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Cardiometabolic diseases (CMDs), particularly cardiovascular disease (CVD), type

2 diabetes mellitus (T2DM), and chronic kidney disease (CKD), emerged as

primary contributors to global morbidity and mortality. In addition to traditional

factors, recent studies demonstrated that blood microbiomes may also promote

the development or progression of these CMDs. Traditionally, blood was

considered sterile; however, the notion of blood as a sterile environment has

been challenged by findings demonstrating the presence of a microbiome in

both healthy and disease states. Although there has been a tremendous

expansion in human microbiome research, with hundreds of projects

underway globally the blood microbiome has not received the same level of

attention as its gut and oral counterparts. The circulating microbiome is an

emerging trend that has drawn a high level of interest in the biomedical field,

given its potential to generate predictive biomarkers and the means to screen for

potential pathogens. This comprehensive review explores the latest

advancements in blood microbiome research, emphasizing biomarker

identification, diagnostic tools, treatment modalities, and prevention in CMDs.

We also delve into existing challenges and present a future-oriented treatment

strategy using advanced methods. Deciphering the blood microbiome’s role in

disease could lead to the classification of patient subgroups, enabling precision

microbiota-based therapies.
KEYWORDS

CMDS, blood microbiome, dysbiosis, biomarkers, therapeutics
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fbrio.2025.1541085/full
https://www.frontiersin.org/articles/10.3389/fbrio.2025.1541085/full
https://www.frontiersin.org/articles/10.3389/fbrio.2025.1541085/full
https://www.frontiersin.org/articles/10.3389/fbrio.2025.1541085/full
https://www.frontiersin.org/journals/bacteriology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fbrio.2025.1541085&domain=pdf&date_stamp=2025-03-03
mailto:xdxie@lzu.edu.cn
mailto:lizhiqiang6767@163.com
https://doi.org/10.3389/fbrio.2025.1541085
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bacteriology#editorial-board
https://www.frontiersin.org/journals/bacteriology#editorial-board
https://doi.org/10.3389/fbrio.2025.1541085
https://www.frontiersin.org/journals/bacteriology


Khan et al. 10.3389/fbrio.2025.1541085
Introduction

Cardiometabolic disorders (CMDs), including type 2 diabetes

mellitus (T2DM), chronic kidney disease (CKD), and CVD

represent a major global health challenge characterized by their

rising prevalence and profound social and economic burdens

(Ra l s ton and Nugent , 2019) . The g loba l burden of

cardiometabolic disorders is substantial, with an estimated 523

million individuals affected by CVD (Fuster), 422 million by

T2DM (Zhou et al., 2016), and 847 million by CKD (Jager et al.,

2019). By 2030, the global economic burden of cardiometabolic

diseases is projected to reach approximately US$6.3 trillion,

effectively doubling current costs (Arena et al., 2015). These

diseases are driven by a complex interplay of genetic, behavioral,

and environmental factors, including genetic predispositions,

sedentary lifestyles, poor dietary habits, and environmental

exposures such as air pollution (Ralston and Nugent, 2019). In

recent years, the gut microbiota has emerged as a key player in the

pathogenesis of numerous diseases, with extensive research

elucidating its role in modulating metabolic, immune, and

inflammatory pathways (Velmurugan et al., 2020). These

staggering figures highlight the widespread prevalence of these

conditions and their significant impact on global health,

emphasizing the critical need for effective management and

intervention strategies. In this study, we aim to comprehensively

characterize the composition and diversity of the blood microbiome

in patients with CMD. Additionally, we provide a focused

discussion on the potential mechanisms through which the blood

microbiome may influence the pathogenesis and progression of

CMD, offering insights into its role in disease development.

Nearly 70% of medical decision-making relies on laboratory

findings, underscoring the critical role of diagnostic testing in

clinical practice. Key laboratory results, such as biochemistry and

hematology profiles, are often available on the day of hospital

admission, providing essential insights into a patient’s health

status and guiding immediate therapeutic interventions

(Bissonnette and Bergeron, 2010). These tests serve as

foundational tools for diagnosing conditions, monitoring disease

progression, and tailoring treatment strategies, highlighting their

indispensable value in modern healthcare. Triggering microbiome

analysis is critical for enabling timely clinical decisions and

interventions, particularly within the first 6 hours of sepsis

presentation, to effectively reduce morbidity and mortality. Rapid

identification of microbial profiles and their associated pathogenic

mechanisms can guide targeted antimicrobial therapy and

personalized treatment strategies, improving patient outcomes.

Integrating microbiome analysis into early sepsis management

protocols represents a promising approach to enhancing the

precision and efficacy of care in this life-threatening condition

(Kumar et al., 2006). Although blood has traditionally been

considered a sterile environment, recent advances in high-

throughput sequencing technologies have challenged this notion,

revealing the presence of a low-abundance but diverse blood

microbiome even in healthy individuals (Tan et al., 2023). In

2001, Nikkari and colleagues were among the first to detect

bacterial DNA in the blood, challenging the long-held notion of
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blood sterility (Nikkari et al., 2001). This finding was further

supported by Moriyama et al., who confirmed the presence of a

blood microbiome in healthy individuals (Moriyama et al., 2008).

Additionally, Castillo et al. investigated the interactions between the

blood microbiome and other human microbiomes, shedding light

on its potential systemic role (Castillo et al., 2019). In recent years,

research has increasingly focused on elucidating the composition

and functional significance of the blood microbiome and its

association with human health and disease. Emerging evidence

suggests that the blood microbiome may contribute to the

development and progression of various conditions, including

T2DM, colorectal cancer, inflammatory bowel diseases (IBD),

hypertension, myocardial infarction (MI), coronary heart disease,

kidney complications, and HIV infection (Potgieter et al., 2015;

Amar et al., 2019; Shah et al., 2019; Søby et al., 2020; Gedgaudas

et al., 2022; Khan et al., 2022a; Guo et al., 2023; Jagare et al., 2023;

Sampaio et al., 2023). These findings underscore the importance of

further exploring the blood microbiome as a potential biomarker

and therapeutic target in a wide range of diseases.

Sequencing technologies have unveiled novel biomarkers like

the blood microbiome, advancing disease diagnosis and prevention.

Moving beyond traditional culture-based methods, modern

molecular techniques such as 16S rRNA sequencing, qPCR, and

shotgun metagenomics have confirmed the presence of a blood

microbiome in healthy individuals. These tools enable precise

characterization of microbial communities, offering new insights

into their role in health and disease and their potential as diagnostic

and therapeutic targets (Tan et al., 2023). It is crucial to

acknowledge the limitations in study design, including small

sample sizes, limited taxonomic resolution, methodological

variability, and the difficulty in differentiating cell-free microbial

DNA from viable microbial cells. Additionally, environmental

contamination remains a common challenge that can confound

results. Addressing these limitations is essential for ensuring the

accuracy and reliability of blood microbiome research and its

translation into clinical applications (Castillo et al., 2019; Berg

et al., 2020). To ensure an accurate definition of the blood

microbiome, it is critical to minimize microbial DNA

contamination by adhering to strict aseptic techniques during

sample collection and implementing thorough disinfection of the

skin puncture site (Doern et al., 2019). DNA sequencing methods

are susceptible to contamination from microbial DNA present in

laboratory reagents and kits (Salter et al., 2014), a challenge further

amplified by the low microbial biomass and high host DNA

background in blood samples, which increases the noise-to-signal

ratio (Glassing et al., 2016). However, evidence indicates that

contamination alone cannot fully account for the observed

microbial signals; instead, the blood microbiome is thought to

originate, at least in part, from microbial translocation from sites

such as the gut (Castillo et al., 2019). Despite significant

advancements, the biology of the blood microbiome remains

poorly understood, particularly its functional interactions with

human health and disease. Further research is needed to elucidate

its role and potential as a diagnostic or therapeutic target.

In this review, we examine the latest advancements in

understanding the composition and role of the blood microbiome
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in human health and disease, supported by specific disease-related

insights. We delve into the identification of blood-based

biomarkers, address methodological and interpretative challenges,

and explore innovative therapeutic strategies enabled by cutting-

edge technologies. Furthermore, we propose future research

directions aimed at elucidating the functional mechanisms of the

blood microbiome, emphasizing an integrative approach to unravel

its complex interactions and potential clinical applications.
Blood microbiome dysbiosis in CMDs

Our understanding of the role of the microbiota in human

health and disease is built on epidemiological, observational,

molecular, and animal-modeling experiments. The microbiota

plays an important role in human health and disease. Healthy

individuals’ blood microbiome composition and diversity are

largely overlooked (Païssé et al., 2016; Castillo et al., 2019;

Tsafarova et al., 2023; Di Gloria et al., 2024). The major blood

phyla with their respective roles are summarized in Table 1.

Emerging evidence highlights the association between dysbiosis in

the human blood microbiome and the pathogenesis of various

diseases, including chronic kidney disease, diabetes mellitus, and

cardiovascular disease (Figure 1).
Blood microbiome alteration in
chronic kidney disease

Chronic kidney disease is a growing healthcare burden

affecting about 13.4% of the population worldwide (Guo et al.,

2025). In the last few decades, CKD patients have steadily

increased. In adults, hypertension and diabetes are the leading

causes of CKD, while congenital anomalies of the kidney and

urogenital tract account for the majority of CKD etiologies in

children. In children, CKD affects neurocognitive abilities, school

performance, growth, quality of life, and the cost of medical care

(Wehedy et al., 2022). CKD is associated with the development of

severe health conditions like cardiovascular diseases, neurological

complications, adverse pregnancy outcomes, and hyperkalemia.
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Factors contributing to CKD progression include activation of the

renin-angiotensin-aldosterone system, proteinuria, chronic

inflammation, and repetitive acute kidney injury (Wehedy et al.,

2022). In addition, existing evidence showed an association

between gut dysbiosis, inflammation, and CKD (Evenepoel

et al., 2017). Gut dysbiosis disrupting intestinal barrier function

in CKD permits the translocation of gut-derived toxins, bacterial

products, and intact bacteria into the circulation, resulting in

inflammation (Vaziri et al., 2016). This circulating microbiome in

CKD is indirectly evidenced by higher levels of endotoxins, LPS

levels, and gut uremic toxins measured in the blood (Andersen

et al., 2017).

A previous study has shown higher levels of Legionella, Serratia,

Y e r s i n i a , Ac ine t oba c t e r , P s eudomona s , Ly s oba c t e r ,

Hyphomicrobium, Bacillus, Sediminibacterium, and Pseudarcicella,

and lower levels of Stenotrophomonas, Paracoccus, Sphingomonas,

and Tyzzer were found in CKD patients (Shah et al., 2019). Demmer

et al. reported the association between fewer Proteobacteria levels

with subgingival plaque and elevated systemic inflammation,

suggesting that the oral microbiome could impact the circulating

microbiome in hemodialysis patients (Demmer et al., 2017). Shah

et al. examined blood fractions with leukocytes, revealed different

microbes than cell-free blood, and showed a strong negative

correlation between glomerular filtration and higher circulating

Proteobacteria in CKD patients (Shah et al., 2021). Another study

found higher levels of Staphylococcus and Streptococcus and

predominant Legionella and Enhydrobacter in the blood of kidney

patients (Shah et al., 2021). Intriguingly, most of the blood bacteria

in CKD patients are not typical urinary tract commensals,

suggesting that disturbances in urinary mucosa may not

contribute to the dysbiotic blood microbiome (Perez-Carrasco

et al., 2021). Sumida et al. used 16S rRNA sequencing and ITS

analysis to compare the circulating microbiome in hemodialysis

patients and healthy individuals. They found elevated

Actinobacteria and reduced Proteobacteria levels in patients who

died from cardiovascular events, with these microbial changes

significantly correlated to Nrf2, a key regulator of antioxidative

responses. This correlation persisted across demographic and

clinical factors and was linked to a slight increase in

cardiovascular mortality risk. By focusing on the “cell-free”
TABLE 1 The predominant bacterial phyla in the human blood.

Phyla Description

Proteobacteria Proteobacteria are Gram-negative bacteria that can expand in the blood during dysbiosis, leading to diseases like sepsis and inflammation. An
example is Escherichia coli, which can cause bacteremia and systemic infections.

Bacteroidetes This phylum comprises aerobic and anaerobic Gram-negative bacteria, which can occasionally be present in the blood. They are known for
breaking down carbohydrates, with their metabolic byproducts influencing host inflammation and immune responses. An example is Bacteroides
fragilis, which has been linked to bacteremia and systemic inflammation, particularly in pathological conditions.

Actinobacteria This phylum is primarily composed of Gram-positive bacteria with high guanine and cytosine content. While typically beneficial, such as
Bifidobacterium bifidum in the gut microbiota, some Actinobacteria can enter the blood under certain conditions, leading to bacteremia or
systemic infections, particularly in immunocompromised individuals.

Firmicutes This phylum comprises Gram-positive bacteria with low guanine and cytosine content. While typically found in the gut, some Firmicutes can
enter the blood under certain conditions, causing bacteremia or infections. They are phenotypically diverse, with some capable of forming
endospores. An example is Roseburia hominis, which, though beneficial in the gut, has been occasionally associated with bloodstream infections in
dysbiosis or disease states.
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circulating microbiome in serum or plasma, the study highlights its

direct impact on immune cells and cardiac myocytes, offering a

minimally invasive approach for assessing cardiovascular risk in

end-stage renal disease (Sumida et al., 2021a). In another study,

Sumida et al. reported depleted Proteobacteria levels in CVD

patients, alongside elevated Staphylococcus genus, suggesting a

link between altered microbiome composition and cardiovascular

comorbidities in hemodialysis patients (Sumida et al., 2021b).

Additionally, Merino-Ribas et al. observed significant

alterations in the genera levels, including Cutibacterium,

Pajaroellobacter, Devosia, Hyphomicrobium, and Pelomonas in the

CKD peritoneal dialysis patients with and without vascular

calcification. The study has also shown the association between

vascular calcification and an increased risk of all-cause mortality in

CKD peritoneal dialysis patients, highlighting the potential role of

microbial composition as a factor linked to vascular calcification

and mortality risk in patients (Merino-Ribas et al., 2022). Patients at

a higher mortality risk showed changes in Eubacterium eligens in

the gut and the presence of the Devosia genus in the blood. Despite

no disparities in uremic toxins, intestinal translocation markers,

and inflammatory parameters between CKD-peritoneal dialysis

patients with and without vascular calcification, soluble CD14

(sCD14), a nonspecific marker of monocyte activation, positively

correlated with the severity of vascular calcification (Merino-Ribas

et al., 2022). Hence, the gut Eubacterium eligens group, blood
Frontiers in Bacteriology 04
Devosia, and circulating sCD14 merit further exploration as

potential biomarkers for vascular calcification, CVD, and CKD.

Simões-Silva and colleagues explored the intricate world of

peritoneal bacteria, pitting it against counterparts in various body

regions, with blood emerging as the closest contender. Despite this

close resemblance, their compelling results underscored substantial

distinctions between peritoneal and blood bacteria (Simoes-Silva

et al., 2020). In another study, Simões-Silva proposed that

bloodstream bacteria primarily stem from the dysbiotic gut

microbiome in end-stage renal disease, and hemodialysis, to some

extent, exacerbates microinflammation by promoting gut

microbiota translocation due to impaired gut barrier function

(Simoes-Silva et al., 2018). Recently, Sampaio et al. investigated

kidney transplant recipients (KTRs) and found evidence supporting

the existence of a circulating microbiome that differs from the

profiles of the gut and oral microbiomes. This circulating

microbiome is characterized by a limited number of operational

taxonomic units, representing a shared microbiome. Notably, the

blood of KTRs contains a distinctive, relatively low-abundance

microbiome, with a dominant of Proteobacteria and Firmicutes

(Sampaio et al., 2023). The blood microbiome is now a hot topic.

Hence, its composition and leveraging technological advancements

are crucial for enhancing our understanding of the blood

microbiome and its role in the development of kidney and other

human-related diseases.
FIGURE 1

Perturbations in the blood microbiome and their association with cardiovascular disease, diabetes, and chronic kidney disease contribute to systemic
inflammation and impaired endotoxin clearance. The (↑) symbol indicates higher species abundance, (↓) represents lower species abundance, an
asterisk (*) denotes statistical significance, and (±) marks correlation.
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Blood microbiome alteration in type 2
diabetes mellitus

Type 2 diabetes mellitus is a metabolic disorder characterized by

abnormally high blood glucose levels resulting essentially from the

resistance of body cells to the effect of insulin (Sedighi et al., 2017).

Diabetes is described by a state of chronic low-grade inflammation

with abnormal expression and production of multiple inflammatory

cytokines such as interleukins and tumor necrosis factor (Dandona

et al., 2004). The prevalence of T2DM has reached epidemic

proportions worldwide (Sedighi et al., 2017). Recent WHO

statistics state that the number of individuals with T2DM around

the world was approximately 382 million in 2013, and it is projected

to be more than 590 million by 2035 year (Upadhyaya and Banerjee,

2015). In addition, 85% of premature deaths from metabolic

syndromes happen in developing countries, of which about 80%

are associated with diabetes (Upadhyaya and Banerjee, 2015). Based

on WHO reports, T2DM is anticipated to be the seventh leading

cause of death by 2030. T2DM is the consequence of a complex

interaction between different degrees of genetic susceptibility and

environmental factors such as stress, diet, and infections (Sedighi

et al., 2017). Circulating microbiota refers to a complex community

of microorganisms present in the blood of humans and other

animals, primarily associated with immune system modulation

and inflammation, as well as potential contributions to certain

pathological conditions.

A previous D.E.S.I.R. cohort study has shown a higher 16S

rDNA concentration in those who eventually developed T2DM and

abdominal adiposity (Amar et al., 2011). A prospective cohort study

with primarily Chinese volunteers uncovered the predictive value of

the blood genus Bacteroides for T2DM (Qiu et al., 2019).

Bacteroides is a probiotic that is available in the human intestine,

yet when it drifts to other parts of the body, it can become

pathogenic, causing infections in the mouth, nervous system, and

bloodstream (Amar et al., 2011). The enrichment of Bacteroides

observed in both T2DM and control groups, with a higher

prevalence in T2DM, highlights its potential role in T2DM

pathology. However, the mechanisms by which Bacteroides

contribute to the development or progression of T2DM remain

poorly understood. Given its dual role as a gut commensal and a

potential systemic pathogen, further research is needed to elucidate

the mechanisms through which Bacteroides influence systemic

inflammation and contribute to T2DM pathology.

Subsequent analysis revealed a 28% elevation in gut microbiome

levels among diabetes patients compared to a 4% level in healthy

individuals, with T2DM patients exhibiting increased gram-positive

bacteria, including the Atopobium cluster and Clostridium coccoides,

similar to type 1 diabetes (T1D) (Sato et al., 2014). Another study

has shown a higher abundance of Proteobacteria in the blood of

patients with T1D (Yuan et al., 2024). A European study has

revealed the association between elevated blood sugar and insulin

levels with higher levels of blood bacterial DNA (D’Aquila et al.,

2021). Donath et al. revealed significant correlations among

glycated hemoglobin, body mass index, inflammatory markers,

and LPS-binding protein, highlighting a clear association between
Frontiers in Bacteriology 05
diabetes and the blood microbiome, with notably elevated levels of

the LPS-binding protein in patients with T2DM (Donath et al.,

2019). Ghaemi et al. found that patients with diabetes had higher

levels of Ralstonia spp. compared to non-diabetics and observed

higher Proteobacteria in T2DM than in those without diabetes.

Genus-level variations were observed in the gut microbiome, blood

plasma, and cellular levels. In diabetic patients, Akkermansia,

Bifidobacterium, and Faecalibacterium decreased in leukocytes,

while the pre-diabetic group exhibited higher levels of

Lactobacillus, E. coli, and Bacteroides fragilis genera compared to

healthy individuals; all these bacteria were elevated in the T2DM

group (Ghaemi et al., 2021). Moreover, a recent study found no

significant differences at the phyla levels, however, the genera,

including Aquabacterium, Xanthomonas, and Pseudonocardia,

were depleted, while genera, e .g . , Sediminibacterium ,

Pseudoclavibacter, Alishewanella, and Actinotalea were enriched

in the patient with T2DM compared to the healthy group (Qiu

et al., 2019). The involvement of the phylum Proteobacteria and the

genus Sediminibacterium in the pathophysiology of T2DM remains

insufficiently characterized. Future research should emphasize

longitudinal investigations to establish causality, multi-omics

approaches to integrate functional genomics with metabolomics,

and validation studies in larger, diverse cohorts to enhance the

generalizability of findings.
Blood microbiome alteration in
cardiovascular diseases

The relationship between the blood microbiome and CVD has

emerged as a prominent area of research, highlighting the critical

role of the microbiome in systemic health. However, significant

gaps remain in our understanding of the precise mechanisms and

the multifactorial nature of these interactions. A previous study has

shown that depletion in blood bacterial DNA content and

enrichment in the Proteobacteria levels in the blood microbiology

predicts long-term cardiovascular prognosis (Amar et al., 2013).

Building on this, another study conducted a year later further

reported a higher abundance of the phyla Actinobacteria and

Proteobacteria in patients with CVD compared to the control

group (Dinakaran et al., 2014), reinforcing the potential role of

these microbial shifts in cardiovascular health. Amar et al. (2013)

reported significant reductions in cholesterol-degrading bacterial

families and genera (e.g., Norcardiaceae, Aerococcaceae, Gordonia,

Propionibacterium, Chryseobacterium, and Rhodococcus) in patients

with myocardial infarction compared to healthy individuals (Amar

et al., 2019). Liberale et al. (2020) found elevated levels of the gut

commensal bacterium Escherichia coli, specifically Escherichia coli

lipopolysaccharides, in the blood of coronary thrombosis patients

(Liberale et al., 2020). The Escherichia coli lipopolysaccharides

strain was linked to disease pathology, including low-grade

endotoxemia, proinflammatory cytokine release, elevated soluble

P-selectin (indicating platelet activation), and zonulin, a marker of

gut permeability (Carnevale et al., 2020). The link between

Escherichia coli lipopolysaccharides and zonulin indicates the
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strain’s potential role in enabling bacterial translocation from the

gut to the bloodstream. Consistent with the findings of Amar et al.

(2013) and Dinakaran et al. (2014), we observed a higher abundance

of the phyla Proteobacteria and Actinobacteria in MI patients

compared to healthy individuals (Khan et al., 2022a). In another

study, we analyzed the blood microbiome composition of healthy

controls, acute MI patients, and chronic MI patients, finding a

higher abundance of Proteobacteria in acute MI patients compared

to chronic MI patients and controls (Khan et al., 2022b). Lawrence

et al. reported that Kokuria, Pseudomonadota, and Enhydrobacter

from the Actinobacteria were significantly associated with

cardiovascular mortality risk, including an inverse correlation

between Enhydrobacter and CVD mortality risk (Lawrence et al.,

2022). Furthermore, a recent study reported an enrichment of

Gammaproteobacteria, Proteobacteria, Ralstonia pickettii,

Ralstonia, Burkholderiaceae, and Burkholderiales in the unstable

angina group. In contrast, the AMI group exhibited a higher

abundance of Bacteroidales, Bacteroidia, Bacteroidota, Clostridia,

and Firmicutes (Chen et al., 2024). These findings suggest that

elevated levels of Proteobacteria are associated with CVD, as

Proteobacteria produce lipopolysaccharides (LPS), which play a

critical role in the pathogenesis of CVD (Lin et al., 2020). LPS can

induce inflammation indirectly by generating molecular patterns

associated with non-microbial risk factors and directly through

microbial-associated molecular patterns (MAMPs) (Bonhomme

et al., 2024). LPS might also contribute to endotoxemia, which

drives the development of inflammatory conditions such as obesity,

liver dysfunction, and CVD (Sciarra et al., 2023).

In a recent study integrating blood microbiome and

metabolomics, we found reduced AMP, L-leucine, and L-arginine

levels in the mTOR pathway in MI patients compared to healthy

controls (Khan et al., 2025). AMP regulates cellular energy balance

by activating AMPK to inhibit mTOR signaling. Its downregulation

may impair energy sensing, leading to unchecked mTOR activity
Frontiers in Bacteriology 06
despite energy deficits (Khan et al., 2025). This aberrant signaling

can result in excessive energy consumption, ultimately driving

cellular energy depletion and apoptosis. L-leucine activates

mTORC1, which is crucial for protein synthesis and cardiac

repair. Its reduction weakens mTORC1 signaling, leading to

muscle atrophy and impaired recovery. Similarly, L-arginine,

essential for nitric oxide synthesis and mTOR signaling, supports

blood flow and cellular repair. Its depletion increases oxidative

stress, and endothelial dysfunction, and hinders tissue recovery,

exacerbating cellular damage (Khan et al., 2025). These findings

enhance cardiovascular research by uncovering microbiome-

metabolome interactions with implications for immunology,

metabolism, and microbiology. By linking basic and translational

science, they support personalized diagnostics and therapies. Future

studies should focus on longitudinal designs, multi-omics

integration, and diverse cohort validation to establish causality

and improve generalizability.
Underlying mechanisms of CMDs

Herein, we briefly explored the mechanisms underlying CKD,

T2DM, and CVD, as shown in Figure 2. Microbiome dysbiosis has

been implicated in the pathogenesis of CKD through mechanisms

involving microbial metabolites and systemic inflammation (Noce

et al., 2022). Dysbiosis often leads to an overabundance of bacteria

producing trimethylamine N-oxide (TMAO), a metabolite derived

from dietary choline and carnitine (Valenbreder et al., 2023).

Elevated TMAO levels promote oxidative stress and inflammation

in renal tissues, contributing to endothelial dysfunction and fibrosis

(Florea et al., 2024). Additionally, microbial translocation of

lipopolysaccharides (LPS) from gram-negative bacteria into the

bloodstream can trigger immune activation, further exacerbating

kidney damage (Wang et al., 2023). These processes impair renal
FIGURE 2

Mechanistic insights into chronic kidney disease, diabetes, and cardiovascular disease.
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filtration and function, leading to the accumulation of uremic toxins

and a progressive decline in kidney health (Lim et al., 2021). The

interplay between dysbiosis, TMAO, and inflammation highlights

the blood microbiome’s role in CKD progression.

In addition, the blood microbiome influences diabetes mellitus

through mechanisms that disrupt metabolic homeostasis and

promote insulin resistance. Dysbiosis often results in increased

levels of LPS, a component of gram-negative bacterial cell walls,

which enters the bloodstream and triggers chronic low-grade

inflammation (Di Vincenzo et al., 2024). This inflammation

impairs insulin signaling pathways in peripheral tissues, leading

to insulin resistance and hyperglycemia (Chen et al., 2015).

Furthermore, dysbiosis can alter the production of short-chain

fatty acids (SCFAs), which play a role in regulating glucose

metabolism and insulin secretion. Reduced SCFA levels

exacerbate pancreatic beta-cell dysfunction, further compromising

glucose regulation (Rekha et al., 2024). The combined effects of

inflammation, insulin resistance, and beta-cell dysfunction

underscore the contribution of blood microbiome dysbiosis to the

development and progression of DM.

Subsequently, blood microbiome dysbiosis contributes to

CVD through pathways involving microbial metabolites,

endothelial dysfunction, and systemic inflammation. Elevated

levels of TMAO, produced by gut microbiota from dietary

precursors, are strongly associated with atherosclerosis and

plaque formation (Zhu et al. , 2020). TMAO promotes

endothelial inflammation, foam cell formation, and platelet

hyperreactivity, all of which accelerate atherosclerotic

progression (Oktaviono et al., 2023). Additionally, dysbiosis can

lead to increased LPS translocation into the bloodstream,

triggering systemic inflammation and oxidative stress, further
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damaging vascular tissues (Violi et al., 2023). These processes

result in endothelial dysfunction, arterial stiffness, and increased

risk of myocardial infarction or stroke (Tuttolomondo et al.,

2020). The role of microbiomes in modulating TMAO and

inflammation highlights its significance in CVD pathogenesis.
Factors affecting blood
microbiome composition

Variability in the blood microbiome may be attributed to a

combination of host-related, environmental, and methodological

factors, as shown in Figure 3. Host-specific characteristics, such as

genetic background, age, immune status, and underlying health

conditions, including disease severity and treatment histories, play a

significant role in shaping microbial profiles (Alanazi et al., 2024).

Additionally, environmental and demographic factors, such as

geographic location and lifestyle differences, further contribute to

this variability by influencing microbial exposure and colonization

dynamics (Parizadeh and Arrieta, 2023). Methodological

inconsistencies across studies, including variations in sample

collection protocols, DNA extraction techniques, sequencing

platforms, and bioinformatics pipelines, can also introduce

technical biases, affecting the detection, quantification, and

characterization of microbial communities. These methodological

disparities, coupled with the heterogeneity of studied populations,

may impact the reproducibility and comparability of findings,

underscoring the need for standardized approaches in blood

microbiome research (Mancin et al. , 2024). Temporal

fluctuations, driven by changes in health status, treatment

regimens, or external exposures (Karwowska et al., 2024), further
FIGURE 3

Factors affecting blood microbiome composition.
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complicate the interpretation of microbial profiles, highlighting the

multifaceted nature of factors influencing the blood microbiome.

To enhance the reliability and reproducibility of blood

microbiome research , we advocate for s tandard ized

methodologies across studies. This includes harmonizing

protocols for sample collection, storage, DNA extraction,

sequencing, and bioinformatics analysis to minimize technical

variability. Rigorous quality control measures, such as the use of

negative and positive controls, are essential to mitigate

contamination and ensure data accuracy. Collaborative efforts,

including large-scale consortia and shared databases, should

facilitate data integration from diverse studies, enabling robust

meta-analyses and cross-validation. Advanced computational

approaches—such as machine learning, multi-omics integration,

single-cell sequencing, metatranscriptomics, and metabolomics can

further enhance microbial characterization, improve disease

prediction, and refine diagnostic and therapeutic strategies. By

promoting standardization, fostering collaboration, and leveraging

cutting-edge analytical tools, we aim to establish a more

comprehensive understanding of the blood microbiome’s role in

health and disease, ultimately unlocking its potential as a diagnostic

and therapeutic target in personalized medicine.
Blood microbiota-based therapeutics
and future interventions

Blood acts as a liquid medium carrying the elements necessary for

host life. In recent years, the concept of human blood microbiota has
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been developed, and this has caused serious debates as it may shelve

the idea that “blood is a sterile environment” that has been in

existence for years. Although there are different hypotheses that the

blood microbiota originates from the gut microbiota, its origin is not

clearly understood because it contains different phyla (Castillo et al.,

2019). The concept of human blood microbiota and its potential

therapeutic implications represents a groundbreaking advancement

in medicine. If the blood microbiome is confirmed as a key factor in

health and disease, it could unlock a range of innovative treatment

strategies with transformative clinical implications (Almeida et al.,

2022). For instance, (i). In today’s medicine, where fecal microbiota

transplantation is being considered for treatment, blood

transplantation is much more easily feasible. (ii). Potential therapies

include targeted probiotic formulations designed to modulate blood

microbiota, microbial metabolite-based treatments utilizing

postbiotics, and immunomodulation strategies to regulate cytokine

production and enhance immune responses. (iii). Dietary and lifestyle

interventions, including nutraceuticals and lifestyle modifications,

could support a healthy blood microbiota. Advanced diagnostic tools

for microbiota profiling and real-time monitoring could enable early

disease detection and personalized interventions. (iv). Antimicrobial

therapies, such as selective antimicrobials and phage therapy, could

eliminate harmful microbes while preserving beneficial ones. (v).

Personalized blood microbiota transplants, both autologous and

allogeneic, could restore microbial balance, while CRISPR-based

microbial engineering may enable gene editing to enhance

beneficial properties or reduce pathogenicity. (vi). Nanotechnology-

based delivery systems, such as targeted drug delivery and microbial

carriers, could ensure precise therapeutic applications, making blood
FIGURE 4

Blood microbiota-based therapeutics strategies and future interventions.
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microbiota manipulation a promising avenue for future medicine.

(vii). Combination therapies offer a multi-modal approach by

integrating blood microbiota modulation with treatments like

immunotherapy, chemotherapy, or antibiotics to enhance efficacy.

A holistic strategy also considers the interplay between blood and gut

microbiota for comprehensive health benefits. (viii) Microbial

vaccines could target harmful blood microbes, preventing their

colonization and priming the immune system for improved

responses to infections and cancers. (ix). Additionally, microbiome

banking could enable the preservation of healthy blood microbiota

samples for future therapeutic use, with donor-matching systems

optimizing transplantation outcomes (Figure 4).
Limitations and future
research directions

Microbiome research highlights the integral role of coexisting

microbes in human biology, challenging the notion of human blood

sterility. Rare microbial entry into the bloodstream can trigger

severe complications, including sepsis and septic shock

(Hotchkiss et al., 2016). Controversy persists among researchers

on whether the blood hosts a core microbiome or whether these

microbes disseminate from other body niches like the gut, mouth,

and skin. For instance, Tan and colleagues have lately been unable

to identify the microbiome in healthy human blood. They

contradicted the hypothesis of a structured blood microbiome by

detecting 117 random microbial species in healthy human blood,

most of which originated from different body regions and some of

which demonstrated evidence of replication outside the

bloodstream (Tan et al., 2023). Although studies have begun to

uncover the blood microbiome composition and its mechanisms by

which blood microbiome promotes the development and

progression of diverse human diseases, however, there are many

details remain unknown. Some of the most important unanswered

questions that remained include: Why do some healthy individuals

have microbes in their blood while others do not, and what is the

underlying mechanism for this phenomenon? How do microbes in

the blood “deceive” the immune system and live in harmony with

the immune system?What is the specific role of bacteria in the onset

of a particular disease? What are the advantages and disadvantages

of the blood microbes? The blood microbiome in the blood of the

diseased population is much higher than that of the healthy

population. Is it related to immunity?

Multiple human microbiome studies actively correlate disease

states with the structure of the blood microbial community.

Interpreting the significance of these cross-sectional studies is

challenging due to numerous confounding variables in patient

populations. Factors such as structural variations, standardized

procedures, incomplete microbial databases, contamination

concerns, limited reference databases, unquantified metabolome

read-outs, the necessity for functional characterization, and the

need for longitudinal studies complicate the analysis. Fortunately,

many of these issues can be addressed by conducting intervention

studies, standardized protocols, decontamination, improved
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sequencing technologies, larger sample sizes, rigorous study

designs, and strain identification. Further research is necessary to

understand the correlation between specific blood bacteria, certain

diseases, and their underlying mechanisms.
Conclusions

Different viewpoints exist on the presence of microbiome in the

blood of healthy individuals and its association with various human

diseases. Some authors support the concept of a healthy blood

microbiome, while others suggest that the microbiome disseminates

into the blood from other body sites, especially the gut and oral

niches. However, it is undeniable that over the past decade, multiple

studies have detailed blood microbiome composition and diversity,

revealing their association with human health and diseases. Current

understanding recognizes the presence of microbes in the blood,

emphasizing the complexity of detection and caution needed when

associating their genetic material with live bacteria. Observing shifts

in the blood microbiome in diabetes, CKD, and CVD suggests their

potential role in disease development. Crucial for establishing the

blood microbiome as viable biomarkers and innovative therapeutic

targets is future research on microbial translocation and

physiological mechanisms, with significant implications for

healthcare and disease management.
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