AUTHOR=Wierenga Christina E. , Ely Alice , Bischoff-Grethe Amanda , Bailer Ursula F. , Simmons Alan N. , Kaye Walter H.
TITLE=Are Extremes of Consumption in Eating Disorders Related to an Altered Balance between Reward and Inhibition?
JOURNAL=Frontiers in Behavioral Neuroscience
VOLUME=8
YEAR=2014
URL=https://www.frontiersin.org/journals/behavioral-neuroscience/articles/10.3389/fnbeh.2014.00410
DOI=10.3389/fnbeh.2014.00410
ISSN=1662-5153
ABSTRACT=
The primary defining characteristic of a diagnosis of an eating disorder (ED) is the “disturbance of eating or eating-related behavior that results in the altered consumption or absorption of food” (DSM V; American Psychiatric Association, 2013). There is a spectrum, ranging from those who severely restrict eating and become emaciated on one end to those who binge and overconsume, usually accompanied by some form of compensatory behaviors, on the other. How can we understand reasons for such extremes of food consummatory behaviors? Recent work on obesity and substance use disorders has identified behaviors and neural pathways that play a powerful role in human consummatory behaviors. That is, corticostriatal limbic and dorsal cognitive neural circuitry can make drugs and food rewarding, but also engage self-control mechanisms that may inhibit their use. Importantly, there is considerable evidence that alterations of these systems also occur in ED. This paper explores the hypothesis that an altered balance of reward and inhibition contributes to altered extremes of response to salient stimuli, such as food. We will review recent studies that show altered sensitivity to reward and punishment in ED, with evidence of altered activity in corticostriatal and insula processes with respect to monetary gains or losses, and tastes of palatable foods. We will also discuss evidence for a spectrum of extremes of inhibition and dysregulation behaviors in ED supported by studies suggesting that this is related to top-down self-control mechanisms. The lack of a mechanistic understanding of ED has thwarted efforts for evidence-based approaches to develop interventions. Understanding how ED behavior is encoded in neural circuits would provide a foundation for developing more specific and effective treatment approaches.