AUTHOR=Zhang Guimin , Cui Zhongdan , Wu Jing , Jin Baoling , Zhou Dandan , Liu Long , Tang Jia , Chen Qicai , Fu Ziying TITLE=Constant Resting Frequency and Auditory Midbrain Neuronal Frequency Analysis of Hipposideros pratti in Background White Noise JOURNAL=Frontiers in Behavioral Neuroscience VOLUME=15 YEAR=2021 URL=https://www.frontiersin.org/journals/behavioral-neuroscience/articles/10.3389/fnbeh.2021.657155 DOI=10.3389/fnbeh.2021.657155 ISSN=1662-5153 ABSTRACT=

Acoustic communication signals are inevitably challenged by ambient noise. In response to noise, many animals adjust their calls to maintain signal detectability. However, the mechanisms by which the auditory system adapts to the adjusted pulses are unclear. Our previous study revealed that the echolocating bat, Hipposideros pratti, increased its pulse intensity in the presence of background white noise. In vivo single-neuron recording demonstrated that the auditory midbrain neurons tuned to the second harmonic (H2 neurons) increased their minimal threshold (MT) to a similar degree as the increment of pulse intensity in the presence of the background noise. Furthermore, the H2 neurons exhibited consistent spike rates at their best amplitudes and sharper intensity tuning with background white noise compared with silent conditions. The previous data indicated that sound intensity analysis by auditory midbrain neurons was adapted to the increased pulse intensity in the same noise condition. This study further examined the echolocation pulse frequency and frequency analysis of auditory midbrain neurons with noise conditions. The data revealed that H. pratti did not shift the resting frequency in the presence of background noise. The auditory midbrain neuronal frequency analysis highly linked to processing the resting frequency with the presence of noise by presenting the constant best frequency (BF), frequency sensitivity, and frequency selectivity. Thus, our results suggested that auditory midbrain neuronal responses in background white noise are adapted to process echolocation pulses in the noise conditions.