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1. Introduction

Mental health is an integral part of human well-being (Prince et al., 2007), but it often

does not receive due attention, especially in developing economies. One hundred and fifty

million people in India alone require mental health support, but those in need of support

might be reluctant to seek it (Gautham et al., 2020) for several reasons, including stigma

surrounding mental distress, lack of awareness, lack of access to support, or high costs (Wies

et al., 2021). In addition, COVID-19 and restrictions on physical interactions imposed new

challenges in providing mental health support.

Technologies such as mental health mobile apps may play a significant role in providing

support to individuals in need of mental health support (Neary and Schueller, 2018). These

apps can contribute to bridging the treatment gap for mental health issues (Alonso et al.,

2018) and mitigate the “hidden” mental health pandemic (Bower et al., 2022) by facilitating

connections between patients and available providers at a relatively low cost and with high

flexibility in terms of time and location, all while maintaining privacy. Typically, the therapy

itself is not automated and is performed by a qualified human provider (i.e., a therapist), as

patient-doctor relations are paramount for quality patient care (Brown and Halpern, 2021;

Schultz et al., 2021). Yet, some steps of the mediation andmatching between the patients and

therapists might be automated to allow performing at scale and keeping the cost low.

When it comes to mental health, deciding whether to automate certain processes,

maintain human engagement, or adopt an in-between solution seems to be particularly

challenging. The type of interaction partner matters for the behavioral responses this

interaction triggers. A robust empirical finding is that hybrid interactions, i.e., interactions

between humans and agents powered by technology, trigger a less emotional and social

response than a human-human interaction would (Chugunova and Sele, 2022). The reduced

emotional and social response can improve outcomes in interactions that benefit from

increased rationality but can be harmful when emotions or social rules of conduct are

crucial drivers for beneficial outcomes. In the domain of digital mental health, it means

that keeping a human mediator involved may be beneficial due to a higher emotional

response, but at the same time, automating an interaction and highlighting the non-human

nature of the opponent may be beneficial given lower social response to such agents and

stigma surrounding mental health (Bharadwaj et al., 2017). In this paper, we consider how

highlighting the (non-)human nature of an interaction partner affects compliance with

prompts measured by the propensity to follow them in the digital mental health setting.
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To examine this question, we partner with one of India’s

largest mental health apps, TickTalkTo. TickTalkTo acts as an

intermediary and matches users to therapists who deliver qualified

medical services. When interacting with the app, a user is assigned

to a human mediator who serves as a contact person and guides the

user toward a match with a therapist. During the first interaction,

a user sees a series of messages that introduce the human mediator

and prompt them to take a short psychological assessment which

is used to assist the matching. Users were randomly assigned to

be either in the Human condition or in the System condition.

The conditions varied in how (almost) identical messages were

presented: in the System condition, throughmessage subscripts and

wording, it was emphasized that the messages were sent by the

System. Conversely, in the Human condition, it was emphasized

that they were sent (on behalf of) the humanmediator (see Figure 1

to compare the treatment conditions). These messages appeared

immediately when the chat screen opened, were standard and sent

automatically in both conditions on behalf of the assigned human

mediator. We address our question in a field experimental setting

and are mindful of seamlessly integrating it into the environment

that users would normally encounter and not interfere with the

regular process. To do so, we abstain from introducing additional

incentives or questions. We believe that in our setting, participants

are intrinsically motivated to take the interaction with the app

seriously, as they actually search for mental health support and,

therefore, do not require additional incentives. As we do not ask

additional questions, we restrict our analysis to considering average

treatment effects.

We find that this subtle change has a dramatic effect on

compliance: Following the prompt in the Human condition, an

additional 21.75% of users start the psychological assessment. Once

users start the assessment, they are equally likely to complete it in

both conditions. Yet we observe an additional positive effect of the

Human condition: users who complete the assessment are more

likely to open the results. These results are particularly relevant

given the high levels of attrition to online mental health tools

(Naslund et al., 2017).

Our results reinforce and extend previous findings. A recent

paper by Hussein and Huang (2020) considers the use of AI

in the domain of digital mental health. In a series of vignette

studies, authors find that participants prefer human as compared

to AI therapists due to a potential lack of warmth and, as a

consequence, the lower competence of an AI therapist. Previously,

Promberger and Baron (2006) also used hypothetical medical

situations to establish that participants are more likely to follow a

recommendation for an operation from a human physician than

a computer. Our findings extend these results in the field setting.

Most importantly, we document higher compliance with a human

prompt, even in a task that does not require a high level of

competence of the automated counterpart nor a high level of trust

between the parties. Most recent advances of large language models

such as ChatGPT made it possible for chatbots to answer patients’

questions that are superior to doctors’ answers on several metrics

(Ayers et al., 2023). Our results highlight the fact that apart from the

technical feasibility of automation, behavioral responses of users

need to be taken into account when deciding what processes should

be automated or if human involvement should be emphasized.

In the context of digital mental health, it appears that retaining

a human mediator and highlighting their involvement leads to

more compliance.

2. Related literature

This paper contributes to two strands of literature. First,

digitization in health care has shown great potential but also

challenges in adoption, and our paper advances our understanding

of adoption and compliance. Prior studies find positive impacts

of health information technologies on patient health through

reducing mortality or morbidity among infants, patients with

complex conditions, and opioid-related conditions (Miller and

Tucker, 2011; McCullough et al., 2016; Wang, 2021). Digital

solutions can improve mental health conditions such as depression

across various patient populations (e.g., Lattie et al., 2019). The

introduction of technology can affect not only the treatment

delivery itself, but also a multitude of choices related to search

and adherence to treatment. For instance, people were found

to be responsive to (algorithmic) advice when choosing health

care plans (Bundorf et al., 2019). If doctors consulted automated

decision supports for making a diagnosis, they were perceived as

less qualified than when they consulted human colleagues (Arkes

et al., 2007; Shaffer et al., 2013). Our research brings in new field

experimental evidence that can improve the adoption of digital

mental health support tools.

Second, this paper builds on dynamic and fast-growing

literature on human interaction with technology and behavioral

responses to automation. A robust finding from an extensive

literature review is that interacting with automated agents triggers

reduced emotional and social responses as compared to a human-

human interaction (see, e.g., Chugunova and Sele, 2022, for an

overview). In some contexts, the reduced emotional and social

response leads to beneficial outcomes such as, for example,

increased disclosure of intimate partner violence if reporting to

computers (Ahmad et al., 2009; Humphreys et al., 2011). Moreover,

algorithms appear to enjoy the perceived “halo” of scientific

authority and objectivity (Cowgill et al., 2020). Users also tend

to incorporate recommendations from an algorithm more than

those from other humans (Logg et al., 2019; Sele and Chugunova,

2022). All these findings suggest that highlighting that the prompt

comes from a system and de-emphasizes human involvement will

increase compliance.

However, reactions to algorithms tend to be very context-

specific, with people being more accepting of the algorithms in

tasks that are seen as more analytical and less social (Waytz

and Norton, 2014; Hertz and Wiese, 2019; Castelo et al., 2019).

In the financial services domain, Luo et al. (2019) find that

disclosing the non-human nature of the chatbot significantly

decreases the rate of purchases compared to when users are

unaware that they communicate with a chatbot. In general, several

studies documented that disclosing the nature of chatbots has

negative effects on both psychological and behavioral user reactions

(e.g., Murgia et al., 2016). Focusing on the use of AI in the

medical domain, Longoni et al. (2019) find that participants are

more likely to follow medical advice when it comes from a

human provider rather than an AI. The suggested mechanism

is “uniqueness neglect,” i.e., the concern that an AI is unable
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to account for unique characteristics and circumstances. In the

context of our study, the latter findings would rather suggest

that informing users that the prompt is delivered by a system

and de-emphasizing human engagement may reduce compliance.

Therefore, based on the existing evidence, it is a priori unclear if

highlighting the engagement of a system or a human will increase

or decrease compliance.

3. Design and procedure

To study what is the role of highlighting human or system

involvement for compliance, we conduct a field experiment. All

new users of the TickTalkTo app between February and March

20221 took part in the study. In the app, a user was assigned to

a human mediator—a contact person who assisted in establishing

a successful match with a therapist. During the first interaction

with the app, users saw a picture of the assigned human mediator,

and upon clicking on it, reached the chat screen. On the chat

screen, they immediately saw a series of messages that introduced

the assigned human mediator by name and, as a first step, asked

users to fill in a psychological assessment, which could improve the

match suggestion. Participants were randomly assigned to either

the System or the Human condition. The difference between the

conditions was subtle and manifested itself in the subscripts under

the otherwise (almost) identical messages. In the System condition,

it was highlighted that the messages were sent by the system (i.e.,

automatically), whereas in the Human condition that they were

sent (on behalf of) the human mediator. Additionally, one message

was adjusted to inform who enabled the psychological assessment

(“The system” and “I” respectively) and one highlighted that the

assessment will be used for matching either by a human or by an

algorithm.2 Figure 1 depicts the difference between conditions.

Several caveats are important to note: First, all the messages

appeared on the screen immediately, which might limit users’

perception of how much human involvement was feasible. Second,

in the second message of the System condition, the human

mediator was introduced by name, albeit with a subscript indicating

that the message was sent by the system. By varying the label and

keeping the timing and the content of the messages comparable,

we can consider the role of emphasizing the source of the messages

for compliance. The prompt to take the assessment came as one of

the first interactions with an app. That is, there was no previous

communication with the prompt sources or experience with the

app that could have affected compliance with a prompt. Completing

1 For technical reasons, the dataset was not received by the research team

until June 2022. The pre-analysis plan AEARCTR-0009202 was uploaded to

AEA RCT repository prior to any engagement with the data. The analysis

reported in this paper deviates from the pre-analysis plan due to data

availability.

2 The matching algorithm was developed by TickTalkTo without any

involvement of the research team and is not a part of the study. Our

outcome variable is measured before the algorithm is employed. In both

conditions, the matching suggestion is based on an evaluation of the

psychological assessment by an algorithm that is further reviewed by the

human mediator taking into account any follow-up communication with the

user (if applicable).

the psychological assessment was not mandatory and users could

proceed without completing it. Users who started the assessment

did so typically within aminute upon receiving the prompt (median

of 56.6 s with a long tail on the right side of the distribution).3 The

follow-up communication in both treatments was delivered by a

human mediator and clearly marked as such. Therefore, even if the

delay between receiving the prompt might have affected the uptake

of the psychological assessment, it would serve as a conservative

estimate of our intervention.

Our sample consists of 1,072 app users with 603 (56.25%)

randomly assigned to the Human condition and 469 (43.75%)

to the System condition.4 The randomization was implemented

as an independent random draw at the time of downloading

the app that with a 50% chance assigned a user to the Human

or the System condition. We analyze the behavior of users who

actually interacted with the app and therefore were exposed to

one of the treatments (per-protocol analysis). Some users who

downloaded the app never registered and never interacted with it.

Attrition before any interaction with the app does not challenge the

randomization and identification strategy. Given the field setting

of the study, we do not have any additional information about the

users and are not able to consider heterogeneities of the treatment

effect (Rahman et al., 2022).5

4. Results

Our main outcome variables are the uptake rate of the

psychological assessment, the completion rates, and engagement

with the assessment results (i.e., clicking on the report link).

Additionally, based on the timestamps, we can see if participants

took longer to proceed to the next step, depending on the treatment.

In the Human condition, 35.82% of the users started the

psychological assessment after receiving the prompt. In the System

condition, only 29.42% did so. Keeping in mind how subtle

the intervention was, the increase in compliance of 21.75% in

the Human condition is substantial and significantly different

from the System condition (6.40 pp, two-sided t-test, p =

0.02). Once the psychological assessment was started, about 72%

of users completed it. The attrition rates in both conditions

are not significantly different (two-sided t-test, p = 0.85). In

addition, apart from the increase in the initial propensity to start

the assessment, introducing the prompt highlighting the human

increases general engagement with the assessment. Almost all the

users who completed the psychological assessment (97.6%) also

3 We detect no di�erence in time that spanned between receiving the

prompt and starting the assessment (if the assessment was started at all) by

treatment, Kolmogorov-Smirnov test for equality of distributions, p = 0.3.

4 We removed 15 observations (about 1% of the sample) from the initial

sample of 1,087 observations. These observations had a negative di�erence

between receiving the prompt and starting the assessment. A negative

timestamp is likely due to users proceeding to the assessment from an

on-screen push notification.

5 We have information on some basic demographic characteristics of only

24% of the sample who chose to fill these fields in their user profiles. Due to

this very limited coverage, we are not able to use this data systematically in

the analysis.
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FIGURE 1

Communication with a user in the Human (A) and the System (B) conditions. The treatment di�erences are highlighted. The shade of the gray

subscripts has been intensified to accommodate variations between the phone screen (participant experience) and a printed version or a computer

screen (reader experience).

opened the results report. Yet, this small share of users who did

not open the report is concentrated in the System condition (two-

sided t-test, p = 0.02). A median user took 3.5 min to complete

the psychological assessment. There are no systematic differences

in completion times by condition (t-test, p = 0.33).6 We reconfirm

our results in a series of regressions (see Table 1).

5. Discussion and conclusion

We observe a significant increase in compliance and

engagement when the prompt to complete a psychological

assessment is marked as delivered by a human mediator, as

compared to a system. Data limitations do not allow us to

6 Seven participants took over 60 h to complete the assessment. The results

remain unchanged if these observations are excluded. Table 1 reports the

regression coe�cients excluding these observations because these outliers

strongly a�ect the magnitudes of coe�cient estimates (but do not a�ect

statistical significance).

empirically study the mechanisms that triggered the effects.

However, based on the previous literature, several mechanisms

might be at play.

First, although interactions with a system are social interactions

(Nass et al., 1999; Nass and Moon, 2000), there might be a stronger

norm of politeness or conformity toward a human (Cormier et al.,

2013) that would affect the decision to complete a psychological

assessment when asked. Second, in the spirit of “uniqueness”

neglect (Longoni et al., 2019), it is possible that when the prompt

came from a system, it was dismissed as a standard feature (which

it is). When it comes from a human, it is seen as necessary for one’s

particular case. However, the fact that the messages appeared on

the screen all at once both in the Human and the System condition

and that there was no previous communication between the parties

when the prompt appeared might cast doubt onto how much

“customization” was possible at that point. Finally, the likelihood

of completing a psychological assessment might be related to

performance expectations about an algorithm and a human in

terms of the quality of the match. If users believe that a match

suggested by a human would be worse than a match suggested by
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TABLE 1 Regression results.

(1) (2) (3) (4)

Variables Binary: Binary: Binary: Time taken

Started Completed Opened report (in sec)

Human condition 0.178** 0.0282 0.851** −2.108

(0.0804) (0.145) (0.413) (14.66)

Constant −0.541*** 0.575*** 1.640*** 228.8***

(0.0611) (0.113) (0.212) (11.45)

Observations

Log-likelihood

1,072

−677.56

354

−208.82

256

−25.85

249

−1528.99

Marginal effects

of Human condition

0.0640**

(0.0287)

0.00946

(0.0489)

0.0441*

(0.0229)

Standard errors in parentheses.

∗∗∗p < 0.01, ∗∗P < 0.05, ∗p < 0.1.

Column 2 is conditional on starting the assessment, Columns 3 and 4 are conditional on completing the assessment. Column 4 reports the results of the OLS regression on time taken to

complete the psychological assessment on the sample that excludes the observations as discussed in footnote 6. Columns 1–3 report the results of probit regressions.

a system, they may be more likely to complete the assessment in

the human condition to offer additional inputs for the match and

thus improve human performance. Yet, for this argument to hold,

we have to assume that users are interested not in the best possible

match but in a match above some threshold or that users believe

that the psychological assessment data would improve the match

differentially by treatment.

While the effect of highlighting that the messages come from

a human mediator is significant and positive, the exact magnitude

of the effect (21.75%) is context specific. In particular, the initial

compliance with the prompt in the System condition might have

been lower due to the content of the second message. In the

second message, the system might be viewed as introducing itself

with the human name (message 2 in the examples: “I’m Mridula,

[...]”). It might have been regarded as the system trying to hide

its identity and pretend to be a human. However, as this message

as well as all others were followed by the subscript that it was

sent by the system, the negative effect of the mismatch between

the wording and the subscript might exist, but is probably limited.

Importantly, we consider an ethically uncontroversial case where a

human mediator was present and engaged in the communication

following the standard welcome messages. In situations where a

chatbot attempts to persuade the user that it is a human, the

user’s reactions might drastically differ. Ishowo-Oloko et al. (2019)

find that participants cooperate with bots less after they interacted

with them believing that they were human. However, the authors

attribute the change to the prejudice against bots and not to the

false identity. In general, large literature considers the practice of

not disclosing the nature of the chatbot and letting the chatbot

pretend to be a human (e.g., Shi et al., 2020; Murgia et al., 2016).

With that in mind, some legal regulations require that users are

informed when they interact with an AI system [Article 52(1) of

the EU AI Act proposal] or, specifically, a bot (California’s BOT

Disclosure Law).

The goal of the current study was not to establish correlations

between demographic characteristics such as, for example, age,

gender, and attitudes toward technology (e.g., Grzymek and

Puntschuh, 2019). Due to randomization, the demographic

composition of participants in both conditions is the same

in expectation. While considering heterogeneities might be

interesting for future studies, our main findings on the aggregate

level remain valid and important for the use of automation for

mental health at scale.

With the development of digital health and, in particular digital

mental health, society is facing great potential and challenges

in how to harness this potential. In this paper, based on the

empirical evidence from a field experiment, we provide evidence

that highlighting the engagement of a human mediator in sending

otherwise standard messages leads to an increase in compliance

in the domain of mental health. Further research is needed

to understand if our findings extend to other domains, what

mechanisms underlie the effect, and how digital health care

providers could deliver better and more affordable care at scale.
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