AUTHOR=Dao Nigel C. , Suresh Nair Malini , Magee Sarah N. , Moyer J. Brody , Sendao Veronica , Brockway Dakota F. , Crowley Nicole A. TITLE=Forced Abstinence From Alcohol Induces Sex-Specific Depression-Like Behavioral and Neural Adaptations in Somatostatin Neurons in Cortical and Amygdalar Regions JOURNAL=Frontiers in Behavioral Neuroscience VOLUME=14 YEAR=2020 URL=https://www.frontiersin.org/journals/behavioral-neuroscience/articles/10.3389/fnbeh.2020.00086 DOI=10.3389/fnbeh.2020.00086 ISSN=1662-5153 ABSTRACT=

Forced abstinence (FA) from alcohol has been shown to produce a variety of anxiety- and depression-like symptoms in animal models. Somatostatin (SST) neurons, a subtype of GABAergic neurons found throughout the brain, are a novel neural target with potential treatment implications in affective disorders, yet their role in alcohol use disorders (AUD) remains to be explored. Here, we examined the neuroadaptations of SST neurons during forced abstinence from voluntary alcohol consumption. Following 6 weeks of two-bottle choice alcohol consumption and protracted forced abstinence, male and female C57BL/6J mice exhibited a heightened, but sex-specific, depressive-like behavioral profile in the sucrose preference test (SPT) and forced swim test (FST), without changes in anxiety-like behaviors in the elevated plus maze (EPM) and open field test (OFT). FST-induced cFos expressions in the prefrontal cortex (PFC) and ventral bed nucleus of the stria terminalis (vBNST) were altered in FA-exposed female mice only, suggesting a sex-specific effect of forced abstinence on the neural response to acute stress. SST immunoreactivity in these regions was unaffected by forced abstinence, while differences were seen in SST/cFos co-expression in the vBNST. No differences in cFos or SST immunoreactivity were seen in the lateral central nucleus of the amygdala (CEA) and the basolateral amygdala (BLA). Additionally, SST neurons in female mice displayed opposing alterations in the PFC and vBNST, with heightened intrinsic excitability in the PFC and diminished intrinsic excitability in the vBNST. These findings provide an overall framework of forced abstinence-induced neuroadaptations in these key brain regions involved in emotional regulation and processing.