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Safety assessment of high doses
of vaporized oxalic acid on
honey bee worker health
and queen quality
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Muhammad Fahim Raza1, Midhun Sebastian Jose1,
Oleksii Obshta1, Marina Carla Bezerra da Silva1, Ivanna Kozii2,
Igor Moshynskyy1, Thanuri L.K. Edirithilake1, Erin Baril1,
Uros Glavinic1,3, Elemir Simko1 and Sarah C. Wood1*

1Department of Veterinary Pathology, Western College of Veterinary Medicine, University of
Saskatchewan, Saskatoon, SK, Canada, 2Prairie Diagnostic Services Inc., University of Saskatchewan,
Saskatoon, SK, Canada, 3Department for Biology, Faculty of Veterinary Medicine, University of
Belgrade, Belgrade, Serbia
Introduction: The honey bee ectoparasitic mite, Varroa destructor, is one of the

main causes of honey bee colony loss worldwide. Synthetic acaricides are the

most commonly used strategy for varroa control, however, resistance to these

acaricides has emerged. Consequently, the use of organic acids for varroa

control is gaining more interest among beekeepers. For example, oxalic acid

(OA) is a natural compound that has been shown to be an effective acaricide

against varroa mites, however, the potential toxicity of OA to adult bees and

queens is poorly understood. The objective of the study was to evaluate the

toxicity of incremental doses of vaporized OA on honey bee workers and queens.

Methods:Weexposed 32 colonies to incremental doses (0, 5, 10 or 20 g per colony)

of vaporized OA once per week over four consecutive weeks and wemonitored the

acute and long-term toxicity. We investigated the short-term effects of OA

administration by evaluating adult bee mortality, brood production, and population

size. Next, we evaluated the long-term effects of OA application on both worker

bees and queens. Regarding workers, we investigated their ability to rear new

queens. As for queens, we measured acceptance, performance, and sperm quality.

Results: We found that colonies treated with 20 g OA (20 times the label dose)

had a statistically significant increase in worker bee mortality, with a non-

significant, 23% decrease in brood relative to controls. No significant

differences were observed in queen performance nor sperm quality.

Discussion: We found that repeated application of vaporized OA, at up to 20

times the label dose, had no significant short-term nor long-term, negative

effects on colony or queen health, with the exception of a short-term increase in
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adult beemortality in the 20 gOA-treated group. The results of this study support

the safety of higher-than-label doses of OA for honey bee colonies. The

observed increase in adult bee mortality in the 20 g OA dose group in this

study suggests that OA doses should be maintained below 20 g per

brood chamber.
KEYWORDS

bee (Apis mellifera), oxalic acid (OA), Varroa destructor (Anderson and Trueman),
vaporized, dose
1 Introduction

Honey bees play a crucial role in global food production due to

their ability to produce honey and provide pollination services to

essential food crops (Klein et al., 2007; Gallai et al., 2009). However,

in recent decades the beekeeping industry has been threatened by

unsustainable colony loss (Ellis et al., 2010; Pettis and Delaplane,

2010; Potts et al., 2010; Becher et al., 2013).

Pests, diseases, loss of nectar and pollen diversity due to

agriculture intensification, climate change, and unsustainable

beekeeping practices, among others, contribute to this multifactorial

problem (Insolia et al., 2022). However, the ectoparasite Varroa

destructor mite (Anderson and Trueman) (Parasitiformes:

Varroidae) is widely regarded as the primary cause of global colony

loss (Genersch et al; Brodschneider et al., 2010; Chauzat et al., 2010;

Currie et al., 2010; Dahle, 2010; Guzmán-Novoa et al., 2010).

Varroa mites feeds on the hemolymph of larvae and the fat body of

adult bees (Ramsey et al., 2019; Han et al., 2024), resulting in numerous

negative effects on individual bees including weight loss (Rosenkranz

et al., 2010), reduced lifespan and increased winter colony mortality

(Amdam et al., 2004), reduced learning ability (Kralj and Fuchs, 2006),

malformations of wings and abdomen (Garedew et al., 2004), immune

system depression (Yang and Cox-Foster, 2005), and reduced

resistance to pesticides (Wahl and Ulm, 1983; Blanken et al., 2015).

Additionally, varroa is a vector for viruses among adult bees and brood

(Shen et al., 2005b; Shen et al., 2005a). Overall, varroa infestation

weakens colonies and make them susceptible to other stressors,

ultimately resulting in hive collapse within a two- to three-year

period if left untreated (Rosenkranz et al., 2010).

To reduce varroa mite populations, beekeepers rely on highly

efficient, synthetic acaricides. Unfortunately, varroa has quickly

developed resistance to most of these acaricides (Pettis, 2004;

Sammataro et al., 2005; Maggi et al., 2009; Currie et al., 2010;

Rodriguez-Dehaibes et al., 2011; Kamler et al., 2016; Rinkevich,

2020; Morfin et al., 2022) and today the number of highly effective

chemical options for varroa control is scarce. In this challenging

scenario, the use of organic compounds has gained popularity as an

alternative option.

Oxalic acid (OA), an organic acid, has been used for decades to

control varroa mites, with a reported efficacy of approximately 90%
02
(Nanetti et al., 2006; Rademacher and Harz, 2006; Maggi et al., 2016).

Themost used applicationmethods are: (1) dissolving OA crystals in a

sugar and water solution and trickling the solution between the frames

(Rademacher and Harz, 2006; Al Toufailia et al., 2015); (2) fumigating

the hives with vaporized OA (Rademacher and Harz, 2006; Al

Toufailia et al., 2015; Jack et al., 2020; Jack et al., 2021; Berry et al.,

2022); and (3) inserting slow-release OA-glycerin strips into the brood

chamber (Maggi et al., 2016),which is currently under regulatory

review for approval for use in Canadian beekeeping. In Canada, the

most widespread applicationmethod is OA vaporization (Claing et al.,

2023), in which crystals of oxalic acid dihydrate are heated above 100°

C using a specialized application device.

Although OA is not able to kill reproductive varroa mites inside

brood cells, it is effective against mites in their dispersal phase

(Rosenkranz et al., 2010). Therefore, to achieve high acaricidal

efficacy using vaporization, beekeepers repeat OA applications for

four weeks to span the length of an entire, 21-day brood cycle to

ensure exposure of mites emerging from parasitized brood cells.

The precise mechanism of action by which OA exerts its acaricidal

effect on varroa mites remains unclear. Fortunately, to date, there

have been no reports of the development of OA resistance in varroa,

with varroa mite populations retaining sensitivity to OA even after

eight years of continuous exposure (Maggi et al., 2017).

The label dose of vaporized OA is 1 g per brood chamber for

standard Langstroth hives with ten frames (Pest Management

Regulatory Agency, 2019); however, recent studies have shown

that higher doses are needed to achieve effective varroa control

(Al Toufailia et al., 2015; Jack et al., 2021). For example, Jack et al.

(Jack et al., 2020) demonstrated that a dose of 4 g of vaporized OA

once a week for three weeks significantly reduced varroa infestation

and improved overall colony health compared to colonies treated

with the recommended 1 g dose.

Most of the studies on OA focus on its acaricidal efficacy, while

information on its safety for honey bees is inconclusive, and often

based on laboratory studies of adult worker bees. Aliano et al.

(Aliano et al., 2006) demonstrated that, at recommended doses,

oxalic acid has relatively low acute toxicity to honey bees based on

laboratory contact toxicity assays. Other studies have concluded

that the vaporization of oxalic acid is well-tolerated by bees and

does not affect their life expectancy (Rademacher and Harz, 2006;
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Coffey and Breen, 2016; Al Toufailia et al., 2018). However, some

authors have reported adverse effects of spray or trickle application

of 3% OA in sucrose solution, including injury to larval to digestive

organs (Martı ́n-Hernández et al., 2007), decreased brood

production (Higes et al., 1999; Hatjina and Haristos, 2005), and

significant reduction in worker activity, nursing behavior and

longevity using the trickling method (Schneider et al., 2012).

Moreover, the effect of OA on queen health has not been studied

in depth. Previous studies have found that exposure to synthetic

acaricides can have a deleterious effect on queens, resulting in

abnormalities in egg-laying, reduced body size, elevated mortality,

and an increased propensity for rejection by colonies (Haarmann

et al., 2002; Collins et al., 2004). As well, prolonged exposure to

pyrethroids, organophosphates, neonicotinoids and fungicides, have

been shown to have adverse effects on the reproductive organs of

queens, which may ultimately impair their capacity to produce viable

offspring (Johnson et al., 2010), for example, Williams et al. (2015)

demonstrated that neonicotinoid exposure during development can

significantly impact queen reproductive anatomy and sperm quality.

Accordingly, the effects of chronic OA exposure on queen quality

merits further investigation.

In Canada, the trend toward increased use of vaporized oxalic for

varroa control (Claing et al., 2023) has been characterized by a focus on

application speed, with beekeepers seeking to treat hives quickly and

efficiently. However, the time saved in OA vaporization using novel

application devices is often at the expense of accurate dosing, resulting

in the adoption of doses higher than recommended by the label. These

dosing discrepancies could have negative consequences for bee health

and affect the overall productivity of the colonies. Therefore, in the
Frontiers in Bee Science 03
present study, we evaluated the toxicity of 5, 10, and 20 times the label

dose of vaporized oxalic acid on honey bee workers and queens in

nucleus colonies.

Specifically, we examined the short-term effects of OA vaporization

on adult bee mortality, brood production, and population size. Next,

we quantified the residual effects of OA application on both workers

and queens. Regarding OA-exposed workers, we investigated their

ability to rear new queens and have them successfully mated. As for

OA-exposed queens, we transferred them to new nucleus colonies to

evaluate their acceptance, performance (brood production, colony

population), and sperm quantity and quality. We hypothesized that

higher-than-label doses of vaporized oxalic acid would have negative,

dose-responsive effects on colony development, worker bee health and

performance, and queen quality (Figure 1).
2 Materials and methods

2.1 Study design

In stage 1 (Figure 2) of this study, 32 honey bee nucleus colonies,

composed of one brood chamber each, were established in the

research apiary at the University of Saskatchewan (Saskatoon,

Saskatchewan, 52.125207, −106.613468) in June 2023. The colonies

were equalized in strength as single, ten-frame Langstroth hives, and

alcohol washes were performed to investigate the initial varroa

infestation. Each colony contained a paint-marked queen which

was either a newly-mated queen from Hawaii (21 colonies) or a

one-year-old queen raised locally in Saskatchewan (11 colonies).
FIGURE 1

Hypothesized relationship between oxalic acid dose and effects on treated honey bee workers and queens.
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Colonies were randomly assigned to one of four treatment groups,

with each group consisting of eight colonies. Randomization and

assignment of colonies to treatment groups was performed by

assigning each colony a random number and ordering the colonies

in descending order according to the assigned number, and then

grouping the ordered colonies into four, eight-colony groups which

were randomly assigned a treatment. Each group received 0, 5, 10, or

20 g of vaporized OA per colony per week, beginning on July 13th,

2023. The colonies were exposed once per week over a 7-day interval

for four consecutive weeks, resulting in a total of 0, 20, 40 and 80 g of

OA applied to each colony of their respective group. Brood and adult

bee population was assessed in all colonies one week before the first

OA application and one week after the last OA application. Adult bee

mortality was assessed in all colonies prior to study initiation and one

to three times per week after each OA application. After completing

the four OA applications (August 3rd), the queens were removed

from each hive and the study continued as follows (Figure 2):
Fron
• Stage 2a: The OA-treated hives were left without a queen to

assess the ability of the OA-treated adult worker bees to

generate new replacement queen cells and evaluate the

successful on mating of those new queen over a 60-day

period (August 10th to October 10th).

• Stage 2b: The OA-treated queens were introduced into new,

equalized nucleus colonies located in a new yard

(52.042168, −106.505027) in August 2023. First, we

evaluated queen acceptance four days after their

successful release. Second, the brood production and adult

bee population was evaluated 40 days after queen release
tiers in Bee Science 04
(August 16th to September 26th). During the last week of

September 2023, queens were sacrificed and evaluated for

sperm total count and viability.

Although the participants were not blinded during OA

application, blinding was implemented during brood cell

count, colony population estimation, and queen sperm analysis.
2.2 Oxalic acid application

OA dihydrate (1 g tablets; Bee Health Pharma, St Albert, AB,

Canada) was administered using the ProVap 110® vaporizer (OxaVap

LLC, Manning, SC, USA). To facilitate gas circulation within the hive,

bottoms and lids were constructed with an internal elevation on the

inner edges of ¾ inch. This design prevented direct contact between the

modified bottoms and lids and the frames, allowing for more efficient

circulation of both bees and vapor. While the tops were completely

closed and left in place during the entire application period, the

bottoms had a ¼-inch hole to introduce the vaporizer and were

replaced by bottoms with an open, unobstructed entrance after each

application. Operators wore personal protective equipment, including a

full-face respirator with organic gas filters. To maximize OA exposure

of the bee population, vaporization was conducted in the morning at

ambient temperatures below 15°C when bees were not flying. During

each application, the vaporizer was heated while the vaporizer tank was

loaded with the number of 1 OA g tablets corresponding to each group.

The maximum capacity of vaporizer tank was 5 g. Once the vaporizer

reached 210–215°C, it was inserted into the colony, and inverted to
FIGURE 2

Two-stage experimental design used to investigate the effects of OA vaporization on honey bee colonies.
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allow contact between the tablets and the heating element. The

vaporizer was left in the colony for 1–3 minutes until all of the OA

was vaporized and there was no visual evidence of vapor being emitted.

The procedure was repeated two and three times for the 10 g and 20 g

groups, respectively. Colonies were sealed for 10 minutes after

treatment to promote gas retention. During the initial OA

application, OA vapor was observed to escape from some colonies

during treatment. As a result, prior to each subsequent application, the

lids and any cracks in the colonies were sealed with duct tape. The same

procedure was performed for the control colonies, without addition of

OA tablets to the vaporizer.
2.3 Adult bee mortality

Bee mortality was assessed by counting dead bees collected in a

1.5 m × 0.5 m wooden box placed in front of the entrance of each hive

(Gary, 1960; Illies et al., 2002). The bottom of the box was constructed

with 1/8-inch mesh wire cloth to retain the dead bees, and top was

covered with 1-inch wire mesh to allow live bees to fly off and prevent

scavengers from removing dead bees. Boxes were placed 24-hours

prior to the initiation of the study and remained in position for the

duration of the four-week treatment period. After each adult bee

mortality assessment, boxes were thoroughly cleaned to remove all

bees and debris, and the number of dead bees in the box were counted

24 or 48 hours later by two observers (E.T. and Y.C.), who rotated

among them the colonies evaluated during each visit to avoid bias.

Between one and three adult bee mortality assessments were

conducted per week, at least 24 hours following each OA treatment,

resulting in a total of 12 counts throughout the experiment.
2.4 Brood production

Number of brood cells was assessed one week before the first OA

application and one week after the last OA application. During each

assessment, digital images of both sides of the brood frames in each

colony were taken using a 16.2-megapixel Nikon D7000 digital

camera (Minato, Tokyo, Japan). To ensure that all photos had the

same lighting conditions, a photo box made of white corrugated

plastic was used to hold the frames and protect them from ambient

light. The camera was mounted on a tripod with an 18–105 mm lens

together with a Nikon SU-800 wireless speedlight commander, and

Nikon SB-R200 wireless remote speedlights were placed inside the

box to illuminate the frame. Bees on each frame were shaken inside

the hive before taking photos. Total brood area was calculated from

the photos using the HoneyBee Complete software (version 4.2, WSC

Scientific GmbH, Heidelberg, Germany) (Wang et al., 2020). The

auto-recognition function was used to determine the capped brood

area, while the open brood area was calculated based on manual

delimitation of open brood, followed by automatic determination of

covered area. In images where cells with open or closed brood were

irregularly arranged and mixed with other cell types (e.g. pollen,

honey), the brood area was calculated by manually selecting each cell
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with open or closed brood. Finally, capped, and open brood areas

were summed to calculate the total brood area in each frame and

colony. All images were subjected to blinded analyses.
2.5 Population size

Adult bee population size was assessed one week before the first

OA application and one week after the last OA application.

Assessments were performed in the morning when ambient

temperatures were below 15°C to ensure bees were not flying.

During each assessment, digital photos were taken using a 16.2-

megapixel Nikon D7000 camera. The number of inter-frame spaces

occupied by adult bees, or cluster size (Nasr et al., 1990), in each

colony was determined by visual analysis of the digital photos: each

inter-frame space was divided into 10 subsections and the number

of subsections covered by bees was counted, with a maximum value

of 10 representing one inter-frame space completely covered by

bees. All images were subjected to blinded analyses.
2.6 Introduction of OA-treated queens into
new nucleus colonies

One week after completing the four applications of OA, during

August, 2023, the OA-treated queens were found in each colony,

placed in queen cages with candy and incubated inside each hive for

24 hours. Seven, fully developed, OA-untreated colonies were used

to create new nucleus colonies to introduce of the OA-treated

queens. A randomized block design was used, with each of these

strong hives representing a block which was used to form four, new

nucleuses, each to receive one OA-treated queens from each of the

four experimental doses of OA. One kilogram of adult bees, two

frames of closed brood, two frames of honey, four frames of

foundation, and a two-gallon capacity frame feeder was added to

each nucleus. Nucleuses were established 12 hours prior to

introduction of the OA-exposed queens and left closed to prevent

drifting before and after transportation to the new yard, that was

more than 5 km away from the first one. In the new apiary,

nucleuses were randomly distributed, opened, and the cages

containing the OA-exposed queens were inserted within a queen

cage sealed with candy. After two days, we checked if the queens

were released, and if not, we made a hole in the candy to encourage

queen release. Nucleuses were observed for 40 days, from August

10th to September 20th, 2023, including weekly visits to provide ad

libitum fall feeding of 2:1 (w:v) sucrose syrup.
2.7 Evaluation of queen cells in
OA-treated colonies

Ten days after queens’ removal, each OA-treated, queenless

colony was evaluated for the ability of adult bees to produce new

queens. The number of queen cells produced by each colony was
frontiersin.org
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counted frame by frame by two pairs of observers (pair 1: Y.C. and

E.T; pair 2: O.O., M.B.).
2.8 Performance of OA- treated queens in
nucleus colonies

After introducing the OA-treated queens into new nucleus

colonies, we evaluated their performance using three variables.

The first was queen acceptance, determined by the presence or

absence of the OA-treated queen four days after successful release

of the queen from her cage into the colony. The second and

third variables were brood production and population size,

respectively evaluated 40 days (September 20th, 2023) after that

queen acceptance was determined, using the same protocols

described in 5.4 and 5.5 and including photo reports of both the

top and bottom of each brood chamber to assess population

(cluster) size (Nasr et al., 1990).
2.9 Sperm analysis

In late September- early October, 2023, the OA-exposed queens,

as well as the newly-mated queens raised in OA-treated colonies, were

sacrificed for sperm analysis. Queens were collected and examined in

cohorts of 4 to 8 queens per day, representing an equal proportion of

OA treatment doses. OA-treated queens were collected 40–45 days

after release into new nucleus colonies, while the newly-mated queens

raised in OA-treated colonies were collected 60–65 days after the

colonies were left queenless. After humane euthanasia by decapitation,

the sperm was collected from each queen by dissection of the

spermatheca (Cobey et al., 2013) and the spermatheca content was

mixed with 100 µl of HNB sperm diluent (0.24 g HEPES, 0.88 g NaCl

and 1 g BSA diluted in 100 mL of deionized water (Cobey et al., 2013;

Fisher and Rangel, 2018)) to increase sperm longevity (original

sample). To evaluate sperm viability, the original sample was diluted

1:10 in HNB diluent and mixed with SYBR 14 and propidium iodide

(Live/Dead Viability Kit, Life Technologies) to highlight live and dead

spermatozoa, respectively. Each sample was evaluated using a

fluorescence microscope (Olympus BX51) by one blinded observer

(E.T.) who counted the number of live and dead spermatozoa in a

minimum sample of 200 spermatozoa observed in a minimum of 10

fields at 200× magnification. If more than 200 spermatozoa were

counted in less than 10, 200× fields, the count was continued until a

minimum of 10 fields were examined (Cobey et al., 2013). To

determine the total sperm count, the original sample was diluted

1:20 to 1:60 in HNB diluent to obtain individualized spermatozoa for

counting. Spermatozoa were counted using a light microscope and a

Neubauer hemocytometer according to standard procedures (Cobey

et al., 2013).
2.10 Statistical analysis

All analyses were performed using SPSS 25 (SPSS Inc, IBM). All

tests were 2-tailed with a set at 0.05. Figures were generated
Frontiers in Bee Science 06
utilizing GraphPad Prism (© 2024 GraphPad Software, version

8.2.1, Boston, US).
2.10.1 Short-term colony response to
OA application
• Adult bee mortality: To determine the effect of the OA dose

(0, 5, 10 and 20 g) on the number of dead bees, we

performed one-way ANOVA test followed by pairwise

post-hoc comparisons using a Tukey’s test with an HSD

correction for Type 1 error. All four samples were normally

distributed (Shapiro Wilk Tests: 0.86 ≤W ≤ 0.97; 0.21 ≤ P ≤

0.63), had equal variances (Levene’s Test, F3,24 = 0.65,

P = 0.58) and were independent.

• Brood production: To examine the effect of OA dose (0, 5,

10 and 20 g – fixed factor), and time (Pre- vs post-OA

application – repeated measures) on the brood production

(brood cells), we performed a two-way repeated measures

ANOVA (Model: Brood cells = Dose + Time + Dose × Time

+ e). Nine out of ten samples were normally distributed

(Kolmogorov-Smirnov Test, 0.13 ≤ KS ≤ 0.29; 0.103 ≤ P ≤

0.2), all had equal variances (Levene’s Test, F3,24 = 1.21 for

Pre, F3,24 = 0.21 for Post; both P > 0.32) and

were independent.

• Population size: To analyse the cluster size data, we first

converted the raw values into proportions relative to the

maximum possible value (11 interframes per colony). This

conversion was followed by an arcsine square root

transformation. To examine the effect of OA dose (fixed

factor), and time (Pre vs Post OA application – fixed factor,

repeated measures) on the population size (interframe

spaces covered by bees), we performed a two-way

repeated measures ANOVA (Model: Interframe covered

by bees = Dose + Time + Dose × Time + e). Nine out of ten
samples were normally distributed (Kolmogorov-Smirnova

Test, 0.11 ≤ KS ≤ 0.21; 0.009 ≤ P ≤ 0.2), and all groups were

independent. While Pre-OA application groups had equal

variances (Levene’s Test, F3,24 = 0.99, P = 0.96), the post

application group did not.
2.10.2 Long-term response of worker bees to
OA application
• Queen cell production: to determine if the mean number of

queen cells produced after queen removal was affected by

the OA dose (0, 5, 10, 20 g), we performed a one-way

ANOVA test. The four groups were normally distributed

(Shapiro Wilk Tests: 0.87 ≤ W ≤ 0.94, 0.21 ≤ P ≤ 0.63), had

equal variances (Levene’s Test, F3,24 = 0.27, P = 0.84) and

were independent.

• Sperm quality of newly-mated queens: To determine effect of

OA dose on sperm viability and total sperm count, we

performed a one-way ANOVA test. For the sperm viability

data, we performed an arcsine square root transformation for
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Fron
percentage data, prior to the analysis, and all groups were

normally distributed (Kolmogorov-Smirnov Test: 0.25 ≤ KS ≤

0.31, 0.07 ≤ P ≤ 0.20), had equal variances (Levene’s Test,

F3,20 = 0.83, P = 0.49) and were independent. For the total

sperm count data, the four groups were normally distributed

(Shapiro Wilk Tests: 0.79 ≤ W ≤ 0.90, 0.056 ≤ P ≤ 0.84), had

equal variances (Levene’s Test, F3,20 = 1.17, P = 0.34) and

were independent.
2.10.3 Long term response of queens to
OA application
• Brood production: To examine the effect of OA dose on the

number of brood cells, we used a one-way Welch’s

ANOVA. There was no significant effect of block (hives

used to create nucleus colonies) on brood production

(Randomized block ANOVA: F6,7 = 0.376, P = 0.873), so

it was not included in the analysis. The groups were

normally distributed (Shapiro Wilk Tests: 0.86 ≤ W

≤ 0.96, 0.21 ≤ P ≤ 0.80), had unequal variances (Levene’s

Test, F3,14 = 10.9, P < 0.001), and were independent.

• Population size: To test the effect of OA dose on the number

of interframes covered by bees, we used a one-way ANOVA.

There was no significant effect of block on the population

(cluster) size (Randomized block ANOVA: F6,8 = 0.943, P =

0.515), so it was not included in the analysis. The groups were

normally distributed (Shapiro Wilk Tests: 0.93 ≤ W ≤ 0.94,

0.65 ≤ P ≤ 0.69), had equal variances (Levene’s Test, F3,14 =

0.05, P < 0.98) and were independent.

• Sperm analysis of OA-exposed queens:
tiers in
a. For the sperm viability analysis, we performed an

arcsine square root transformation of the percent

viability data, followed by a Kruskal-Wallis test to

determine the effect of OA dose, as data was not

normally distributed (Shapiro Wilk Tests: 0.76 ≤ W

≤ 0.907, 0.04 ≤ P ≤ 0.45), and independent.

b. For total sperm count analysis, we performed a one-

way ANOVA to determine the effect of OA dose. The

four groups were normally distributed (Shapiro Wilk

Tests: 0.87 ≤ W ≤ 0.99, 0.29 ≤ P ≤ 0.99), had equal

variances (Levene’s Test, F3,14 = 1.49, P = 0.25) and

were independent.
3 Results

3.1 Short-term colony response to
OA application

Colonies were equalized prior the initiation of the treatment,

each one consisting of approximately the same number of frames of
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adult bees (6.6 x̂ ± 0.6 SD), brood cells (11191 x̂ ± 2160 SD), honey

and pollen (5 frames) and foundation frames (2 frames). Regarding

the initial varroa infestation, all colonies were below treatment

threshold, with just two out of 32 with one varroa per 300 bees, and

the rest with 0. Four out of 32 colonies that started the trial lost their

queens during the 30-day application period and were therefore

excluded from the analysis. The final number of colonies in each

group was 7, 6, 8 and 7 (0, 5, 10 and 20 g OA groups, respectively).
3.1.1 Adult bee mortality
Colonies treated four times with 20g of OA had a significantly

higher total number of dead adult bees during the four-week period

than the control group (one-way ANOVA, F 3,24 = 4.34, P < 0.01).

Colonies treated with 20 g per week had on average 148 more dead

adult bees over the four-week treatment period than the control

colonies (Figure 3; Supplementary Table S1).

3.1.2 Brood production
We did not find a statistically significant interaction between

OA dose and time of measurement (two-way repeated measures

ANOVA, F3,24 = 0.51, P = 0.67). Neither dose (F1,24 = 4.02, P =

0.056), nor pre- vs. post-OA treatment time of measurement (F3,24
= 1.58, P = 0.22) had a significant effect on the amount of brood

cells compared with the control group (Figure 4; Supplementary

Table S1). A non-significant decrease in the number of brood cells

was observed in all the groups after the treatment, which was the

greatest in the 20 g group (23% decrease) and smallest in the control

group (2% decrease).
FIGURE 3

Effects of OA on adult bee mortality: Mean (± SE) total number of
dead adult worker bees per colony after 12 adult bee mortality
assessments performed over 30 days. Each dot represents a colony
(total n=28). Different letters indicate significant differences between
treatment groups at a=0.05.
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3.1.3 Population size
No statistically significant interaction was found between OA

dose and time (two-way repeated measures ANOVA, F3,24 = 1.36, P =

0.27). For all groups, the number of inter-frame spaces occupied by

adult bees (cluster size) increased significantly over time, with and

addition of 2.8 (0 g), 1.6 (5 g), 2.2 (10 g), and 1.2 (20 g) interframe

spaces (F3,24 = 47.73, P < 0.001; Figure 5; Supplementary Table S1).

OA dose did not significantly affect cluster size (F3,24 = 0.72, P = 0.54).
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3.2 Long-term colony response to
OA application

3.2.1 Queen cell production
OA treatment did not significantly affect the number of queen

cells produced by the worker bees after queen removal (one-way

ANOVA, F3,24 = 0.23, P < 0.87; Figure 6). On average, each colony

produced 13 ± 1 (x̂ ± SE) queen cells. Two colonies, corresponding
FIGURE 5

Effects of OA on bee population: Mean (± SE) of the inter-frame spaces occupied by bees, one week before and one week after a total of four
applications of 0, 5, 10 or 20 g OA. Each point represents one colony (total n = 28).
FIGURE 4

Effects of OA on brood: Mean (± SE) of the number of brood cells present one week before and one week after a total of four OA applications of 0,
5, 10 or 20 g of OA. Each point represents one colony (total n = 28).
frontiersin.org

https://doi.org/10.3389/frbee.2024.1442030
https://www.frontiersin.org/journals/bee-science
https://www.frontiersin.org


Tellarini Prieto et al. 10.3389/frbee.2024.1442030
to the 10 and 20 g groups, failed to produced queen cells, while the

colony that produced the most queen cells (29 cells), was in the

control group.
3.2.2 Sperm analysis of newly-mated queens
raised in control and OA-treated colonies

After queen removal in August, 2023, 24 out of 28 of the

colonies produced mated queens. Specifically, in each OA treatment

group, 6 of 7 (0 g), 5 of 6 (5 g), 8 of 8 (10 g), and 5 of 7 (20 g) queens

were mated. Regardless of the OA dose to which the colonies were
Frontiers in Bee Science 09
exposed, the newly-mated queens raised by these colonies did not

significantly differ in their sperm viability (one-way ANOVA, F3,20
= 0.208, P = 0.89; Figure 7A) nor total sperm count (one-way

ANOVA, F3,20 = 0.64, P = 0.59; Figure 7B). The queens had an

average sperm viability of 61% ± 5% (x̂ ± SE) and a total sperm

count of 3.9 × 105 ± 2.7 × 104 (x̂ ± SE).
3.3 Long-term effect of OA exposure on
queen quality

3.3.1 Queen performance: acceptance, brood
production, and cluster size

Overall, queen acceptance was 86% (24/28 queens accepted)

with loss of one queen in each OA-dose group (Table 1). After 40

days of nucleus colony development, 64% of the queens introduced

survived (18/28 queens), with three queens lost in each of the 10 g

and 20 g OA groups and two queens lost in each of the control and

5 g OA groups (Table 1).

Regardless of the dose of OA to which the queens were exposed,

the nucleuses developed similarly during the 40-day period (August

10 to September 20, 2023), with no significant effect of OA dose on

the amount of brood cells produced (one-way Welch’s ANOVA,

F3,7 = 1.438; P = 0.31; Figure 8A) nor the cluster size (one-way

ANOVA, F3,14 = 0.54; P = 0.44; Figure 8B). At experiment

termination, the colonies had, on average, 4,236 ± 275 (x̂ ± SE)

brood cells and 3.6 ± 0.2 (x̂ ± SE) inter-frame spaces covered with

adult bees.

3.3.2 Sperm analysis of OA-exposed queens
There was no significant effect of OA dose on sperm viability

(Kruskal Wallis H3 = 3.89, P = 0.27; Figure 9A) nor total sperm count

(one-way ANOVA, F3,14 = 0.36; P = 0.77; Figure 9B) of exposed

queens which had a median sperm viability of 76% ± 12% (median ±

IQR) and a mean total sperm count of 2.2 × 106 ± 2.9 × 105 (x̂ ± SE).
A B

FIGURE 7

(A) Effects of OA on sperm quality: Mean (± SE) percent viable sperm and (B) mean (± SE) total sperm count of newly-mated queens raised in
control and OA-exposed colonies (total n= 20). Each dot represents a queen.
FIGURE 6

Effects of OA on queen cell production after removal of queens:
Mean (± SE) number of queen cells produced in colonies exposed
to four applications of oxalic acid, counted 10 days after queen
removal. Each dot represents a colony (total n = 28).
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4 Discussion

We found that repeated application of vaporized OA, at up to

20 times the label dose, had no significant short-term nor long-
Frontiers in Bee Science 10
term, negative effects on colony or queen health, with the exception

of a short-term increase in adult bee mortality in the 20 g OA-

treated group.

Although the average number of dead bees per hive in the 20 g OA

group (366 bees) was approximately twice that of the control group (166

bees), this represents only 1.5–2% of the worker population of a colony

with ~15,000–20,000 bees (Gruszka, 1998). Moreover, all colonies were

observed to significantly increase their cluster size over the four-week

treatment period, indicating that the increased adult bee mortality in the

20 g group did not significantly impact overall colony population growth.

Is worthwhile to mention that the timing of the study coincides with the

main nectar flow of our geographic region, hence this colony growth is

not unexpected (Gruszka, 1998; Wood et al., 2019).

The label dose of OA, 1 g per brood chamber (Pest Management

Regulatory Agency, 2019), is recommended for a standard Langstroth

hive with 9–10 frames of bees. Considering that the initial strength of
A B

FIGURE 8

(A) Mean (± SE) of the number of brood cells and (B) mean (± SE) inter-frame spaces occupied by bees 40 days after introduction of OA-exposed
queens (total n= 18). Each dot represents a nucleus colony.
TABLE 1 The number of surviving queens from each OA-dose group at
nucleus establishment (Day 0), at evaluation of queen acceptance (Day
4), and at experiment termination (Day 40).

OA dose (g) Day 0 Day 4 Day 40

0 7 6 5

5 6 5 4

10 8 7 5

20 7 6 4

TOTAL 28 24 18
A B

FIGURE 9

(A) Median ± IQR percent viable sperm and (B) mean (± SE) total sperm count of OA-exposed queens (total n= 18). Each dot represents a queen.
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the nucleus colonies in this study was 6.6 ± 0.6 frames of bees, the

doses of OA tested in this study were in fact, 0, 7, 14 and 29 times the

label dose when adjusted for the smaller initial colony size. However,

by the conclusion of the study, the colonies had reached an average

size of 8.7 ± 0.3 frames of bees, in accordance with the colony strength

recommended by the label. Accordingly, for simplicity, we elected to

refer to the OA doses as 5, 10, and 20 times the label dose in this study.

Similar to previous studies on vaporized OA (Al Toufailia et al.,

2015; Jack et al., 2020; Jack et al., 2021; Berry et al., 2022), we found no

significant effect of OA application on brood production or cluster size,

although we did not have adequate (>80%) statistical power to detect

an effect with the sample size (n = 6–10 at the end of the application

period) of our study. In contrast, other studies demonstrated negative

effects of OA application on brood production when OA was sprayed

or trickled in ~3%OA-water/sucrose solutions on colonies (Higes et al.,

1999; Hatjina and Haristos, 2005).

Interestingly, while population size increased in all groups over

the four-week OA application period, there was a non-significant

decrease in the number of brood cells in all groups. One explanation

for this discrepancy could be that when the nucleuses were

equalized prior to the start of the study, the ratio of adult bees to

brood was not sufficient to sustain adequate brood care. Several

factors, beyond OA exposure, can determine the variability in the

brood production, for instance well-mated and healthy queens are

better at sustaining high brood production (Pettis et al., 2016),

weather and season (Mishra et al), and nutritional resources in the

surrounding environment (Brodschneider and Crailsheim, 2010; Di

Pasquale et al., 2013). Although not significantly different from

control, the 20 g group demonstrated the greatest decline in brood

production (23% decrease or approximately one side of a

Langstroth brood frame; Delaplane et al., 2013), while the control

group demonstrated only a 2% decrease in brood. Accordingly, this

may suggest a potential negative effect of vaporized OA at 20 times

the label dose on brood production, although this study would need

to be repeated with a larger sample size to investigate further.

We found no evidence that exposure of worker bees to OA

impacted their ability to rear emergency queen cells or produce a

successfully-mated queen. The mean number of queen cells per

colony in our study, 13 ± 1(SE), was similar to a previous study

evaluating queen cell production (Taha et al., 2024) which found a

mean of 15 ± 1 (SE) replacement queen cells when colonies were left

queenless. Considering this similarity in number of queen cells, we

hypothesize that the OA treatment in this study was not sufficiently

stressful to the colonies to impact the nursing behavior or queen

rearing ability of the worker bees. In contrast, in other studies,

colony stress from pesticide exposure, has been shown to negatively

impact worker behavior, including nursing behavior, by inhibiting

the development of the hypopharyngeal glands (Hatjina et al., 2013)

which are crucial for brood care, or by reducing their production of

royal jelly proteins (Zaluski et al., 2020).

Additionally, it is noteworthy that in our study only two of the

32 study colonies did not produce queen cells, including one from

the 10 g OA group and one from the 20 g OA group. While there

was no effect of OA treatment on queen mating success, all of the
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newly-mated queens had a low average sperm viability of 61% ± 5%

(x̂ ± SE) and a total sperm count of 390,000 ± 27,159 (x̂ ± SE) likely

due to low drone availability, density and quality during autumn

(Delaney et al., 2011). According to Woyke (1962), a fully-mated

queen typically stores approximately 5–7 million sperm, with

poorly mated queens carrying fewer than 3 million sperm, similar

to this study. Despite the poor mating of the study queens, which

was likely due to season factors, we did not observe a short-term

impact of OA exposure on colony reproductive function,

supporting the safety of the OA doses tested.

Moreover, after introduction of control and OA-exposed

queens into nucleus colonies, we did not observe any long-term

negative impact of OA exposure on queen acceptance, performance,

nor quality. Importantly, at the beginning of the study, the queens

were not standardized in terms of age, genetic lineage, nor supplier,

which likely limited the ability for us to detect a treatment effect.

The brood and population development, from August 10th to

September 20th, 2023, was similar among the nucleus colonies

with OA-treated and control queens; however, the colony

evaluation period occurred late in the beekeeping season, when

queens are reducing their egg-laying activity due to cold

temperatures a lack of available forage. Accordingly, this timing

may have masked potential negative effects of OA on brood

development, as colonies are already reducing brood production

in preparation for winter. Of the 14 queens that survived the entire

study period, there was no significant difference in their sperm

viability nor total sperm count, suggesting that the temperature

(McAfee et al., 2020) or other toxicologic stress (Williams et al.,

2015) from OA application did not impact queen fertility in

this study.

The findings of this study regarding the safety of vaporized OA

for honey bee colonies require further investigation due to several

limitations. Firstly, the mid-season application (mid-July–early-

August) deviates from standard beekeeping practices in our area

where OA is typically applied in spring and fall. This timing

mismatch could potentially have resulted in underestimation of

potential negative effects on brood and population development or

queen health.

Secondly, our small sample size (8 colonies per group at study

start, 4–5 queens per group at study end) limited the statistical

power of our study to detect subtle treatment effects. Furthermore,

leakage of OA vapor during application may have compromised

dosing accuracy; however, OA vapor leakage is commonplace in

real-world application scenarios by beekeepers, where complete

sealing of the hive is often impractical and time consuming. Future

OA-safety studies should empirically quantify OA dose received

within the exposed colonies.

Taken together, the results of this study support the safety of

higher-than-label doses of OA for honey bee colonies. The observed

increase in adult beemortality in the 20 g OA dose group in this study

suggests that OA doses should be maintained below 20 g per brood

chamber. Future studies should combine evaluation of OA safety with

investigation of varroacidal efficacy. Standardization of OA dosing for

effective varroa control and protection of colony health is a
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challenging task for the beekeeping community, emphasizing the

need for ongoing research and extension in this area.
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