AUTHOR=van der Doelen Rick H. A. , Calabrese Francesca , Guidotti Gianluigi , Geenen Bram , Riva Marco A. , Kozicz Tamás , Homberg Judith R. TITLE=Early life stress and serotonin transporter gene variation interact to affect the transcription of the glucocorticoid and mineralocorticoid receptors, and the co-chaperone FKBP5, in the adult rat brain JOURNAL=Frontiers in Behavioral Neuroscience VOLUME=8 YEAR=2014 URL=https://www.frontiersin.org/journals/behavioral-neuroscience/articles/10.3389/fnbeh.2014.00355 DOI=10.3389/fnbeh.2014.00355 ISSN=1662-5153 ABSTRACT=

The short allelic variant of the serotonin transporter (5-HTT) promoter-linked polymorphic region (5-HTTLPR) has been associated with the etiology of major depression by interaction with early life stress (ELS). A frequently observed endophenotype in depression is the abnormal regulation of levels of stress hormones such as glucocorticoids. It is hypothesized that altered central glucocorticoid influence on stress-related behavior and memory processes could underlie the depressogenic interaction of 5-HTTLPR and ELS. One possible mechanism could be the altered expression of the genes encoding the glucocorticoid and mineralocorticoid receptors (GR, MR) and their inhibitory regulator FK506-binding protein 51 (FKBP5) in stress-related forebrain areas. To test this notion, we exposed heterozygous (5-HTT+/−) and homozygous (5-HTT−/−) serotonin transporter knockout rats and their wildtype littermates (5-HTT+/+) to daily 3 h maternal separations from postnatal day 2 to 14. In the medial prefrontal cortex (mPFC) and hippocampus of the adult male offspring, we found that GR, MR, and FKBP5 mRNA levels were affected by ELS × 5-HTT genotype interaction. Specifically, 5-HTT+/+ rats exposed to ELS showed decreased GR and FKBP5 mRNA in the dorsal and ventral mPFC, respectively. In contrast, 5-HTT+/− rats showed increased MR mRNA levels in the hippocampus and 5-HTT−/− rats showed increased FKBP5 mRNA in the ventral mPFC after ELS exposure. These findings indicate that 5-HTT genotype determines the specific adaptation of GR, MR, and FKBP5 expression in response to early life adversity. Therefore, altered extra-hypothalamic glucocorticoid signaling should be considered to play a role in the depressogenic interaction of ELS and 5-HTTLPR.