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Neuronal function is highly energy demanding, requiring efficient transport of nutrients

into the central nervous system (CNS). Simultaneously the brain must be protected

from the influx of unwanted solutes. Most of the energy is supplied from dietary

sugars, delivered from circulation via the blood-brain barrier (BBB). Therefore, selective

transporters are required to shuttle metabolites into the nervous system where they can

be utilized. The Drosophila BBB is formed by perineural and subperineurial glial cells,

which effectively separate the brain from the surrounding hemolymph, maintaining a

constant microenvironment. We identified two previously unknown BBB transporters,

MFS3 (Major Facilitator Superfamily Transporter 3), located in the perineurial glial cells,

and Pippin, found in both the perineurial and subperineurial glial cells. Both transporters

facilitate uptake of circulating trehalose and glucose into the BBB-forming glial cells. RNA

interference-mediated knockdown of these transporters leads to pupal lethality. However,

null mutants reach adulthood, although they do show reduced lifespan and activity. Here,

we report that both carbohydrate transport efficiency and resulting lethality found upon

loss of MFS3 or Pippin are rescued via compensatory upregulation of Tret1-1, another

BBB carbohydrate transporter, in Mfs3 and pippin null mutants, while RNAi-mediated

knockdown is not compensated for. This means that the compensatory mechanisms in

place upon mRNA degradation following RNA interference can be vastly different from

those resulting from a null mutation.

Keywords: blood-brain barrier, carbohydrate transport, compensatory mechanisms, transporter regulation,

transport dynamics

INTRODUCTION

To allow full functionality the brain requires a lot of energy. Most of the energy used in the nervous
system is gained via carbohydrate metabolism. The human adult brain, despite accounting for only
2% of the bodies overall mass, consumes∼20% of the total oxygen (Mink et al., 1981; Laughlin et al.,
1998; Harris et al., 2012). The oxygen is used to metabolize large amounts of glucose. The human
brain uses about 90 g of glucose per day; during childhood carbohydrate usage is even higher
(Kuzawa et al., 2014). Likewise, the blowfly retina consumes ∼10% of the total ATP produced,
which is close to the consumption observed in vertebrates (Laughlin et al., 1998).

Neuronal activity also relies on a tightly regulated extracellular milieu to allow signal
conductance. Thus, the brain is shielded from potentially harmful substances, like high, and
fluctuating ion concentrations found in circulation, by the blood-brain barrier (BBB). In
mammals, the endothelial cells forming brain capillaries build intercellular tight junctions that
prevent paracellular diffusion, thereby uncoupling the brain from circulation. In addition, efflux
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transporters of the ABC family transport lipophilic, membrane-
permeable molecules out of the BBB-forming cells to protect
the nervous system form neurotoxic substances (for reviews see
Löscher and Potschka, 2005; Koehn, 2020). To allow sufficient
nutrient supply, a variety of transport proteins are expressed
in the endothelial cells (for a review on metabolite transport
at the BBB, see Weiler et al., 2017). In mammals, Glut1 is the
main carbohydrate transporter found in the BBB-forming cells.
Two differently glycosylated isoforms of Glut1 have been found
in the mammalian nervous system, a 45 kDa and a 55 kDa
isoform, that show identical transport kinetics (Birnbaum et al.,
1986; Sivitz et al., 1989). The 55 kDa isoform is exclusively
expressed in the endothelial cells and localizes to the luminal
and abluminal membranes, while the 45 kDa isoform is found
in astrocytes (Dick et al., 1984; Gerhart et al., 1989; Sivitz et al.,
1989; Harik et al., 1990; Farrell and Pardridge, 1991; Maher et al.,
1991, 1994; Simpson et al., 2001). In addition to Glut1, sodium
glucose cotransporters (SGLTs) are expressed in the BBB upon
stress. SGLT1 and SGLT2 have been shown to be expressed upon
oxygen deprivation or ischemia, but seem to play a minor role in
glucose uptake under normal conditions (Nishizaki et al., 1995;
Nishizaki and Matsuoka, 1998; Elfeber et al., 2004; Enerson and
Drewes, 2006; Vemula et al., 2009; Yu et al., 2013). Interestingly,
the abundance of GLUT1 in the BBB seems to be regulated
by hypoglycemia (Boado and Pardridge, 1993; Kumagai et al.,
1995; Simpson et al., 1999). However, the regulatory mechanisms
that underlie transporter regulation in the mammalian BBB
are unknown.

In Drosophila, as in mammals, the brain is shielded from
circulation. Here, the BBB is formed by two layers of glial
cells, the subperineurial glial cells and the perineurial glial cells
that surround the entire nervous system (reviewed in Limmer
et al., 2014; Yildirim et al., 2019). Insects possess an open
circulatory system, thus all organs, including the brain, are
floating in the hemolymph. Therefore, the BBB surrounds the
entire nervous system like a sheath. The subperineurial glial
cells form intercellular pleated septate junctions that prevent
paracellular diffusion (Stork et al., 2008). As in mammals, efflux
transporters protect the nervous system from lipid-soluble toxic
substances (reviewed in Hindle and Bainton, 2014). To ensure
sufficient supply of nutrients and other essential substances to
the nervous system a variety of solute carrier family transporter
proteins are expressed in the BBB (Desalvo et al., 2014; Weiler
et al., 2017). In addition, carbohydrate transporters are required
to provide a sufficient supply of carbohydrates to the nervous
system. As well as glucose, the non-reducing disaccharide
trehalose is found in high quantities in circulation in Drosophila
(Wyatt and Kalf, 1957; Lee and Park, 2004; Broughton et al.,
2008; Pasco and Léopold, 2012). It has been shown that glucose
can be readily taken up into the nervous system (Volkenhoff
et al., 2018). Furthermore, the trehalose transporter 1-1 (Tret1-
1) is expressed specifically in the perineurial glial cells of the
Drosophila BBB (Volkenhoff et al., 2015). Tret1-1 is homologous
to mammalian GLUT6 and GLUT8 and has been shown
to transport trehalose and glucose (Kanamori et al., 2010;
Hertenstein et al., 2020). How carbohydrates are taken up into
the subperineurial glial cells of the BBB and the other neural cells

in the Drosophila nervous system is currently unknown. There
are several homologs of mammalian GLUT1 encoded in the
Drosophila genome: the closest homologs are dmGlut1, dmSut1
(sugar transporter 1), dmSut2, dmSut3, and CG7882. dmGlut1 is
specifically expressed in neurons and may facilitate carbohydrate
uptake there (Volkenhoff et al., 2018). Transcriptomic and in
situ data for CG7882 and dmSut1-3, indicate very little or no
expression in the nervous system, suggesting no major role in
neural carbohydrate transport (Weiszmann et al., 2009; Croset
et al., 2018; Davie et al., 2018).

Here, we identify two additional carbohydrate transporters
expressed in the Drosophila BBB, Major Facilitator Superfamily
Transporter 3 (MFS3, CG4726) and Pippin (CG4797). Pippin
is expressed in both perineurial and subperineurial glial cells,
while MFS3 is expressed in the perineurial glial cells only. Both
transporters are able to facilitate uptake of glucose and trehalose
when heterologously expressed in Xenopus laevis oocytes.
Likewise, the simultaneous loss of Pippin andMFS3 in perineural
glia, and Pippin alone in subperineurial glia leads to decreased
uptake of glucose. Interestingly, loss of either transporter or both
transporters does not have any major phenotypic consequences.
We demonstrate here that in null mutants compensatory
upregulation of Tret1-1 rescues the detrimental effects of acute
transporter loss on viability and carbohydrate transport at the
BBB, while RNAi-mediated knockdown is not compensated
for. In summary, we show that expression of carbohydrate
transporters in the Drosophila BBB is highly dynamic and can be
adapted to suboptimal circumstances like loss of one transporter.
This dynamic adaptation of carbohydrate transport can most
likely also be used to spare the nervous system from effects of
hypoglycemia or malnutrition.

MATERIALS AND METHODS

Fly Stocks
Flies were kept at room temperature or 25◦C. The
following fly lines were used w−;nrv2-Gal4;nrv2-Gal4,
apontic-Gal4, mCherrydsRNA (BL35785), UAS-CD8-GFP,
nanos-Cas9attP2A (BL36046) (Bloomington Drosophila stock
center), PBac{681.P.FSVS-1}MFS3CPTI002305 (Kyoto stock
center), pippin-dsRNA: w1118; P{GD4548}v10598 (VDRC),
repo-Gal4; repo-Gal4, alrm-Gal4; alrm-Gal4, gli-Gal4 (Christian
Klämbt), moody-Gal4 (Stork et al., 2008), 46F-Gal4 (Hummel
et al., 2002), MFS dsRNA4726R−3 (Japanese National Institute of
Genetics), UAS-FLII12Pglu-700µδ6 (Volkenhoff et al., 2018).
The dsRNA-constructs used in the RNAi screen are indicated in
Supplementary Table 1 and were obtained from Bloomington
Drosophila stock center, VDRC or the National Institute of
Genetics (NIG).

RNA Interference Screen
The RNAi screen was performed as follows: dsRNA lines were
crossed to repo-Gal4; repo-Gal4 for panglial dsRNA expression.
Crosses were kept at 25◦C throughout development. After 2
weeks, viability of the offspring was determined and, if available,
20 female flies were selected, and locomotor capacity was tested
in the island assay 1 week later (Schmidt et al., 2012).
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RNA Interference Viability Assessment
pippindsRNA10598 and MFS3 dsRNA4726R-3 were first crossed with a
panglial driver (repo-Gal4; repo-Gal4). Crosses were performed
at 25◦C, after 2 weeks the viability of the offspring was
determined. This method was repeated using glial subtype
specific Gal4 drivers.

Analysis of Sugar Transport Capacity in
Xenopus laevis Oocytes
Oocytes were isolated from female Xenopus leavis frogs as
previously described (Becker et al., 2004; Becker, 2014). The
procedure was approved by the Landesuntersuchungsamt
Rheinland-Pfalz, Koblenz (23 177-07/A07-2-003 §6). D.
melanogaster pippin and Mfs3 were first cloned into a
pUASTattBrfa3xHA vector (Rodrigues et al., 2012). Afterwards,
the coding sequence with the C-terminal 3xHA-tag was cloned
into a pGEM-He-Juel vector. cRNA was synthesized by in vitro
transcription using the mMESSAGE mMACHINE R© T7 Kit
(Fisher Scientific). Oocytes of the developmental stages V and
VI were injected with 18–20 ng of cRNA. Measurements were
conducted 3–6 days after injection. Expression of Pippin-3xHA
and MFS3-3xHA on the surface of oocytes was confirmed by
immunohistochemistry using an anti HA antibody (Covance).

82.5mM NaCl, 2.5mM KCl, 1mM CaCl2, 1mM MgCl2,
1mMNa2HPO4, 5mMHEPES. Transport capacity for trehalose,
glucose and fructose was determined using 14C-labeled sugar
in oocyte saline (82.5mM NaCl, 2.5mM KCl, 1mM CaCl2,
1mM MgCl2, 1mM Na2HPO4, 5mM HEPES, pH 7.2) at
a concentration of 0.15 µCi/100 µl. 14C12-trehalose was
purchased from Hartmann Analytic, Braunschweig (#1249),
14C6-glucose and 14C6-fructose were purchased from Biotrend,
Köln (#MC144-50 and 66 #MC1459-50). For each experiment
95 µl of sugar substrate was added to a batch of 6-8 oocytes
and incubated for 60min. Cells were washed four times with
4ml of ice-cold oocyte saline. Individual cells were transferred
to Pico Prais scintillation vials (Prekin Elmer) and lysed in 200
µl 5% SDS by shaking at 190 rpm for 30min at 20–28◦C. Three
milliliters of Rotiszint R© eco plus scintillation cocktail (Carl Roth)
was added to each vial and scintillation was measured using a
Tri-Carb 2810TR scintillation counter (Perkin Elmer).

Transport-mediated substrate uptake was determined by
subtracting the uptake in native oocytes from the uptake in
Pippin or Mfs3-expressing cells. Significance in difference was
calculated using a one-tailed T-test or theMann–Whitney-U-test
for analysis of non-uniformly distributed samples.

Generation of CRISPR Mutants
Null mutants were generated using CRISPR-mediated
homologous recombination. The sgRNA target sequences
(Mfs3: sgRNA1: GGATATATAGGCCTTACTG, sgRNA2: A
ATGAATTCGCTATTCAGGG; pippin: sgRNA1: GGTAGCA
TATAGTAGGGGC, sgRNA2: CGAGTCTAGGGCGACTAC
G) were cloned into a pCFD3-dU6:3gRNA vector (Addgene).
To generate the homology construct, the mini-white coding
sequence flanked by homology arms (about 1.5 kb upstream and
downstream of the coding sequence of eitherMfs3 or pippin) was
cloned into a pCR-Blunt (Thermofisher) backbone using Golden

Gate cloning (Engler et al., 2008) (primers to amplify homology
regions from genomic DNA: Mfs3: upstream homology arm:
CCACTGCAAATGGGGAAG and CTGCCGAATGCTAAT,
downstream homology arm: CCCTGAATAGCGAATTCATTG
and GGTCCAAGTGCAGCGTCT; pippin upstream homology
arm: TCAATGGCAAAATGACG and CCTATTATCAAGGTG
C, downstream homology arm: CGTAGTCGCCCTAGACTC
and CCCAAAGCTCAACCAAC). The sgRNA vectors together
with the homology construct were injected into nanos-Cas9attP2A

embryos to induce homologous recombination.

Generation of Pippin-HA Minigene
The gene locus (including 2.2 kb upstream and 0.5 kb
downstream of the coding sequence) of pippin was assembled
and C-terminally 3xHA-tagged using Golden Gate cloning
(Engler et al., 2008). The assembled locus was inserted into a
pUAST attB rfa vector (Stephan et al., 2008) using XbaI and
HindIII restriction sites (thereby removing the UAS cassette).
The resulting vector was integrated into the fly genome at
landing site 86Fb.

Age Matching of Flies for Lifespan and
Activity Monitoring
Flies of the deserved genotype were placed in cages with an
apple juice agar plate. After 24 h, plates were exchanged and left
overnight. Embryos were washed from the plate with PBS and
collected using a Pasteur pipette. Embryos were transferred into
vials containing standard food. Vials were kept at 18◦C for 3
weeks and adult females were collected.

Survival Analysis
Female flies were kept in batches of 20 at 25◦C throughout the
experiment. Flies were flipped three times a week onto fresh
food, deaths were counted. Survival rates were determined using
the Kaplan-Meier approach. P-values were calculated using Log
Rank test.

Analysis of Locomotive Activity (DAM)
Female flies were sorted into vials of 20 and aged at 25◦C for
2 or 5 weeks. Single flies were sorted into tubes containing
standard food and loaded into a Drosophila activity monitor
(DAM). Monitors were placed in an incubator with a 12-h light
dark cycle and activity was recorded. The activity over 24 h was
determined by the number of beam crossesmade by the animal in
this time period. P-values for significance were determined using
Mann–Whitney rank sum test.

Analysis of Escape Response (RING Assay)
Female flies were kept in batches of 20 and aged at 25◦C for 2
or 5 weeks. Flies were transferred into negative geotaxis tubes
and loaded into the RING apparatus in groups of 10 (Gargano
et al., 2005). Tubes were dropped from a height of 30 cm to
initiate climbing response. This was repeated five times with a
30 s break between drops to allow flies to recover. The position of
the flies in the tubes was captured in digital images and the mean
velocity of the flies was determined. P-values for significance were
determined using Mann–Whitney rank sum test.
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Analysis of Circulating Glucose Levels
(Glucose GO kit)
Fifteen adult female flies were collected, and a puncture was
made in the thorax of each fly using forceps. Flies were then
transferred to a 0.5ml tube (containing a small hole in the
base) that was placed in a 1.5ml Eppendorf tube. Tubes were
centrifuged at 13,000 RPM for 5min at 4◦C. The supernatant was
collected and transferred to a new Eppendorf tube. Hemolymph
was heat-inactivated at 80◦C for 10min to abolish endogenous
enzymatic activity, cooled and 25 µl of buffer A (5mM Tris-
HCL (pH 6.6), 137mM NaCl, 2.7mM KCL) was added. Glucose
levels were determined using a Glucose (GO) assay kit (Sigma-
Aldrich) according to the manufacturer’s instructions. Difference
between the control and null mutants was assessed using
a one-tailed t-test.

Immunohistochemistry
Wandering third instar (L3) larval or adult brains were dissected
and stained following standard protocols. Samples were imaged
using a Zeiss LSM 880 (Zeiss, Oberkochen, Germany). The
following antibodies were used: guinea pig anti-Tret1-1 PA (1:50,
Volkenhoff et al., 2015), mouse anti-NC120 (1:2 Hybridoma),
rabbit anti-laminin gamma (1:1,000 Abcam A47651), Chicken
anti-GFP (1:500, Aves Labs), mouse anti-HA (1:1,000 Covance).
Tret1-1 fluorescence was determined by comparing the mean
gray values of Tret1-1 staining of null mutants or knockdown
animals to the respective control. N is the number of independent
experiments; n is the total number of animals analyzed.

Measurement of Glucose Uptake (FRET)
Null mutants or dsRNA lines were crossed with flies expressing
UAS-FLII12Pglu-700µδ6 FRET glucose sensor under the control
of either apt-Gal4 or moody-Gal4. Larval brains of the
desired genotype were dissected in HL3 buffer (70mM NaCl,
5mM KCl, 20mM MgCl2, 10mM NaHCO3, 115mM sucrose,
5mM trehalose, 5mM HEPES; pH 7.2; ca. 350 mOsm) and
attached to Poly-D-Lysine-coated coverslips. Samples were
then mounted in a custom-made flow through chamber and
secured to a Zeiss LSM 880 (Zeiss, Oberkochen, Germany).
Buffer exchange was facilitated using a mini-peristaltic pump
(MPII, Harvard Apparatus). Fluorescent images were captured
using a 20x/1,0 DIC M27 75mm emersion objective (Zeiss,
Oberkochen, Germany) directly after dissection. An excitation
of 436/25 nm, beam splitter 455 nm, emission 480/40 nm (CFP
channel); excitation 436/25 nm, beam splitter 455 nm, emission
535/30 nm (YFP channel) was used. Each brain was imaged in
an independent experiment (n= 8–12). After 2.5min HL3 buffer
was replaced with 10mMglucose buffer (HL3 supplemented with
glucose; pH 7.2) then exchanged back to HL3 after 9min. Data
analysis was performed by generating a ROI containing the larval
brain and calculating the mean gray value, minus background. N
is the number of independent experiments; n is the total number
of animals analyzed. Statistical regression and analysis was
carried out using SigmaPlot software (Jandel). The rate of glucose
uptake was calculated by selecting 10 consecutive timepoints
at the beginning of the slope. The volume of glucose entering
the cell was determined by the mean difference between the
baseline and the maximum plateau (10mM glucose). Statistical

differences were calculated using a Mann–Whitney Rank Sum
test (pairs). P < 0.05 were considered as significant.

RESULTS

CG4797 (Pippin) and Mfs3 Encode Putative
Carbohydrate Transporters of the BBB
Previously, we showed that all cell types of the Drosophila
nervous system are capable of taking up glucose (Volkenhoff
et al., 2018). Since carbohydrates are hydrophilic molecules, they
cannot diffuse over the plasma membrane and thus need to be
transported. The only two carbohydrate transporters identified
in the Drosophila CNS by now, Tret1-1 and Glut1, however,
are expressed in the perineurial glial cells or the neurons,
respectively. Thus, we set out to identify additional carbohydrate
transporters expressed in the Drosophila nervous system. To this
end we performed a small, biased RNA interference-based screen,
in which we knocked down putative carbohydrate transporters
encoded in the Drosophila genome specifically in the glial cells
[genes with a predicted sugar transport function according
to protein domain annotations from InterPro (http://www.
ebi.ac.uk/interpro/) and UniProt (http://www.uniprot.org/),
Supplementary Table 1]. This screen identified 14 putative
carbohydrate transporters required in glial cells, amongst
them CG4797 (Pippin) and Major Facilitator Superfamily
Transporter 3 (MFS3, CG4762) (Supplementary Table 1). We
focused our efforts on these two genes. Knockdown of the
two genes specifically in glial cells using RNA interference
(pippindsRNA10598, MFS3 dsRNA4726R-3) leads to pupal lethality,
indicating a function in glial cells (Figure 1A). Drosophila
MFS3 shows 35% identity to the mouse anion/cation symporter
(ACS) Sialin (NCBI protein blast), but the ACS consensus
sequence is not fully conserved, indicating that MFS3 does not
encode an ACS (Laridon et al., 2008). CG4797 encodes an SLC2
family glucose transporter most homologous to mouse GLUT6
and GLUT8 (NCBI protein blast). This indicates that CG4797
encodes a carbohydrate transporter; thus, we named the gene
pippin, after Frodo’s friend, whose biggest concern is usually
where to get the next meal.

To identify the glial subtype in which the putative transporters
are needed, we repeated the knockdown experiments using glial
subtype drivers (nrv2-Gal4: cortex glia, ensheathing glia and
wrapping glia; alrm-Gal4: astrocyte-like glia cells; Gli-Gal4 or
moody-Gal4: subperineurial glial cells; apt-Gal4 or 46F-Gal4:
perineurial glial cells). Knockdown of pippin in perineurial or
subperineurial glial cells led to lethality, while knockdown in any
other glial subtype had no phenotypic consequences (Figure 1A).
In contrast, knockdown ofMfs3 only led to lethality in perineurial
glial cells (Figure 1A). This indicates that Pippin is needed in
both BBB-forming glial cells, while MFS3 is just essential in the
perineurial glial cells. To verify the expression, we took advantage
of an existing EYFP protein trap for MFS3 (MFS3CPTI002305).
MFS3-EYFP localizes to the perineurial glial cells as seen
when co-stained with NC120 (subperineurial glial cells) and
laminin (neural lamella) (Figure 1B), as suggested from the
knockdown experiments. To analyze the localization of pippin,
we cloned the complete pippin locus, including upstream and
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FIGURE 1 | CG4797 (pippin) and Mfs3 encode putative BBB carbohydrate transporters. (A) RNAi interference-mediated silencing of pippin (using CG4797dsRNA10598)

and Mfs3 Mfs3dsRNA4726R-3 in selected glial subtypes using glial subtype-specific Gal4 driver lines (pan glial: repo-Gal4; astrocyte-like glial cells (AG): alrm-Gal4; cortex

glia (CG), ensheathing glia (EG), and wrapping glia (WG): nrv2-Gal4; subperineurial glial cells (SPG): Gli-Gal4, moody-Gal4; perineurial glial cells (PG): apt-Gal4,

46F-Gal4). Lethality was observed upon panglial and perineurial glia-specific suppression of pippin and Mfs3. In addition, lethality also occurred upon subperineurial

glia-specific silencing of pippin. (B) Immunofluorescence staining of a transgenic Pippin-HA adult brain [green: Pippin-HA, magenta: NC120 (PGs and SPGs), blue:

laminin (neural lamella)]. Pippin is found in subperineurial and perineurial glial cells. (C) Immunofluorescence staining of an MFS3-EYFP expressing adult brain [green:

MFS3-EYFP, magenta: NC120 (PGs and SPGs), blue: laminin (neural lamella)]. MFS3-EYFP is expressed in the perineurial glial cells.

downstream regions to include all regulatory elements, and fused
a C-terminal 3xHA-tag to the coding sequence. Flies carrying
this pippin minigene construct, show Pippin-HA expression in
the perineurial and subperineurial glial cells as assumed from
the RNAi-experiments (Figure 1C).

Pippin and MFS3 Facilitate Carbohydrate
Transport
To analyze whether the two newly identified BBB transporters are
indeed able to facilitate carbohydrate uptake into the perineurial
and/or subperineurial glial cells, we expressed Drosophila Pippin

and MFS3 in X. laevis oocytes. To verify expression of the
transporters we tagged Pippin and MFS3 with a 3xHA-tag.
Both Pippin-HA and MFS3-HA are produced in Xenopus
oocytes upon mRNA injection and localize to the membrane
(Figures 2A–C). To analyze whether the transporters facilitate
uptake of carbohydrates found in the Drosophila hemolymph,

we incubated the respective oocytes with different concentrations
of 14C-labeled glucose, trehalose, or fructose (Figures 2D,E).
Interestingly, both Pippin and MFS3 facilitate uptake of glucose
and trehalose efficiently (Figures 2D,E). Fructose, however, is
transported at a much lower rate. Since naturally occurring
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FIGURE 2 | (A,B) Pippin and MFS3 facilitate carbohydrate transport. Heterologous expression of Pippin-HA and MFS3-HA in Xenopus oocytes (A) Pippin-HA (B)

MFS3-HA are detectable on the surface of Xenopus oocytes (anti-HA immunostaining). (C) Native oocytes show no detectable HA staining. (D,E) Substrate specific

uptake of 14C12-trehalose,
14C6-glucose and 14C6-fructose into Xenopus oocytes expressing (D) Pippin-HA or (E) MFS3-HA. Both Pippin and MFS3 show

considerable transport capacity for trehalose and glucose, but not for fructose. Shown is the net-flux (flux observed in transporter-expressing oocytes minus flux

observed in native oocytes). Values represent means ± standard error, N = 1–4.

fructose concentrations in the larva seem to be rather low
compared to glucose and trehalose concentrations, it is unlikely
that this transport is of physiological relevance (Mishra et al.,
2013). These experiments show that the newly identified BBB
transporters are indeed carbohydrate transporters. Fitting of
the data, shown in Figures 2D,E, did not result in reliable Km

or Vmax values. Therefore, more experiments need be carried
out to analyze the transport kinetics of Pippin and MFS3 in
Xenopus oocytes.

Pippin and MFS3 Null Mutants Are Viable,
but Display Shortened Lifespan and
Reduced Locomotor Activity
To further analyze the consequences of loss of Pippin or
MFS3, we generated null mutants for both transporters. We

used CRISPR-mediated recombination to replace the entire
coding sequence of pippin or Mfs3 with a mini-white, thereby
creating null mutants (Supplementary Figure 1). Interestingly,
both pippin−/− and Mfs3−/− null mutants are viable and fertile,
which contrasts with the phenotype observed upon glia-specific
knockdown using RNA interference.

To assess viability of the mutants, we performed lifespan
experiments. Indeed, pippin−/− and Mfs3−/− null mutants are
short-lived compared to control animals (Figure 3A). Thus, we
analyzed their phenotype in more detail. We assessed the activity
of the null mutants after 2 and 5 weeks of age (Figures 3B,C).
Already at the age of 2 weeks, both pippin−/− and Mfs3−/−

null mutants are less active than control animals. To distinguish
between a reduction in activity to save energy and the incapacity
to move, we in addition studied the animals’ escape response at
the age of 2 and 5 weeks using a rapid iterative negative geotaxis
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FIGURE 3 | pippin and Mfs3 null mutants are viable, but display shortened lifespan and reduced locomotor activity. (A) Survival curves of null mutants and control

animals. All mutants show a reduced lifespan compared to control animals, however double pippin−/−, Mfs3−/− mutants live significantly longer than single mutants.

(Continued)

Frontiers in Behavioral Neuroscience | www.frontiersin.org 7 January 2021 | Volume 14 | Article 612430

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


McMullen et al. Plasticity of BBB Carbohydrate Transport

FIGURE 3 | N = 3, n ≥ 180 (pippin−/−: p < 10−21, Mfs3−/−: p < 10−23, pippin−/−, Mfs3−/−: p < 10−4; log-rank test). (B,C) Activity monitored over 24 h of null

mutants and control animals at 2 weeks old (B) and 5 weeks (C) of age. All mutants show a reduction in activity compared to control animals at 2 weeks of age,

however the double mutants show a progressive reduction in activity moving significantly less than the single mutant at 5 weeks of age. N = 3; n ≥ 58; **p ≤ 0.01,

***p ≤ 0.001. (D,E) Negative geotaxis assay measuring climbing ability as an escape response of 2 (D) and 5 (E) weeks old flies. Single pippin−/− or Mfs3−/− mutants

show no reduction in climbing ability at 2 weeks but show a decrease in activity at 5 weeks of age. N = 5; n ≥ 500; ****p ≤ 0.0001.

(RING) assay (Gargano et al., 2005), in which the flies are put in
vials that are tapped on the table. This tapping induces an escape
response, where the flies run up the walls of the vial. Depending
on their locomotor capabilities the animals climb the walls faster
or slower (Figures 3D,E). At the age of 2 weeks all genotypes
are capable of a fast escape response (Figure 3D). Thus, at this
age, the animals are able to move as well as control flies, but
are nevertheless less active, most likely as a means of saving
energy. However, at the age of 5 weeks the velocity of pippin−/−

and Mfs3−/− null mutants is significantly reduced, indicating
progressive loss of locomotor abilities (Figure 3E).

Since RNAi-mediated knockdown of pippin orMfs3 are pupal
lethal, but the null mutants are not, we checked for putative
compensation of the loss of either transporter. To this end, we
created double pippin−/−, Mfs3−/− mutants and analyzed their
phenotype. Interestingly, pippin−/−, Mfs3−/− double mutants
are also viable and fertile. Surprisingly, lifespan experiments show
that the double mutants live longer than the respective single
mutants, albeit not as long as control animals (Figure 3A). To
establish whether the double mutants move even less than the
single mutants to save energy, we analyzed their activity at 2 and 5
weeks of age (Figures 3B,C). At 2 weeks of age the double mutant
is significantly less active than wildtype control animals but
moves as much as either single mutant (Figure 3B). In contrast,
at the age of 5 weeks, the double mutant animals are significantly
less active than either single mutant (Figure 3C). To distinguish
between an inability to move and an energy-saving reduction of
activity, we also analyzed the escape response. Here, the double
mutant animals are indistinguishable from single mutant animals
at either time point (Figures 3D,E). This indicates that the double
mutant animals have the ability to move as well as the single
mutants. However, they seem to move progressively less over
their lifespan, probably to save energy.

Compensatory Increase in Circulating
Carbohydrate Levels and Upregulation of
Tret1-1 Upon Loss of Pippin or MFS3
To understand why pippin−/− and Mfs3−/− null mutants
are viable, while glia-specific acute knockdown is lethal, we
investigated other possible compensatory mechanisms. Classic
carbohydrate transporters, like SLC2 family carbohydrate
transporters, are facilitative transporters, which means that they
allow uptake of the respective carbohydrate into a cell driven by
a concentration gradient. Thus, an increase in the concentration
gradient between the extracellular milieu and the cytosol of the
respective cell, accelerates carbohydrate uptake into the cell.
Therefore, we analyzed circulating glucose levels in pippin−/−

and Mfs3−/− null mutants to see if deficits in transporter
expression might be compensated by elevated circulating sugar

levels (Figure 4A). Indeed, pippin−/− andMfs3−/− null mutants,
as well as the double mutants display elevated hemolymph
glucose levels that might facilitate glucose uptake into the brain.

An alternative mode of compensation for the loss of a
carbohydrate transporter would be to upregulate an alternative
transporter. The only other carbohydrate transporter known
to be expressed in the Drosophila BBB, besides Pippin and
MFS3, is Tret1-1 (Volkenhoff et al., 2015). As Pippin and
MFS3, Tret1-1 facilitates uptake of glucose and trehalose when
heterologously expressed in Xenopus oocytes (Kanamori et al.,
2010; Hertenstein et al., 2020). To assess if Tret1-1 could
compensate for the loss of either Pippin or MFS3 in the null
mutants, we stained null mutant L3 brains for Tret1-1 expression
in the perineurial glial cells. Interestingly, Tret1-1 expression is
strongly increased in the perineurial glial cells of pippin−/− and
Mfs3−/− null mutants as well as pippin−/−, Mfs3−/− double
mutants (Figures 4B–F). The increase in Tret1-1 expression
is not significantly higher in the double mutants than in
the single mutants. Loss of Pippin, however, does not induce
compensatory misexpression of Tret1-1 in the subperineurial
glial cells (Supplementary Figure 2). This increase in Tret1-1
expression in the perineurial glial cells could compensate for a
reduction of carbohydrate uptake caused by loss of Pippin and/or
MFS3. To understand the difference between RNAi-mediated
knockdown of pippin and Mfs3 and the null mutants, we
also analyzed Tret1-1 expression in animals with a glia-specific
knockdown of either pippin or Mfs3 (Figures 4G–J). Indeed,
glia-specific knockdown of pippin or Mfs3 does not induce a
compensatory upregulation of Tret1-1, potentially explaining the
phenotypic differences (Figures 4G–J). These findings suggest
that null mutations, like a complete loss of the coding region
as in the case of our pippin−/− and Mfs3−/− mutants, induce
different compensatory mechanisms than constant degradation
of the respective mRNAs, as induced by RNA interference. If such
differences in compensation are common, this could explain the
discrepancies often found between RNAi-mediated knockdown
phenotypes and null mutant phenotypes.

Pippin and MFS3 Facilitate Glucose Uptake
in the Drosophila BBB
To study if loss of any of the described carbohydrate transporters
has an effect on carbohydrate uptake into the BBB-forming
glial cells, we analyzed glucose uptake into the respective cells
using a genetically-encoded Förster resonance energy transfer
(FRET)-based glucose sensor, FLII12Pglu-700µδ6 (Fehr et al.,
2003; Takanaga et al., 2008; Volkenhoff et al., 2018). This
sensor allows visualizing carbohydrate uptake in living ex vivo
L3 larval brains (Volkenhoff et al., 2018). To understand the
changes in carbohydrate uptake in the different mutants and
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FIGURE 4 | Compensatory increase in circulating carbohydrate levels and upregulation of Tret1-1 upon loss of Pippin or MFS3. (A) Glucose levels in the hemolymph

of adult flies were analyzed. Both single and double pippin−/− and Mfs3−/− mutants show an increase in circulating glucose levels. N = 3; ***p ≤ 0.001. (B–J) L3

larval brains of null mutants or panglial knockdown of pippin and Mfs3 (repo-Gal4> CG4797dsRNA10598; repo-Gal4>MFS3dsRNA4726R-3) were dissected and stained for

Tret1-1 expression. (B) Quantification shows the difference in Tret1-1 fluorescence between controls and null mutants. N ≥ 4; n = 10–12; ****p ≤ 0.0001. (C) Control

animals show wildtype levels of Tret1-1 in the brain. (D) pippin−/− mutants (E), Mfs3−/− mutants (F), and pippin−/−, Mfs3−/− double mutants show a strong

upregulation in Tret1-1 expression in perineurial glial cells. (G) repo>>mCherrydsRNA serves as a control for panglial knockdown of pippin and Mfs3 by RNA

interference. repo>>mCherrydsRNA animals show wildtypic levels of Tret1-1. (H) Glia-specific knockdown of pippin (repo>>CG4797dsRNA10598). No increase in Tret1-1

levels can be found. (I) Glia-specific knockdown of Mfs3 (repo>>MFS3dsRNA4726R-3). No increase in Tret1-1 levels can be seen. (J) Quantification of Tret1-1

fluorescence of pan glial knockdown of mCherry, pippin or Mfs3. N ≥ 4; n = 14–15.

knockdown animals, we expressed the glucose sensor either
in the perineurial or subperineurial glial cells of the animals
and analyzed glucose uptake capacity (Figures 5, 6). When
we analyzed glucose uptake into the perineurial glial cells of
animals with a perineurial glia-specific knockdown of pippin
(using apt-Gal4), we found that the maximum concentration
of glucose found in the cells is significantly reduced compared
to that found in control animals (expressing mCherry-dsRNA)
(Figures 5A,D). This indicates that Pippin indeed acts as a

carbohydrate transporter in the perineurial glial cells and that
loss of Pippin reduces glucose uptake efficiency significantly.
Interestingly, the initial glucose uptake rate does not change
(Figure 5C). Since Pippin is also expressed in the subperineurial
glial cells, we also analyzed glucose uptake into those cells.
In this case, we expressed the dsRNA-construct as well as the
glucose sensor using moody-Gal4. As expected upon loss of a
carbohydrate transporter, both the glucose uptake rate as well
as the maximal glucose concentration reached in the cells are
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FIGURE 5 | Pippin and MFS3 facilitate glucose uptake into the Drosophila BBB-forming cells. Glucose uptake was measure in ex vivo L3 larval brains expressing a

genetically encoded glucose sensor (FLII12Pglu-700µδ6). (A,B) Example traces of brains with a perineurial knockdown of pippin (apt-Gal4>pippindsRNA10598) (A) or

(Continued)
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FIGURE 5 | Mfs3 (apt-Gal4>MFS3dsRNA4726R-3) (B), where the glucose sensor is expressed in the perineural glial cells. (C) Quantification of the rate of glucose

uptake. The glucose uptake rate as calculated by the steepness of the slope shows no difference between transporter knockdown and control brains. (D)

Quantification of the maximum glucose concentration in the cells. Shown is the difference between the maximum glucose concentration and the baseline glucose

concentration. N = 8–12; ****p ≤ 0.0001. (E–H) Glucose uptake into the subperineurial glial cells. (E) moody-gal4>pippindsRNA10598 brains show a reduction in the

uptake rate and overall levels of glucose entering the subperineurial glia. (F) moody-Gal4>Mfs3dsRNA4726R-3 brains show no difference in glucose uptake rate or

maximum glucose levels. (G,H) Quantification of the glucose uptake rate and the maximum glucose concentrations reached in the subperineurial glial cells. (G) Rate

of glucose uptake into the subperineurial glial cells in brains of the different genotypes (subperineurial glial knockdown). Knockdown of pippin in the subperineurial glial

cells severely reduces glucose uptake rates. (H) Maximum glucose levels in subperineurial glial cells expressing FLII12Pglu-700µδ6. Brains in which pippin is knocked

down in the subperineurial glial cells show a lower maximum glucose level than control brains or Mfs3 knockdown brains..n = 8–12; ***p ≤ 0.001, ****p ≤ 0.0001.

Error bars show standard deviation.

significantly decreased upon loss of Pippin in the subperineurial
glial cells (Figures 5E–H). Upon RNAi-mediated loss of MFS3,
glucose transport is impaired in the perineurial glial cells, but
not in the subperineurial glial cells (Figures 5B–D,F–H). This
fits the expression of MFS3 in the perineurial but not in the
subperineurial glial cells and suggests that, indeed, also MFS3 is
essential for glucose transport into the perineurial glial cells.

Compensatory Upregulation Rescues
Deficits in Carbohydrate Uptake Caused
by Loss of Pippin and MFS3
To analyze if compensatory upregulation of Tret1-1 can
rescue glucose uptake efficiency in the Drosophila BBB, we
analyze glucose uptake into the perineurial and subperineurial
glial cells in pippin−/− and Mfs3−/− null mutant animals.
pippin−/− and Mfs3−/− null mutant animals display wild typic
glucose uptake into the perineurial glial cells (Figures 6A–D).
Thus, compensatory upregulation of Tret1-1 indeed rescues
deficits in carbohydrate transport. As expected, glucose uptake
into the subperineurial glial cells is indistinguishable from
controls in Mfs3−/− null mutant animals (Figure 6G). In
contrast, pippin−/− mutant animals show reduced glucose
uptake efficiency into the subperineurial glial cells, indicating
a lack of compensation in this cell type (Figures 6F–J). These
results match the expectations, since MFS3 is not expressed in
the subperineurial glial cells and subperineurial loss of Pippin is
not compensated for by Tret1-1 upregulation.

We also analyzed carbohydrate uptake into the perineurial
and subperineurial glial cells of pippin−/−, Mfs3−/− double
mutants. Here, we find reduced uptake efficiency in both the
perineurial and subperineurial glial cells (Figures 6C,D,H–J).
The reduction of glucose uptake into the subperineurial glial
cells most likely phenocopies the reduction found in pippin−/−

null mutants, since Pippin is the only transporter expressed in
those cells. Interestingly, Tret1-1 upregulation does not seem
to be sufficient to rescue glucose transport deficits caused
by loss of both Pippin and MFS3 in the perineurial glial
cells (Figures 6C,D). This finding might explain the differences
in lifespan and activity between the single and the double
mutant animals.

DISCUSSION

Sufficient nutrient supply to the nervous system is essential
for its proper function. Since the main energy source of the

brain is sugar, adequate carbohydrate transport over the BBB
needs to be ensured. Thus, the vertebrate as well as the
insect BBB-forming cells express carbohydrate transporters to
facilitate uptake of sugars (Weiler et al., 2017). We report
the identification of two additional carbohydrate transporters
expressed by the BBB-forming glial cells of Drosophila, Pippin,
and MFS3. Both transporters can facilitate uptake of glucose
and trehalose (Figure 2). RNAi-mediated knockdown of either
gene induces pupal lethality, while null mutants are viable
and fertile. This discrepancy is found since null mutants show
a compensatory upregulation of the carbohydrate transporter
Tret1-1. Interestingly, such upregulation cannot be seen in
knockdown animals, suggesting that there is a major difference

in compensation if the mRNA of a certain gene is produced

and then degraded or if there is no mRNA production since
the coding sequence has been deleted. Similar discrepancies
have been found comparing morpholino-induced knockdown
phenotypes vs. mutant phenotypes in zebrafish or siRNA-
mediated knockdown phenotypes vs. mutant phenotypes in
mice (De Souza et al., 2006; Daude and Westaway, 2012; Kok
et al., 2015; Rossi et al., 2015). In zebrafish, for example,
Egfl7 null mutants show compensatory upregulation of Emilin
genes that rescue Egfl7 loss. Such upregulation is not found
in morpholino-knockdowns that thus show a severe vascular
defects (Rossi et al., 2015). Interestingly, such compensation
might even be conserved in humans. On Iceland individuals with
a homozygous loss of Egfl7 were identified, who do not suffer
from any symptoms (Sulem et al., 2015). However, the underlying
regulatory mechanisms are currently unknown. They are likely
to be complex and will probably require much effort to unravel.
In any case, such conserved differential compensation should be
considered when studying the effects of gene knockdown and
null mutations.

The data reported here shows that transporter expression at
the BBB can be adapted to suboptimal circumstances, like in this

case loss of one transporter. There are two potential mechanisms
that could compensate for transporter loss: increase of the
concentration gradient at the plasma membrane (circulation vs.
cytosol), and compensatory upregulation of another transporter.
In case of our null mutant flies we see compensation
via both possibilities (Figure 4). The animals display higher
circulating sugar concentrations that most likely increase the
concentration gradient over the plasma membrane and thus
make carbohydrate transport via facilitative transporters more
efficient, as well as an upregulation of another transporter,
Tret1-1. These compensatory mechanisms rescue transport
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FIGURE 6 | Compensatory upregulation rescues deficits in carbohydrate uptake caused by loss of Pippin and MFS3. (A–E) Capacity of glucose uptake in ex vivo

larval brains of pippin−/− or Mfs3−/− null single or double mutants expressing FLII12Pglu-700µδ6 in the perineurial glial cells. There is no difference observed in

(Continued)

Frontiers in Behavioral Neuroscience | www.frontiersin.org 12 January 2021 | Volume 14 | Article 612430

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


McMullen et al. Plasticity of BBB Carbohydrate Transport

FIGURE 6 | glucose uptake rate or maximum glucose concentration compared to control brains for pippin−/− (A) or Mfs3−/− (B) single mutants. However, the double

mutant (C) perineurial glial cells take up glucose significantly slower than single mutants or wildtype controls. (D) Quantification of the glucose uptake rate into

perineurial glial cells in the indicated genotypes. The double mutant perineurial glial cells take up glucose significantly slower than single mutants or wildtype controls.

n = 8–12; *p ≤ 0.05. (E) Quantification of the difference between maximum glucose concentration and baseline glucose concentration. There is no observable

difference between the genotypes. n = 8–12. (F–J) Glucose uptake and maximum glucose level in the subperineurial glial cells. (F) pippin−/− mutant brains, but not

Mfs3−/− mutant brains (G) show reduced glucose uptake into the subperineurial glial cells. (H) pippin−/−, MFS3−/− double mutant brains show the same phenotype

as pippin−/− single mutant brains. Both the rate of glucose uptake (I) and the maximum glucose concentration (J) are reduced in both pippin−/− single and

pippin−/−, MFS3−/− double mutant brains. n = 8–12; *p ≤ 0.05, ****p ≤ 0.0001. Error bars show standard deviation.

efficiency as seen using a genetically encoded glucose sensor
to assess glucose uptake properties (Figure 6). The increase
in circulating carbohydrates suggests a crosstalk between the
nervous system, probably the BBB-forming glial cells, and the
periphery to regulate nutrient mobilization most likely form
the fat body. That BBB transport defects can regulate systemic
metabolism is a very interesting finding that will foster exciting
follow up studies to unravel the regulatory mechanisms.

It has been shown previously that Tret1-1 is upregulated
upon starvation-induced hypoglycemia (Hertenstein et al., 2020).
Together with the data reported here, this suggests that any
alteration that leads to insufficient carbohydrate uptake results
in compensatory upregulation of transport proteins, most likely
to ensure sufficient energy provision to the nervous system.
In the case of starvation, Tret1-1 is upregulated via TGF-β
signaling (Hertenstein et al., 2020). Since this signaling seems
to be induced by hypoglycemia, it is very unlikely that TGF-
β signaling is also regulating compensatory upregulation in the
case of transporter loss (Hertenstein et al., 2020). Mammalian
GLUT1 and SGLT1 and 2 have also been shown to be dynamically
upregulated upon hypoglycemia or other insults like oxygen and
glucose deprivation as a result of ischemia (Boado and Pardridge,
1993; Kumagai et al., 1995; Nishizaki et al., 1995; Nishizaki and
Matsuoka, 1998; Simpson et al., 1999, reviewed in Elfeber et al.,
2004; Enerson and Drewes, 2006; Vemula et al., 2009; Yu et al.,
2013; Patching, 2016; Rehni and Dave, 2018). Thus, it is very
likely that a flexible and dynamic regulation of carbohydrate
transporters is an evolutionary conserved mechanism that
ensures proper nervous system function even under suboptimal
conditions. Since aberrations in carbohydrate availability and
transport are thought to be a major cause of severe illnesses,
like GLUT1 deficiency syndrome, Alzheimer’s disease or epilepsy
(Kapogiannis and Mattson, 2011; Arsov et al., 2012; Hoffmann
et al., 2013; Koepsell, 2020), it will be very interesting to unravel
the regulatory mechanisms that can lead to a compensation
of insufficient carbohydrate uptake. Studying these mechanisms
might enable us in the future to treat the effects of insufficient
carbohydrate uptake at the BBB.
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