillies and McArthur, 2010). This
would explain why sex differences arose in females tested in
metestrus/diestrus. It is important to highlight, however, that
hormones were not measured in the present study.

In male rats, besides recently confirming the involvement
of D2-like receptor-mediated mechanisms in the expression
of conditioned fear, our previous results have suggested that
D2-like receptors are not involved in conditioned freezing
extinction (De Vita et al., 2021). In the present study,
sulpiride administered to females in proestrus/estrus during
the test session did not affect the freezing behavior exhibited
24 h later, during the retest session. When administered to
metestrus/diestrus females during the test session, sulpiride
did not alter freezing in the retest when compared to the
vehicle control group, but it prevented the expected decrease
in freezing in the retest compared to the test session. The
analysis of the fear extinction index, however, did not indicate
an effect of sulpiride on extinction. The effects of systemically
administered drugs acting at D2-like receptors on contextual
fear extinction are, in fact, not well understood (Stubbendorff
and Stevenson, 2021). In studies using cued-fear conditioning,
systemic haloperidol and raclopride administration have been
shown to decrease extinction recall (Holtzman-Assif et al.,
2010; Mueller et al., 2010). Systemic injections of sulpiride
in male mice have been shown to facilitate the extinction of
cued fear conditioning only in a protocol that did not promote
extinction (Ponnusamy et al., 2005). Altogether, data point to a
modulatory rather than an essential role for D2-like receptors in
fear extinction.

Although our results implicate dopaminergic D2-like
receptors in conditioned fear in females, the role of specific
dopaminergic areas remains to be demonstrated. The present
results agree with those reported by others showing decreased

conditioned freezing in males with sulpiride locally administered
to the amygdala and prefrontal cortex (De Oliveira et al., 2011,
2017; De Souza Caetano et al., 2013; Dadkhah et al., 2021).
In addition, exposure to aversive conditioned stimuli has been
shown to increase dopamine levels in the basolateral amygdala,
nucleus accumbens, and prefrontal cortex in male rats (Pezze
et al., 2001; Matsumoto et al., 2005; Martinez et al., 2008;
De Oliveira et al., 2011, 2013, 2014). It will be important to
determine whether the effects of sulpiride in females are also
observed after pharmacological manipulations of dopaminergic
neurotransmission in regions of the mesocorticolimbic system.
Ongoing work in our laboratory is assessing the effects of intra-
basolateral amygdala dopaminergic compounds in female rats
submitted to contextual fear conditioning. In addition to the
role of dopamine, we have previously shown that contextual
conditioned freezing was inhibited by GABA-A receptor agonist
muscimol injections into the basolateral amygdala in males
(Martinez et al., 2006). Future studies should explore the
GABA-dopamine relationship in contextual conditioned fear in
males and females at different phases of the estrous cycle.

The study of fear conditioning in rodents has clinical
relevance, contributing to a better understanding of the
pathophysiology and treatment of human mental disorders
such as post-traumatic stress disorder and obsessive-compulsive
disorder (Milad et al., 2009b, 2013; Indovina et al., 2011;
Izquierdo et al., 2016; Dougherty et al., 2018; Sevenster
et al., 2018; Bienvenu et al., 2021; Cooper and Dunsmoor,
2021). The neglect of using female subjects in preclinical
neuroscience research, however, contributes to an incomplete
understanding of the pathophysiology and treatment of
anxiety-related mental disorders in women (Beery and
Zucker, 2011; Shansky and Murphy, 2021). The present
results reinforce the importance of dopaminergic mechanisms
in fear conditioning by demonstrating the involvement of
D2-like receptors during the contextual conditioned freezing
response in female rats. The present results also indicate
that D2-like receptors in females are mainly involved in the
expression of fear states during proestrus/estrus rather than
in metestrus/diestrus.
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