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Introduction: Bumblebees are essential pollinators in temperate regions of the

northern hemisphere. Niche overlap and competition with honeybees may

impose significant stress on bumblebees by reducing nutrient acquisition and

increasing the risk of pathogen and parasite spillover from honeybees. One of

these parasites is the bumblebee wax moth (Aphomia sociella), whose larvae can

be found in bumblebee and wasp nests, as well as weakened commercial

honeybee hives (hereafter called apiaries).

Methods: Using Bombus terrestris colonies as experimental models, we

expected that young queen and worker bumblebee immunity (measured by

encapsulation response) would become weaker under both competitive (i.e.,

proximity to apiaries) and parasite (A. sociella infestation) pressure and,

specifically, that the immunity of bumblebees in closest proximity to apiaries

would be weakest in nests infested by A. sociella.

Results and discussion: We observed increased infestation, lower reproductive

output, and weaker encapsulation response in bumblebee colonies that were

near apiaries. Our data provide insights on the ecology of A. sociella infestations

where honeybees and bumblebees coexist. Our observations of reduced
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immune response in bumblebees inhabiting colonies nearer to apiaries

are of critical importance, as this reduction in immune response could

facilitate additional infestations of other parasites and pathogens within

bumblebee colonies.
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1 Introduction

Insects comprise over 80% of all animal species (Stork, 2018).

They form a foundational part of trophic levels and dominatemany of

Earth’s ecosystems (Stork, 2018; Wilson and Fox, 2021). For example,

more than 60% of bird species rely on insects as an adult food source,

and many depend on insect food during ontogeny. However, more

than half of Earth’s natural terrestrial ecosystems are currently under

significant human pressure (Wagner et al., 2021), resulting in

dramatic declines in insect numbers and diversity (Cardoso et al.,

2020; Van Klink et al., 2020). Even protected areas in Germany have

lost more than 75% of flying insect biomass (Hallmann et al., 2017).

These negative trends in insect diversity, abundance, and ecological

service provision are driven by factors such as habitat loss or

fragmentation, climate change, invasive competitors, pathogens,

parasites and predators, intensive agriculture, modern forestry

measures, human-induced fires, environmental pollution,

overexploitation of water resources, and pesticide use (Wagner,

2020; Dicks et al., 2021; Raven and Wagner, 2021).

A recent study shows that global production of essential foods is

being limited by a lack of pollinators (Turo et al., 2024). Between

75–95% of the world’s flowering plant species sexually reproduce

via pollination by animals (Potts et al., 2010; Ollerton et al., 2011).

Animals pollinate over 180,000 plant species and over 1200 crop

species, supporting approximately 35% of global crop production

(Klein et al., 2007). Insects comprise most pollinator species, with

bees, flies, butterflies and moths, wasps, beetles, and ants pollinating

most wild and domesticated plants.

The European honeybee (Apis mellifera) is the most well-

known honeybee species globally (Goulson et al., 2015). These

domesticated bees are important agricultural pollinators and also

produce honey and wax that humans gather and use. Although

honeybees are important pollinators of agricultural and wild plants,

they are not native to many areas (Schweiger et al., 2010). They

cannot properly pollinate many plant species compared to co-

evolved native pollinator insects. Bumblebees (Bombus spp.) are

key native pollinators in temperate regions of the northern

hemisphere (Fontaine et al., 2006). There is substantial evidence

that many bumblebee species have declined throughout Europe,

North America, South America, and Asia in recent decades due to

habitat loss, lack of floral resources, novel introduced parasites

(Schmid-Hempel et al., 2014; Salvarrey et al., 2021), or
02
combinations of several stressors (Schweiger et al., 2010; Goulson

et al., 2015; Martins et al., 2015; Evans et al., 2023).

Evidence suggests that competition with managed honeybees

can negatively affect bumblebees. For example, Thomson (2004)

found that foraging rates and reproductive success of bumblebee

colonies were significantly reduced due to proximity to apiaries.

Walther-Hellwig et al. (2006) reported that bumblebees avoided

foraging at sites near apiaries. Some bumblebee species switched to

foraging later in the day or changed foraging to less rewarding floral

resources. These changes occurred because of significant overlap of

foraging niches, often ranging between 80–90% between managed

honeybees and native bumblebees (Thomson, 2006). Niche overlap

and competition between species may have significant ecological

consequences, as this can lower an organism’s fitness by reducing

the amount of nutrient acquisition and increasing physiological

stress (Page and Williams, 2023).

Another stressor in bumblebees is the spillover of pathogens

and parasites from honeybees (Kosior et al., 2007; Szabo et al., 2012;

Schmid-Hempel et al., 2014; Straub et al., 2022). In some cases,

infections might also be transmitted from bumblebees to A.

mellifera (Plischuk et al., 2011). The bumblebee wax moth

(Aphomia sociella) is a small moth within Family Pyralidae and

Subfamily Galleriinae. This parasite of social Hymenoptera is native

to Europe, and its larvae are often found in bumblebee and wasp

nests (Wallin et al., 2020). It can also invade weakened commercial

honeybee colonies. A. sociella larvae inside honeybee colonies live

behind a silk enclosure and are well protected from their hosts. At

the beginning of the larval phase, the pest consumes the old wax

cells, residue, pollen, nectar, and droppings of bumblebees. Large,

final-instar larvae become predatory by attacking and consuming

bumblebee larvae. A. sociella can occasionally be a pest of active

honeybee colonies. However, the pest will usually take advantage of

already diseased or declining honeybee colonies. In search of

weakened honeybee colonies, the pest is attracted to apiaries and

subsequently inspects its chance of invading the colony. This may

make bumblebee nests near apiaries more vulnerable to A. sociella,

and, thus, more susceptible to immunity and fitness complications.

In this study, we examined whether native bumblebees may

simultaneously face both a higher probability of being invaded by A.

sociella pests and severe interspecific competition from honeybees

when their nests are in closer proximity to apiaries. First, we

hypothesized that bumblebee immunity may become weaker due
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to competition. Proximity to honeybees can increase interspecific

competition and parasite burden in bumblebee populations, and the

highest likelihood of bumblebee nest infestations was expected near

apiaries (Elbgami et al., 2014). Second, we predicted that parasite

infestations also affect the immune response, such as encapsulation.

During an encapsulation response against foreign bodies, the

melanotic capsule, which consists of hemocytes, is formed

(Gupta, 1986; Sadd and Schmid-Hempel, 2009). This capsule can

block parasites’ absorption of nutrients and thus contribute to their

killing by starvation (Strand, 2008) or the toxic effects of melanin

production (Schmid-Hempel, 2021). We hypothesized that the

immunity and reproductive output of bumblebees near apiaries

would be weakest in bumblebee nests infested by A. sociella. We

expected that the simultaneous effects of competition and

infestation near apiaries might further decrease the strength of

encapsulation response and the number of young queens and

workers. In agricultural ecosystems, pest insects cause severe

biotic stress and represent a significant constraint to crop

production globally (Potts et al., 2016; Seibold et al., 2021;

Chowdhury et al., 2023), and it is imperative that we devise and

develop conservation plans to preserve biodiversity and maximize

sustainable farming practices given the especially important roles of

local pollinator populations (Orr et al., 2021; Russell et al., 2024).
2 Methods

2.1 Insects and study site

Commercial B. terrestris colonies (Koppert Biological Systems,

Berkel en Rodenrijs, Netherlands) were purchased and studied under

field conditions.We used colonies originating from the same breeding

line. We placed colonies near the town of Krāslava (55.9°N, 27.2°E) in

southeast Latvia in mid-May of 2019 and 2024. Colonies were placed

near six small apiaries containing 9–11 (mean = 10, SD = 0.63)

honeybee colonies, and each colony produced between 350–650

queens, workers and drones. The study area is a mosaic of pine and

alder forests, small plots of arable land, private gardens, and forest

meadows. We never used the same apiary twice, and the minimum

distance between the study sites (apiaries) was 5 km.

Bumblebee colonies were placed at five different distances from

honeybee colonies: 0, 150, 300, 450, and 600 m. At each of these

distances, five colonies were placed. Colonies at 0 m distance were

placed in between honeybee colonies. The distance between

bumblebee colonies was at least 4 m in each distance category.

When a colony was allocated to a study site, we removed the

attached plastic container that had a feeding solution. Colonies were

regularly checked to observe workers’ foraging flights, fanning

behaviors, and colony sounds (Krams et al., 2021; Krama et al.,

2022). We collected the colonies at the beginning of July as they

reached the maximum of the young queen and male (generative

offspring individuals) production phase. Twelve hours before final

collection, we allowed all colony members to enter, but not exit,

their respective colony. We then collected all colonies from each

study site and placed them in a freezer (Angelantoni Life Science,

Massa Martana, Italy) at −84 °C.
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2.2 Aphomia sociella infestations

It is easy to detect the presence of A. sociella because the larvae

spin strong silk to protect themselves while they feed. The silk is

unmistakable, especially in the upper parts of the bumblebee hives.

The silk layers are always very dense to shield the larvae from the

hosts (Gambino, 1995). We regularly checked all bee and

bumblebee colonies for the presence of A. sociella 2–3 times a

week and measured its presence as binary (present or absent).
2.3 Reproductive effort

We checked for the number of hatched and unhatched worker

and queen cells for each colony. We also counted the number of

young queens (wings not worn) and workers, as these numbers

reflect bumblebees’ reproductive effort (Krama et al., 2022).
2.4 Activation of a cellular component
of immunity

We chose 6–9 worker bumblebees from each infested (n = 154

in total) and non-infested (n = 206 in total) colony and immobilized

them on ice. We sterilized the abdomen of each bumblebee and

punctured their cuticle by inserting a sterile needle between the

third and fourth sternite (König and Schmid-Hempel, 1995;

Schmid-Hempel, 1998). When the needle was removed, we

inserted a piece of sterile nylon monofilament (3 mm length, 0.18

mm diameter, knotted at one end) into the puncture hole (Rantala

et al., 2002). We let the nylon monofilament be exposed to the

hemolymph for five hours, where it was encapsulated and

melanized. A portion of the filament was left outside the bee for

easy removal. We put the bumblebees in numbered plastic canisters

(4 cm diameter, 8 cm height, covered with a mesh) and provided

sugar water via moistened cotton. The canisters with bumblebees

were placed in an incubator at a constant temperature of 24 °C.

The encapsulation response begins as soon as the cuticle of an

insect is pierced, and the response usually lasts for hours (Dubovskii

et al., 2010). Five hours after implantation, we carefully grasped the

knot of the monofilament implant and removed the filament from

each bumblebee. The removal of filaments after 5 h imitated the

activity of the insect’s immune system in destroying or eliminating a

parasite or its egg (Yourth et al., 2001, 2002). This time interval was

chosen based on our preliminary studies which showed that 5 hours

of exposure to the filament produces the most significant differences

in encapsulation rate between individuals (Rantala et al., 2000), and

more than 90% of individuals reach their maximum encapsulation

rates during this time (Krams et al., 2013a, b).
2.5 Immune assays

To quantify the encapsulation reaction against the nylon

monofilament, we estimated the lightness of each nylon insert

after it had been thoroughly dried. This occurs because a parasite
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or other foreign body is encapsulated with melanin as part of the

immune defense mechanism. Specifically, once these invaders are

recognized, the pro-phenoloxidase pathway is triggered, activating

the phenoloxidase enzyme. This enzymatic activity results in the

encapsulation of parasites with melanin (Ratcliffe et al., 1985).

Therefore, the melanization of implants is highly correlated with

phenoloxidase activity and melanin production (Rantala et al., 2000,

2002, 2007). Implant melanization is positively related to the

encapsulation of parasites (Paskewitz and Riehle, 1994) and the

ability to resist entomopathogenic fungal diseases (Rantala and Roff,

2007). So, higher levels of melanization, or darkening of the

filament, indicates increased immune system activity and an anti-

parasitism response (Yourth et al., 2001, 2002).

We photographed the removed implants from three directions

under consistent light conditions using a Zeiss Lumar V12 Stereo

microscope and Axiocam MRc5 digital recorder to quantify

lightness. We then analyzed the digital images using image

analysis software (Image J, http://rsbweb.nih.gov/ij/). We marked

the area of that portion of the insert that was within the bumblebee’s

body, and the program calculated the lightness value (expressed in

percentage: the darker the pixels, the higher the percentage). Since

increasing melanization indicated a more robust immune response

in this study, we calibrated the reflectance of an implant before the

insertion to zero level.
2.6 Statistics

To assess how distance from apiaries affected the bumblebee

infestation rate, we fitted binary logistic regression, using infestation

status as a response value, and distance from the apiary as an

independent variable. In addition, the study year was included as a

categorical factor. To explore factors affecting reproductive success,

we fit two linear models. We set queen cell count and worker cell

count as dependent variables and distance, infestation status, and

study year as independent variables in each model. Additionally, we

accounted for the interaction between distance and infestation
Frontiers in Bee Science 04
status. We also fitted a linear model with encapsulation rate as a

response variable using the same independent variables.

Significance of each predictor and their interaction was assessed

using two-way ANOVA with Type II sums of squares. In all linear

models, the assumption of normality of residuals was checked using

the Shapiro-Wilk test and QQ diagrams with residuals. The

variance of homoscedasticity model was checked using plots of

fitted values and standardized residuals. Data analyses were

performed in R software (version 4.4.0). Significance was set at

0.05 in all tests. This study did not require ethical permits.
3 Results

3.1 Infestation probability

Distance from the apiary significantly affected the infestation

probability of bumblebee nests (likelihood ratio (LR) c2 = 59.80; df

= 1; p < 0.001). The effect did not differ between study years (LR c² =
0.015; df = 1; p = 0.194). As the distance from the apiary increased

by 1 m, the likelihood of a bumblebee nest being infested decreased

by 0.6% (Odds Ratio = 0.994; 95% confidence interval (CI): 0.988–

0.998; Figure 1).
3.2 Queen cell counts

Number of new bumblebee queen cells was significantly affected

by distance from the apiary (two-way ANOVA: F1,141 = 598.57; p <

0.001), infestation status (F1,141 = 102.46; p < 0.001), and interaction

between the two terms (F1,141 = 26.31; p < 0.001). The effect of the

study year was not statistically significant (F5,141 = 0.86; p = 0.51). A

distance increase in 1 m also increased the number of bumblebee

queen cells in healthy colonies by 0.142 (95% CI: 0.130–0.154;

Figure 2a) and by 0.08 (95% CI: 0.049–0.118; Figure 2a) in infested

colonies. Being infested decreased the queen cell count by 10.64 cells

(95% CI: 4.099–17.176; Figure 2a).
FIGURE 1

Probability of Aphomia sociella infestation in bumblebee colonies, and its relationship with distance from an apiary (m). The shaded area represents a
95% confidence interval.
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3.3 Worker cell counts

Bumblebee worker cell counts were also significantly affected by

distance from the apiary (two-way ANOVA: F1,141 = 2904.29; p <

0.001) and by bumblebee infestation status (F1,141 = 2991.07; p <

0.001). The interaction between distance from apiary and

bumblebee infestation status was also significant (F1,141 = 29.15; p

< 0.001). The amount of bumblebee worker cells did not differ

between the study years (F5,141 = 2.11; p = 0.068). Every 1 m increase

in distance from the apiary increased the worker cell count by 0.440

(95% CI: 0.42–0.46; Figure 2b) in healthy bumblebee colonies and

by 0.348 (95% CI 0.296–0.4; Figure 2b) in infested bumblebee

colonies. Infested bumblebee colonies additionally had 166.78 (95%

CI: 156.97–176.59; Figure 2b) fewer worker cells, regardless of

distance from the apiary.
3.4 Encapsulation response

Encapsulation response was significantly affected by distance

from the apiary (two-way ANOVA: F1,353 = 619.27; p < 0.001) and

infestation status of the bumblebee colony (F1,353 = 3146.76; p <

0.001). There was no significant interaction between distance from

apiary and bumblebee infestation status (F1,353 = 0.55; p = 0.46). The

study year did not impact the encapsulation response (F5,353 = 0.93;

p = 0.46). The encapsulation response increased per 1 m of distance

by 0.035 (95% CI: 0.031–0.038; Figure 2c), whereas being infested
Frontiers in Bee Science 05
decreased encapsulation rate by 29.8 (95% CI: 28.063–

31.540; Figure 2c).
4 Discussion

We observed that A. sociella infestation in bumblebee colonies

significantly increased with closer proximity to apiaries, where

infestation was close to zero at approximately 600 m from

apiaries. We also found that reproductive performance, measured

by the number of young queen cells and worker cells, was lowest

near honeybee apiaries. These results suggest that bumblebee

reproductive performance may be influenced by competition with

honeybees for similar food resources, as well as influenced by the

higher potential for A. sociella infestation in closer proximity to

apiaries. Indeed, encapsulation response in bumblebee workers was

weakest near apiaries, and the strength of this immune response

depends on bumblebee health and infestation status. In other

words, the healthiest bumblebee nests, in terms of lowest

likelihood for infestation and highest likelihood for greater

reproductive performance, were the ones furthest from the apiaries.

There is significant niche overlap and more specifically, similar

food preferences, between bumblebees and honeybees, resulting in

substantial interspecific competition (Steffan-Dewenter and

Tscharntke, 2000; Antúnez et al., 2015; Bernhardsson et al.,

2024). However, it is common for honeybees to outcompete

bumblebees for these food resources: given that both species are
FIGURE 2

Relationship between the distance of bumblebee nests from a honeybee colony (m) and (a) number of young queen cells, (b) number of worker
cells, and (c) encapsulation response of worker bees, depending on the status of infestation with Aphomia sociella larvae. Shaded areas represent a
95% confidence interval.
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generalists and have similar foraging strategies and radii, the sheer

number of individuals in honeybee colonies leads to more total

flower visits and overall food consumption, thus decreasing the

amount of potential food resources for bumblebees to consume

(Goulson and Darvill, 2004). In our system, malnutrition from

being outcompeted for food resources likely contributed to a

weakened immune response if a colony was infested and lower

overall reproductive output. Malnutrition arises as bumblebees

disproportionately expend more energy during increased foraging

without gaining that energy back from flowers because honeybees

have previously exploited that resource (Straub et al., 2023).

Malnutrition and lack of energetic resources increases stress, and

this cascading effect lowers immunity and reproduction (i.e.,

fitness). As the immune system requires resources to maintain an

organism’s ability to respond to pathogens, competition for limited

resources may affect the strength of an organism’s immune

responses (Kedia-Mehta and Finlay, 2019). Competition is not

restricted to the organismal level, as different arms of immunity

can compete for a shared pool of resources under nutrient scarcity,

which may increase the risk of impaired reproductive fitness or

even death.

The number of young queen cells and worker cells, as well as

encapsulation response, were highest away from apiaries.

Furthermore, these responses differed significantly between

infested and non-infested B. terrestris colonies. We observed

weakened immune responses in infested bumblebee colonies

compared to that of non-infested colonies at the same distance

from apiaries. A. sociella evidently suppressed the immune

responses of bumblebees, making these colonies much more

susceptible to other pathogens and/or parasites. Since we found

A. sociella infestation probability to be strongly associated with

proximity to honeybees, and a suppressed encapsulation rate

resultant of this immunocompromise, it appears that increased

interspecific competition and decreased reproductive output are not

the only negative fitness costs incurred by bumblebees when their

colonies are near those of honeybees (Meeus et al., 2011). Our study

reveals that there are a myriad of factors contributing to decreased

fitness in bumblebees near apiaries. The stress and malnutrition

from proximity-based interspecific competition likely results in

increased susceptibility to infestation and an inability to combat

infestation with a strong immune response (Logan et al., 2005).

Overall health and reproduction are then depressed in bumblebee

colonies, and they may be unable to adequately pollinate specialized

plants within their given niche (Williams and Osborne, 2009).

Higher numbers of young queen cells and worker cells, and

greater encapsulation responses, are important for maintaining

sufficient fitness in bumblebee populations. Our results

demonstrate that maintaining the parameters of population

fitness becomes more difficult when bumblebee colonies are

infested with A. sociella. As A. sociella infestation is observed to

be greater in bumblebee colonies that are in closer proximity to

apiaries, this raises a cascade of concerns regarding honeybee

colony placement and its potential impact on the health of wild

bumblebee populations (Gillespie, 2010).

Honeybees are undoubtedly a foundational component of plant–

pollinator systems, significantly contributing to agricultural
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production and ecosystem health. Previous studies have

demonstrated that landscape characteristics (e.g., vegetation

structure and diversity; Herbertsson et al., 2016), overall resource

availability (Forup and Memmott, 2005), and spatiotemporal

variables (e.g., seasonality; Wignall et al., 2020) influence the degree

of competition between honeybees and bumblebees. For instance, in

homogeneous agricultural landscapes, niche overlap and competition

for food resources are often highest, leading to a significant reduction

in bumblebee abundance and body size (Goulson and Sparrow, 2009;

Sõber et al., 2020). In contrast, heterogeneous landscapes mitigate

these competitive effects by providing increased resource abundance

and enabling bumblebees to forage without complete niche overlap

(Mänd et al., 2002). Our study, however, introduces the additional

variable of parasitic infestation probability. Even if competition is

mitigated by landscape characteristics, infestation spillover from

introduced apiaries to native bumblebees remains a critical issue.

This underscores the importance of considering multiple factors

when deciding whether and where to place honeybee colonies. For

example, in areas with high local pollinator biodiversity, avoiding

apiary placement in such biodiversity hotspots should be prioritized.

Finally, future experiments should be designed to confirm the sources

of A. sociella infestation, as our field study does not rule out the

possibility that local wild bees or wasps could also infest bumblebees

in some study sites.
5 Conclusion

Parasites and pathogens that can impact the health of

bumblebees represent a key focus in the health of bumblebee

populations in both agricultural operations (e.g., greenhouses)

and their natural environments. Indeed, there has long been

concern over the potential spread of parasites and pathogens

from honeybees to bumblebees (Genersch et al., 2006; Singh

et al., 2010; Evison et al., 2012). Our data provide valuable

insights on the spatial ecology of A. sociella infestations in areas

where honeybees and bumblebees coexist. Our demonstration of

reduced immune response in individuals within bumblebee colonies

in closer proximity to apiaries is alarming, given that this reduction

in immune response could potentially facilitate additional

infestations of other parasites and pathogens within bumblebee

colonies (e.g., due to a population’s decreased ability to fight off

diseases). We recommend conducting more detailed studies on the

diversity of parasites and pathogens and their effects on bumblebees

in relation to their distance from apiaries. Conservationists must

devise plans for introducing honeybees that maximize plant

pollination and agricultural output while minimizing negative

fitness effects (e.g., potential competitive exclusion, pathogen

introduction, decreased reproduction) in native pollinator species.
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