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A case for microbial therapeutics
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performance of honey bees
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The holobiont theory of evolution explains how individuals are deeply symbiotic

with their gut microbes, such that microbes are adapted to influence host

metabolism, immunity and behaviour, as signalled from the gut to the brain. For

eusocial taxa like the Western honey bee (Apis mellifera), this brain-gut axis may

scale up from the individual to affect entire colonies. Here, we examine how

microbial supplementation of honey bee feeds couldmanipulate the brain-gut axis

to affect hygienic and other social behaviours relevant to beekeeping, such as

foraging, recruitment (dance language) and defence. To illustrate this concept, we

focus on various lactic acid-producing bacteria that can synthesize

neurotransmitters such as octopamine, dopamine, serotonin and g-aminobutyric

acid, which can influence an individual bee’s behavioural cycles and

responsiveness to environmental cues. If the behaviour of a worker bee can be

deliberately manipulated, and this effect multiplied across many workers, microbial

neurotherapeutics could conceivably render colonies more behaviourally

responsive to symptoms of disease, or more motivated to forage or possibly less

aggressive towards beekeepers. Drawing from the scientific literature, we infer

how microbial supplements, such as neurostimulatory or neurosuppressive

probiotics, could be applied or even engineered to co-opt the brain-gut axis to

bolster colony health or improve performance. The mechanistic link between the

gut microbiota and the collective social behaviour of single colonies remains an

understudied aspect of honey bee social biology with relevance to apiculture.
KEYWORDS

probiotics, neurotransmitters, microbiota, brain-gut axis, insect behaviour,
hostmicrobe interactions, eusociality
Introduction

The evolutionary association between multicellular hosts and their unicellular gut

microbes represents a symbiosis that supports the host’s immune, metabolic and digestive

systems (Guerrero et al., 2013; Rosenberg et al., 2010). Dysbiotic shifts in the gut microbiota,

typically characterized by a relative decrease in symbionts and an overgrowth of pathobionts,
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can detrimentally impact the host’s well-being (Carding et al., 2015).

One mechanism that mediates the relationship between host and

microbe is the brain-gut axis, which links the metabolic function of

microbes within the gastrointestinal tract (i.e., the gut) to the central

nervous system (i.e., the brain) and thus to the performance and

behaviour of the organism (Schneider et al., 2024).

Studies on the brain-gut axis have primarily focused on

vertebrates, but it is now established that this mechanism can

influence the health and behaviour of invertebrates, including insects

(Dus et al., 2015; Liberti and Engel, 2020; Cabirol et al., 2023). For

social insects, where behavioural responses are coordinated among

large numbers of individuals, any effects of the brain-gut axis should be

amplified to influence the collective behaviour of entire colonies. This

prospect of ‘social amplification’ presents an opportunity to directly

manipulate the brain-gut axis of some critical subset of individuals

within a colony, with the change-of-behaviour effect then ramifying

throughout a larger group.

In the highly social honey bee Apis mellifera, there is massive

potential for the social amplification of brain-gut axis effects

(Figure 1). In a leading study, Liberti et al. (2022) demonstrated

that workers with experimentally homogenized gut microbiomes

interacted more frequently in a controlled setting, and that specific

metabolites associated with those microbes could statistically

predict the number of interactions. This association between gut

microbe composition and the nature of head-to-head interactions

suggests that the brain-gut axis of honey bees is functional and

potentially mutable as an apicultural tool. However, few studies

have examined how supplementation of colonies with bacteria
Frontiers in Bee Science 02
known to have neurodevelopmental effects might influence

aspects of beekeeping.

One stereotypic behaviour that seems potentially amenable to

microbial therapeutic manipulation is hygienic behaviour − the

systemic tendency to detect and dispose of diseased larvae and

pupae from the colony, particularly as they are likely to cause

infection (Spivak and Gilliam, 2015). Honey bees, like other social

insects, live in densely populated colonies of closely related

individuals, rendering them vulnerable to the spread of contagion.

As such, they have evolved forms of social immunity to combat this

risk (Cremer et al., 2007). The hygienic response to infection,

expressed by nurse-age workers (1-2 weeks old), is likely triggered

by an odour-sensitive threshold (Masterman et al., 2000) that is

mediated, in part, by genetically variable loci (Oxley et al., 2010).

Selecting for hygienic strains is possible (Erez et al., 2022) but in

practice bee breeding can be a slow or ineffective process, requiring

considerable financial considerations and expertise in bee

husbandry. Further, the expression of hygiene varies beyond

genetics as a function of season, food availability and other

environmental factors.

As an effort to complement the bee’s natural tendency to keep their

colonies disease free, many beekeepers (outside of Europe) use

antibiotics, which can be immediately effective against certain

pathogens, but these medicated treatments are tightly regulated due

to concerns about residual accumulation in honey, as well as other off-

target side effects (Lima et al., 2020), including disruption of the natural

bee gut microbiota which, paradoxically, can leave colonies more

vulnerable to subsequent infection (Daisley et al., 2020; Raymann

et al., 2017; Zhang et al., 2022a). Alternative disease management

interventions in beekeeping include essential oils (Hýbl et al., 2021),

RNA interference technologies (Garbian et al., 2012) or variations of

transgenerational immune priming (Dickel et al., 2022). These

techniques are, however, not yet well tested or established. One

remaining approach that complements or even circumvents some of

these remedies involves administering living bacteria to colonies in

support of native bee gut microbes (Motta et al., 2022).

In this mini-review, we explore the potential to co-opt the

brain-gut axis of managed honey bees to modify hygiene and

potentially other environmentally cued social responses that are

relevant to beekeeping. We provide perspective on the deliberate

enrichment of bee guts with bacterial strains to lower the individual

response threshold to disease cues, which is an approach that, with

development and testing, could enhance the colony-wide hygienic

response. Although this approach has not been conclusively tested,

manipulating the brain-gut axis could offer a new strategy for

managing perennial bacterial diseases such as American or

European foulbrood, and potentially any type of pest or pathogen

that is naturally removed by hygiene.
Gut microbiota and the potential for
effects on neurotransmission

The microbiota of the Western honey bee is dominated by

several species of Lactobacillus and Bombilactobacillus, as well as

Gilliamella apicola, Snodgrassella alvi and Bifidobacterium
FIGURE 1

Social amplification from the individual to the colony level. The
brain-gut axis, a bidirectional path of communication between the
gut and brain, may be able to affect social behaviours and
immunocompetency beyond the individual to the colony level in
social-living organisms.
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asteroides, all of which are consistently found in the hindgut of adult

workers (Raymann and Moran, 2018; Motta et al., 2022). Other

commonly detected bacteria found in association with honey bees

include Frischella perrara, Bartonella apis, Bombella apis,

Apilactobacillus kunkeei, and several species of Fructobacillus

(Bonilla-Rosso and Engel, 2018). Within colonies, the microbiota

is quite homogenous and primarily transmitted through social

interactions (Powell et al., 2014), but with some variation in gut

microbe composition between kin (Vernier et al., 2020), castes

(Kapheim et al., 2015; Motta et al., 2022) and geographical areas

(Jones et al., 2018).

The microbiota is thought to affect many systems within the

host. Alberoni et al. (2016) summarize some of these effects, which

include nutrient uptake, the production of fatty acids, amino acids

and other metabolites, and protection of the host from pathogens

and parasites, either by stimulating immune function or by directly

inhibiting pathogen growth. Recent research has exploited this co-

evolved relationship between microbe and host − the holobiont − to

demonstrate that strategic manipulation of the worker gut

microbiome can help bees recover from dysbiosis (Daisley et al.,

2020) and even bolster bee immunity to protect against further gut-

borne disease (Daisley et al., 2019; Raymann and Moran, 2018).

Despite the prospect of microbial therapeutics, the idea of using gut

microbe manipulations as a beekeeping tool has received relatively

little research attention (Chmiel et al., 2021) and this despite the

availability of some reportedly bee-friendly ‘probiotic’ products

(Damico et al., 2023).

As an extension of the holobiont, the microbiota of individuals

could scale-up to affect the collective behaviour of whole social

groups (Sarkar et al., 2020; Jones et al., 2018; Cabirol et al., 2023). As

one example, consider that worker bees have evolved an olfactory-

cued sensory threshold that triggers a hygienic response; once the

scent of disease becomes sufficiently intense, it can elicit a hygienic

response from a proportion of the worker bees, whereby the most

sensitive bees react first (Beshers and Fewell, 2001; Oldroyd and

Thompson, 2006). The stronger the scent, the larger the proportion

of workers that will be triggered and thus respond. What if the

threshold itself could be lowered, such that a greater proportion of

bees are early responders?

At a mechanistic level, the olfactory stimuli are detected by a

worker’s antennae, and neurotransmitters such as octopamine, g-
aminobutyric acid (GABA), serotonin or dopamine relay that signal
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processing (Paoli and Galizia, 2021). Certain gut-borne bacteria can

produce neurotransmitters or stimulate the host’s innate

production of these neurotransmitters via the production of their

precursors (Chen et al., 2021; Cabirol et al., 2023; Kesňerová et al.,

2017; Zhang et al., 2022a; Table 1). Lactic acid-producing bacteria

(LAB), including species within the genera Lactobacillus and

Bifidobacterium, coevolved with bees over millions of years and

are abundant in bee guts (Vásquez et al., 2012). LAB can synthesize

GABA, at least in mammalian hosts, via the glutamic acid

decarboxylase system (Cui et al., 2020). LAB can also modulate

levels of serotonin production by regulating its precursor

tryptophan (Zhang et al., 2022a). Moreover, LAB are associated

with the production of dopamine in vitro (Özoğul et al., 2012) via

the conversion of its precursor (levodopa) from the amino acid l-

tyrosine (Sarkar et al., 2020). In the gut of the roundworm

Caenorhabditis elegans, bacteria may produce octopamine

indirectly by producing its amino acid precursor, tyramine

(O’Donnell et al., 2020).

While a host may obtain some of these neurotransmitters or

their precursors from the environment or from its own diet, it is the

bacterial communities themselves that co-vary strongly with some

of the most important neuroactive metabolites (Cabirol et al., 2023;

Kesňerová et al., 2017). This functional linkage between the bacteria

in the gut and the production of neurotransmitters suggest that LAB

may be harnessed within an apicultural context to increase the

neurotransmission of disease-associated olfactory cues in worker

bees. If a critical number of workers could be rendered more

sensitive, a probiotic supplement that specifically lowered the

response threshold to disease or that affected other threshold-

gated behaviours could be designed for the beekeeping community.
Octopamine and GABA

The biogenic amine octopamine may have a practical link to the

hygienic response of workers. The concentration of octopamine in

the worker brain tends to increase with age, which affects age-based

duties performed by workers within colonies (Schulz et al., 2002).

Spivak et al. (2003) observed differences in the expression of

octopamine in the brains of nurse bees from hygienic and non-

hygienic lines, suggesting that this neurotransmitter is functionally
TABLE 1 Bacterial interactions via the production, degradation or modulation of honey bee neurotransmitters.

Neuro-transmitter Bacterium Mechanism Reference

Octopamine Various gut community members Tyrosine synthesis, precursor to octopamine O’Donnell et al., 2020

GABA Lactobacillus spp.,
Bifidobacterium spp.

Glutamic acid decarboxylase system Cui et al., 2020

Serotonin Lactobacillus spp.
Lactiplantibacillus plantarum

Interference with tryptophan, precursor to serotonin Özoğul et al., 2012,
Zhang et al., 2022a

Dopamine Lactobacillus spp. Synthesized from amino acids in vitro Özoğul et al., 2012

Lactic acid bacteria Synthesize the precursor levodopa, which can pass
through the blood-brain barrier

Sarkar et al., 2020
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associated with sensitivity to cues from diseased brood. Simply

knowing which gut microbes are associated with the highest

concentrations of octopamine or with the most hygienic response,

or both, warrants research.

The amino acid neurotransmitter GABA is taxonomically

widespread and plays a fundamental role in signal processing. For

honey bees, GABAergic neurons are present in all principal olfactory

centres, such as the mushroom bodies and lateral horns

(Sandoz, 2011), as well as other areas of the brain (Bicker, 1999). It

is associated with learning and memory of the worker caste (El

Hassani et al., 2005), as well as locomotion and motor control

(Mustard et al., 2020). Injection with GABA receptor antagonists

can reduce bee mobility and impair their ability to right themselves

after falling (Mustard et al., 2020). Injection with GABA receptor

antagonists can also hinder olfactory neurons and diminish a bee’s

ability to discriminate between different odours (Stopfer et al., 1997).

As hygiene is a motor behaviour that is olfactory-mediated, GABA

may pose an interesting candidate for modulation of hygienic

behaviour of nurse bees. If colonies can be supplemented with

strains that produce GABA, for example, Lactiplantibacillus

plantarum (Cui et al., 2020) or certain Bifidobacterium or

Bombilactobacillus (Cabirol et al., 2023; Kesňerová et al., 2017;

Zhang et al., 2022b), then this effect on hygiene may be

deliberately amplified.
Serotonin and dopamine

Serotonin is a biogenic amine that affects the senses of honey

bees, but here the effect appears to reduce sensitivity to olfactory cues.

Zhang et al. (2022b) found that enriching the native gut microbiota

with Gilliamella apicola and Lactobacillus spp. reduced serotonin

levels in the brains compared to gnotobiotic (i.e., gut-sterilized) bees.

Like serotonin, dopamine can dampen responsiveness to stimuli and

it affects locomotion and motor behaviour in honey bees (Mustard

et al., 2010). Zhang et al. (2022b) demonstrated that dopamine levels

can be decreased by gut microbes. The findings suggest an optimal

dopamine concentration that can affect behaviour, and that the

desired effect may be less, not more, of the neurotransmitter.

Combinatorial enrichment of bee guts with a mix of probiotic

strains that simultaneously increase octopamine and GABA while

decreasing dopamine and serotoninmay therefore be desirable. These

complex manipulations of the bee gut microbiome could come from

competition with the production of other neurotransmitters by the

probiotics used to supplement the colony or by interference with

the production of the precursors to these neurotransmitters

(O’Donnell et al., 2020).
Testing probiotic effects on
hygienic behaviour

Hygiene is a complex behaviour. Nurses share and delegate

hygiene-associated tasks, specializing in areas such as uncapping of

the brood cell or removing diseased offspring (Barrs et al., 2021). Our
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understanding of hygiene has expanded from its original

descriptions around the detection and removal of chalkbrood

(Ascosphaera apis) and foulbrood (Paenobacillus larvae) to include

behavioural responses against other microbial sources of infection

(Valizadeh et al., 2020) or against infestation by ectoparasites (e.g.,

Varroa mite-sensitive hygiene; Mondet et al., 2015).

We predict that administering probiotics aiding in the synthesis

of olfactory-associated neurotransmitters, such as lactic acid-

producing species, will modulate any genetic effects on hygiene

and associated sensitivity to disease cues. This modulation may

lower the hygienic threshold response of nurse bees to, in effect,

render bees more hygienic. Given that LAB can help synthesize key

neurotransmitters or their precursors (Table 1), we propose

supplementing hives with two LAB species: Bifidobacterium

asteroides, a bacterial species native to the bee gut, and

Lactiplantibacillus plantarum, which is a not a species naturally

found in honey bee guts. We suggest exploring the abilities of these

and other candidate species and strains to affect the concentration

of octopamine, GABA, serotonin and dopamine and, possibly,

hygienic behaviour. Ideally, future studies would demonstrate that

the specific bacteria administered can colonize, even transiently, the

guts of treated bees, correlate with concentration of specific

neurotransmitters or their precursors in bee brains, and

ultimately affects the hygienic response. Together, these three test

criteria − gut, brain, behaviour − would help to link treatment to a

change in behaviour via the brain-gut axis.

The most common field assay for measuring hygiene is the

freeze-kill brood (FKB) assay, which involves experimentally killing

a small portion of brood with liquid nitrogen, then counting the

proportion of the moribund brood removed over a set period (usually

24-48 hours). Other popular variants include the pin-killed brood

assay (Leclercq et al., 2018). To investigate changes to the microbiota

following treatment, researchers can employ 16S ribosomal RNA

gene sequencing of the V3-V4 region to evaluate microbial

community structure (as in Daisley et al., 2023) or use other forms

of metagenomic sequencing to capture microbial diversity (Ellegaard

and Engel, 2019). Various options are available to test the impact of

bacterial supplements on the brain, such as high-performance liquid

chromatography (or liquid chromatography-mass spectrometry) to

determine neurotransmitter concentrations, or histochemical

staining to view the distribution of neurotransmitters in the brain.
The brain-gut axis as a mechanism to
modulate social behaviours

In addition to hygiene, the concepts proposed here could be

extended to other honey bee behaviours, namely foraging, recruitment

and defence. Recent work has demonstrated that variations in the gut

microbiota of bees can influence their individual foraging behaviour

(Vernier et al., 2024). As in hygiene, foraging is intricately linked to

olfaction (de Brito Sanchez, 2011; Paoli and Galizia, 2021);

octopamine and GABA both contribute to the foraging process

(Chatterjee et al., 2021; Giray et al., 2007). Octopamine influences

response thresholds to sucrose (Page and Erber, 2002), potentially
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increasing foraging efforts, as well as influencing food preference

during foraging (Giray et al., 2007). GABA receptors are more

abundant in the brains of bees scouting for new food sources, and

GABAergic neuron activity increases when foragers are orienting

themselves to food sources or to the colony (Kiya and Kubo, 2010).

Overall, changes in GABA and its precursor, glutamate, signalling in

the brain appear to modulate scouting behaviour in foragers

(Chatterjee et al., 2021), although there is more to discover from

this connection.

As a distinct but related behaviour to foraging, honey bees recruit

others to food sources using intricate dances, conveying information

on the distance, direction and value of the food (Wenner et al., 1967).

Octopamine and dopamine can help determine how long a bee

follows the dance instructions and the frequency with which a bee

will ultimately be recruited (Linn et al., 2020). Waggle dance activity

can be recorded by using an observation hive (Biesmeijer and Seeley,

2005) or video recording software. Octopamine and GABA are also

thought to influence defensive behaviour within colonies

(Hunt, 2007), suggesting that Bifidobacterium spp. and

Lactobacillus spp. may affect defensive behaviour via the brain-gut

axis. Characteristics of the microbiota may also influence social

recognition used in defence (Vernier et al., 2020).

All core bacterial species found in the honey bee gut can be

cultivated and manipulated in the laboratory (Zheng et al., 2018),

making the honey bee a functional system for studying microbial

effects on health and behaviour. Bees can be raised with germ-free

guts in the lab (Powell et al., 2014), which allows for experimental

colonization with strains of interest. In this mini review, we have

highlighted potential benefits of certain lactic acid bacteria. This

group is relatively well known but similar properties may also be

activated by other environmental microorganisms that are in the

bee sphere or by specific strains of commensal microorganisms in

addition to LAB (Motta et al., 2022; Cabirol et al., 2023).

In addition to laboratory experiments, field experiments can also

be conducted, as proposed here, by applying probiotics directly to

colonies via probiotic-infused pollen patties (Corby-Harris

et al., 2016) or probiotic sprays (Daisley et al., 2023). Further

avenues of investigation could involve freeze-drying beneficial

bacteria, increasing colony-forming unit counts and bacterial

survivorship in different media for application to colonies.
Conclusion

The potential of honey bee probiotics is promising, with

numerous studies exploring the relationship between gut bacteria

and brain neurotransmitters (e.g., Cabirol et al., 2023). Despite this

potential, there is not yet firm evidence that hygienic behaviour can
Frontiers in Bee Science 05
be modified by commensal or even by exogenous bacteria. Studies

are therefore required to test this idea for hygienic and other social

behaviours including foraging, defence and recruitment. These

research initiatives offer promising avenues to improve the health,

survival and productivity of managed honey bees, while advancing

our understanding of the brain-gut axis at both the individual and

colony levels.
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