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Objective:Metagenomic next-generation sequencing (mNGS) is emerging to be

pivotal in infectious disease diagnosis, particularly in pulmonary infection.

However, the utility of bronchoalveolar lavage fluid (BALF) versus blood mNGS

remains controversial. Therefore, the current meta-analysis summarized the

previous studies regarding BALF or blood mNGS in pulmonary infection,

aiming to comprehensively compare the diagnostic efficiency between them.

Methods: Studies reporting paired BALF and blood mNGS data for pulmonary

infection diagnosis were searched in the PubMed, Web of Science, Embase,

CNKI, and Wanfang from January 2016 to March 2024.

Results: Eleven studies involving 346 assessed patients were eligible and

analyzed. The pooled sensitivity, specificity, and area under the curve (AUC) of

BALF mNGS were 0.94 [95% confidence interval (CI): 0.90–0.97], 0.27 (95% CI:

0.19–0.36), and 0.86 [standard error (SE): 0.06], respectively. Meanwhile, the

pooled sensitivity, specificity, and AUC of blood mNGS were 0.64 (95% CI: 0.56–

0.72), 0.69 (95% CI: 0.62–0.76), and 0.81 (SE: 0.05), respectively. By subgroup

analyses, the AUCs of BALF mNGS and blood mNGS for viral detection were 0.70

(SE: 0.08) and 0.71 (SE: 0.08), respectively, while the AUCs of BALF mNGS and

blood mNGS for nonviral (bacterial or fungal) detection were 0.83 (SE: 0.06) and

0.73 (SE: 0.08), respectively. Moreover, no threshold effect or publication bias

existed, and sensitivity analysis revealed that the findings were generally robust.
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Conclusion: BALF mNGS surpasses blood mNGS for total pathogen detection in

pulmonary infection patients, while they share a similar efficiency for

viral detection.

Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/,

identifier CRD42024562740.
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Introduction

Lower respiratory tract infections (LRTIs) encompass series of

diseases, including pneumonia, bronchitis, and chronic bronchitis,

and rank as the leading cause of morbidity and mortality in adults

(Feldman and Shaddock, 2019; Detelich and Kempker, 2023).

Traditionally, bacteria have been considered the predominant

pathogens for severe LRTIs, among which the rate of

Streptococcus pneumoniae infection has been reported to

approach 50% in community-acquired pneumonia (Griffin et al.,

2013; Ren et al., 2021; Suaya et al., 2021). However, with an aging

population, more and more patients are affected by severe viral

infections, and elderly individuals bare 10 times risk to have virulent

pneumonia compared to younger ones, with correspondingly

higher morbidity and mortality rates from viral infections (Falsey,

2005; Wu et al., 2021). Since LRTIs become increasingly viral in

nature and the specific pathogens are continuously complex, the

improvement of diagnostic tools is greatly warranted, which could

not only avoid multiple drug resistance but also facilitate

individualized treatment (Carroll and Adams, 2016; Griffiths

et al., 2017; Cilloniz et al., 2022; Eyre, 2022).

Currently, intravital culture is still the cornerstone identifying

pathogenic microorganisms in infection diagnosis (Esposito, 2016;

Islam, 2022). However, this method is time-consuming and tedious,

andmany pathogens are not culturable or difficult to culture, making it

challenging for most institutions to complete the cultivation process

(Jackson et al., 2020). Immunological methods are other options for

pathogen detection, such as complement fixation tests, neutralization

tests, enzyme-linked immunosorbent assays, immunofluorescence,

and enzyme-linked immune-spot assays, which are simple to

operate (Lopes-Luz et al., 2021; Yin et al., 2022). Nevertheless, due

to the vast variety of pathogens, the number of antigens and antibodies

developed cannot meet the clinical practice requirements in a timely

manner. In addition, polymerase chain reaction (PCR) assays exhibit a

high sensitivity and specificity for pathogen detection, but they can

only focus on a specific kind; meanwhile, gene chip or microarray

technology is only able to recognize known pathogens instead of

unknown ones (Yoshida et al., 2021; Ji et al., 2023). Therefore, the

exploration of novel and efficient detection technology is needed.
02
Along with the progress of biological technology, metagenomic

next-generation sequencing (mNGS) has been introduced as a novel

method in pathogen recognition, enabling nontargeted sequencing

of DNA/RNA while detecting the sequence of whole pathogens (Gu

et al., 2021). Benefiting from its rapid advancements, mNGS

exhibits the characteristics of high-speed detection, wide coverage,

and satisfied sensitivity, which can effectively make up the

shortcomings of traditional culture method or PCR assay (Gu

et al., 2021). Inspiringly, mNGS has been applied in the

pathogenic d iagnos i s of pu lmonary in fec t ion us ing

bronchoalveolar lavage fluid (BALF) or blood samples, which

improves pathogen identification and timely individual treatment

(Chen et al., 2022; Ma et al., 2022; Tsang et al., 2022). However, the

superiority between BALF and blood mNGS in pulmonary infection

is controversial (Whiting et al., 2011; Boch et al., 2016; Chen et al.,

2020; Chen et al., 2021). For instance, Boch T et al. discovered that

the sensitivity and specificity of BALF mNGS are higher compared

to blood mNGS and culture (Boch et al., 2016), while Xu Chen et al.

reported that the sensitivity of BALF mNGS is higher versus blood

mNGS, but no difference in specificity is discovered (Chen et al.,

2020). Furthermore, Jinlian Chen et al. revealed that the BALF

pathogens are highly in line with blood pathogens via mNGS

detection (Chen et al., 2021).

Therefore, this meta-analysis summarized the previous studies

regarding BALF or blood mNGS in pulmonary infection, aiming to

comprehensively compare the diagnostic efficiency between them.
Methods

Study searching

Studies were searched among medical electronic databases from

January 2016 (The approximate time that mNGS was applied in

clinical practice) to March 2024 (the time that the article searching

of this meta-analysis was performed) by two independent reviewers

(SZ and LGF). The disputes were resolved through negotiation. The

databases included PubMed, Web of Science, Embase, China

National Knowledge Infrastructure (CNKI), and Wanfang.
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Keywords and medical subject headings terms included

metagenomic sequencing, metagenomic next-generation

sequencing, metagenomic second-generation sequencing,

genomics, genetic diagnosis, sequencing, mNGS, pulmonary

infection, PI, infection, pneumonia, bronchoalveolar lavage fluid,

bronchoalveolar lavage, alveolar lavage, BALF, blood, and plasma.

This meta-analysis was prepared referring to the PRISMA 2020

checklist (Page et al., 2021).
Study selection

Inclusion criteria of study selection were: i) the study had an

explicit definition of pulmonary infection, which mainly consisted

of symptoms, laboratory test data, imaging data, and clinicians’ final

judgment; ii) the study had paired pathogen detection data of

mNGS in BALF and blood; and iii) the study extracted pathogen

detection data of mNGS in BALF and blood (involving true positive

(TP), false positive (FP), false negative (FN), and true negative

(TN)). The exclusion criteria were as follows: i) the study was a

duplicate publication; ii) the study was a review, expert consensus,

conference abstract, case report, letter, or dissertation; and iii) the

subjects underwent multiple organ transplantation. Studies were

selected by two reviewers (SZ and LGF) individually, and

disagreements were settled via discussion (SZ. LGF, and YF).
Data extraction and quality assessment

Study author, publication year, setting, study type, subject

numbers, and subject age were extracted and reviewed by two

reviewers (SZ and LGF). In addition, the TP, FP, FN, and TN of

mNGS in BALF and blood samples were recorded, which were

calculated based on sample size, sensitivity, specificity, and area

under the curve (AUC) if they were not provided directly. The

detailed data of TP, FP, FN, and TN for viral and non-viral

(bacterial or fungal) detection were also extracted if reported. The

study qualities were evaluated individually by two reviewers (SZ and

LGF) by Quality Assessment of Diagnostic Accuracy Studies-2

(QUADAS-2) (Whiting et al., 2011).
Statistics

Meta-Disc version 1.4 was applied for statistical analyses. The

pooled sensitivity, specificity, diagnostic odds ratio (OR), positive

likelihood ratio (LR), and negative LR for the diagnosis of pathogen

detection were calculated using a bivariate meta-analysis model. The

summary receiver operating characteristic (sROC) curves and AUC

were applied to examine the diagnostic ability. The Spearman

correlation coefficient of sensitivity with 1-specificity was estimated to

assess the threshold effect. The non-threshold effect heterogeneity was

determined by DerSimonian and Laird random effects models using

the I2 test: if P <0.05 or I2 >50%, significant heterogeneity was indicated

in the pooled estimates. Moreover, subgroup analysis and sensitivity

analysis (by removing each study and analyzing again) were executed to
Frontiers in Bacteriology 03
assess the potential source of heterogeneity. Deek’s test was applied for

publication bias assessment. P <0.05 was indicated as significant.
Results

Study flow and information

Based on the search strategy and databases, a total of 323

records were identified. After removing 111 duplicates, 212

records remained. Following a thorough review of the titles,

abstracts, and full texts, 251 studies were excluded, leaving 11

studies in this meta-analysis (Chen et al., 2020; Chen et al., 2021;

Jiang et al., 2021; Xie et al., 2021; Chien et al., 2022; Duan et al.,

2022; Ma et al., 2022; Sun et al., 2022; Wei et al., 2022; Wu et al.,

2022; Wang et al., 2023) (Figure 1).

Among the 11 analyzed studies, 3 were multicenter and the other 8

were monocenter, consisting of 346 assessed patients, with the detailed

information exhibited in Table 1. It was worth noting that 4 studies

focused solely on a single pathogen or infrequent pathogens, lacking

the result protocols for other common pathogens, while the other 7

studies included the vast majority of pathogens, but only a few of them

were able to provide complete data. Therefore, this meta-analysis

emphasized on the diagnostic efficiency of the overall detection rate

of pathogens rather than the diagnostic efficiency of a single pathogen.
Quality assessment

Generally, the analyzed studies showed a low risk of bias and

application concerns (Figure 2). However, 4 studies and 1 study
FIGURE 1

Study flow chart. BALF, bronchoalveolar lavage fluid; FN, false
negative; FP, false positive; mNGS, metagenomic next-generation
sequencing; TN, true negative; TP, true positive.
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TABLE 1 Summary of study characteristics.

Study Setting
Study
type

Number
of

included
subjects

Age

Number
of

assessed
subjects

BALF mNGS Blood mNGS Detection of
the vast

majority of
pathogens

and reported
detailed data
of viral and
non-viral

(bacterial or
fungal)

detection

TP FP FN TN TP FP FN TN

(Wang
et al.,
2023)

Monocenter Retrospective 92 Adult 8 4 4 0 0 5 1 0 2 Yes

(Chien
et al.,
2022)

Monocenter Prospective 50 Adult 50 38 8 0 4 13 31 0 6 Yes

(Duan
et al.,
2022)

Multicenter Retrospective 16
Pediatric
and adult

5 5 0 0 0 3 0 2 0 No

(Ma
et al.,
2022)

Monocenter Retrospective 5 Adult 2 2 0 0 0 2 0 0 0 No

(Sun
et al.,
2022)

Monocenter Retrospective 81 Adult 57 53 2 0 2 22 0 30 5 Yes

(Wei
et al.,
2022)

Multicenter Retrospective 82 Adult 82 45 37 0 0 9 8 0 65 No

(Wu
et al.,
2022)

Monocenter Prospective 65 Adult 65 31 25 1 8 12 13 2 38 Yes

(Chen
et al.,
2021)

Multicenter Prospective 20 Adult 20 10 0 7 3 10 0 7 3 Yes

(Jiang
et al.,
2021)

Monocenter Retrospective 21 Adult 21 21 0 0 0 21 0 0 0 No

(Xie
et al.,
2021)

Monocenter Retrospective 7 Adult 7 6 1 0 0 4 0 3 0 Yes

(Chen
et al.,
2020)

Monocenter Retrospective 467
Pediatric
and adult

29 13 3 3 10 4 2 12 11 Yes
F
rontiers in
 Bacteriology
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BALF, bronchial bronchoalveolar lavage fluid; mNGS, metagenomic next-generation sequencing; TP, true positive; FP, false positive; FN, false negative; TN, true negative.
FIGURE 2

Risk of bias and applicability concerns.
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exhibited a high risk of patient selection and index test, respectively;

and each 1 study disclosed corresponding application concern.
Diagnostic accuracy of BALF and blood
mNGS for pulmonary infection

According to the eligibility criteria, all 11 studies were analyzed in

this meta-analysis regarding the diagnostic accuracy of both BALF

and bloodmNGS for pulmonary infection. The pooled sensitivity and

specificity of BALF mNGS were 0.94 (95% CI: 0.90–0.97) and 0.27

(95% CI: 0.19–0.36), respectively (Figures 3A, B). The pooled AUC of

BALF mNGS was 0.86 [standard error (SE): 0.06] (Figure 3C).
Frontiers in Bacteriology 05
Moreover, the pooled diagnostic OR, positive LR, and negative LR

were 11.69 (95% CI: 4.54–30.09), 1.52 (95% CI: 0.92–2.51), and 0.25

(95% CI: 0.13–0.47), respectively (Figures 3D–F).

In terms of blood mNGS, the pooled sensitivity and specificity

were 0.64 (95% CI: 0.56–0.72) and 0.69 (95% CI: 0.62–0.76),

respectively (Figures 4A, B). The pooled AUC was 0.81 [standard

error (SE): 0.05] (Figure 4C). In addition, the pooled diagnostic OR,

positive LR, and negative LR were 8.47 (95% CI: 3.61–19.91), 2.40

(95% CI: 1.06–5.40), and 0.43 (95% CI: 0.23–0.81), respectively

(Figures 4D–F).

According to the AUC value of SROC, the diagnostic efficiency

of BALF mNGS was more accurate compared to blood mNGS for

pulmonary infection (0.86 versus 0.81). Meanwhile, the sensitivity
FIGURE 3

Diagnostic value of BALF mNGS for pulmonary infection. Pooled analysis of sensitivity (A), specificity (B), AUC of SROC curve (C), diagnostic OR (D),
positive LR (E), and negative LR (F) regarding BALF mNGS for pulmonary infection diagnosis.
FIGURE 4

Diagnostic value of blood mNGS for pulmonary infection. Pooled analysis of sensitivity (A), specificity (B), AUC of SROC curve (C), diagnostic OR (D),
positive LR (E), negative LR (F) in the aspect of blood mNGS on pulmonary infection diagnosis.
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of BALF mNGS was higher versus blood mNGS (0.94 versus 0.64),

but the specificity of BALF mNGS was lower versus blood mNGS

(0.27 versus 0.69).
BALF mNGS and blood mNGS for viral or
non-viral pulmonary infection

Interestingly, 6 out of the 11 analyzed studies disclosed the

detailed data of TP, FP, FN, and TN on viral and non-viral

(bacterial or fungal) detection of pulmonary infection, which

proceeded to detect the diagnostic accuracy of BALF and blood

mNGS on viral and non-viral pulmonary infection, respectively.

For viral detection, the pooled sensitivity and specificity of

BALF mNGS were 0.29 (95% CI: 0.24–0.36) and 0.81 (95% CI:

0.63–0.93), respectively (Figures 5A, B); the pooled AUC of BALF

mNGS was 0.70 (SE: 0.08) (Figure 5C); and the pooled diagnostic

OR, positive LR, and negative LR of BALF mNGS are shown in

Supplementary Figures 1A–C. Regarding blood mNGS, the pooled

sensitivity and specificity were 0.37 (95% CI: 0.30–0.45) and 0.94

(95% CI: 0.87–0.98), respectively (Figures 5D, E); the pooled AUC

was 0.71 (SE: 0.08) (Figure 5F); at the same time, the pooled

diagnostic OR, positive LR, and negative LR of blood mNGS are

shown in Supplementary Figures 1D–F. By comparison of the AUC

values, the diagnostic efficiency of BALF mNGS was fair compared

with that of blood mNGS for viral pulmonary infection (0.70 versus

0.71), but both the sensitivity (0.29 versus 0.37) and specificity (0.81

versus 0.94) of BALF mNGS were lower than those of blood mNGS.

For non-viral (bacterial or fungal) detection, the pooled

sensitivity and specificity of BALF mNGS were 0.67 (95% CI:

0.58–0.75) and 0.54 (95% CI: 0.44–0.64), respectively (Figures 6A,

B); the pooled AUC of BALF mNGS was 0.83 (SE: 0.06) (Figure 6C);
Frontiers in Bacteriology 06
and the pooled diagnostic OR, positive LR, and negative LR of

BALF mNGS are shown in Supplementary Figures 2A–C. As to the

blood mNGS, the pooled sensitivity and specificity were 0.46 (95%

CI: 0.37–0.55) and 0.64 (95% CI: 0.54–0.72), respectively

(Figures 6D, E); the pooled AUC was 0.73 (SE: 0.08) (Figure 6F);

moreover, information on the pooled diagnostic OR, positive LR,

and negative LR of blood mNGS is shown in Supplementary

Figures 2D–F.
Threshold effect, publication bias, and
sensitivity analyses

No threshold effect of diagnostic efficiency regarding BALF

mNGS and blood mNGS existed in this meta-analysis (Table 2).

Meanwhile, Deek’s test revealed that no publication bias existed

(P=0.450 for BALF mNGS and P=0.570 for blood mNGS) (data not

shown). In addition, sensitivity analysis of the meta-analysis was

also performed, which revealed that the pooled diagnostic

sensitivity and specificity for pulmonary infection by both BALF

and blood mNGS were generally robust (Table 3). However, the

study (Wei et al., 2022) affected the pooled specificity of BALF

mNGS, the study (Sun et al., 2022) influenced the pooled sensitivity

of blood mNGS, and the study (Chien et al., 2022) and the study

(Wei et al., 2022) affected the pooled specificity of blood mNGS.
Discussion

Although mNGS has been widely utilized in the diagnosis of

infectious diseases, there are still some limitations regarding its

clinical application due to its relatively high cost. This is particularly
FIGURE 5

BALF and blood mNGS for viral detection. Pooled analysis of sensitivity (A), specificity (B), and AUC of the SROC curve (C) regarding BALF mNGS for
detecting viral pulmonary infection. Pooled analysis of sensitivity (D), specificity (E), and AUC of the SROC curve (F) regarding blood mNGS for
detecting viral pulmonary infection.
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true in the diagnosis of pulmonary infectious diseases, where

previous meta-analyses aimed to compare the diagnostic efficacy

of BALF mNGS with traditional detection methods (Chen et al.,

2022). However, published studies have also reported inconsistent

comparisons between blood mNGS and BALF mNGS. This article

represents the first meta-analysis to compare the diagnostic

accuracy of BALF mNGS and blood mNGS. By supplementing

the microbiological results obtained by conventional bacterial

culture methods and PCR, mNGS can provide clinicians with

precise antimicrobial treatment instructions for infectious diseases

(Chen et al., 2021).

BALF collection is difficult with tedious steps in clinical practice

and is invasive, which is especially hard to perform in severe-illness

patients and those who are unable to cooperate; otherwise, blood

specimen collection is more friendly to patients (Chiu and Miller,

2019). Therefore, this study compared the diagnostic performance

about these two kinds of specimens from the perspective of patients.
Frontiers in Bacteriology 07
In patients with non-systemic pulmonary infection or focal infection,

BALF specimens are often used in clinical practice, while sputum

specimens are relatively rarely used because they are easy to be

contaminated and affected by respiratory tract and external

environment; at the same time, sputum collection requires patients

to collect deep sputum after coughing (Liu and Xie, 2016). However,

there are few clinical studies comparing BALF and sputum specimens

for mNGS, and prospective studies are needed in the future.

This meta-analysis revealed that the sensitivity of BALF mNGS

was greater than that of blood mNGS (0.94 versus 0.64), but the

specificity of BALFmNGSwas less accurate than that of bloodmNGS

(0.27 versus 0.69). According to the AUC of the SROC, the diagnostic

efficiency of BALF mNGS was higher versus blood mNGS (0.86

versus 0.81). The possible reasons for these results are discussed

below. The sensitivity of blood mNGS may be affected by the number

of days the patient was hospitalized at the time of specimen

collection. Blood-mNGS has an advantage in identifying viruses.

Further studies are needed to determine whether the microorganisms

detected by blood mNGS, especially viruses, are from pneumonia or

simply reflect unculturable microorganisms present in blood (Chien

et al., 2022). False negative results for some viruses can occur with

DNA sequencing but not RNA sequencing, and mNGS-based testing

can provide amore comprehensive infection profile from a single test.

False positives can be produced by microbes that are widespread in

the environment or DNA contaminants in laboratory kits. The cutoff

readings of different microorganisms in mixed infections and their

clinical significance remain to be confirmed, and high detection

thresholds may filter out fewer pathogens when major pathogens

are detected. The sensitivity of blood mNGS may also be affected by

the length of hospital stay at the time of specimen collection (Sun

et al., 2022).

Mixed infection is common in immunocompromised patients,

among which bacterial-fungi-viral infection is the most common
TABLE 2 Threshold effect.

Threshold effect Spearman
correlation
coefficient

P

BALF mNGS 0.499 0.118

Blood mNGS 0.423 0.194

BALF mNGS for viral detection -0.757 0.049

Blood mNGS for viral detection -0.473 0.284

BALF mNGS for non-
viral detection

0.464 0.294

Blood mNGS for non-
viral detection

0.299 0.515
FIGURE 6

BALF and blood mNGS on non-viral detection. Pooled analysis of sensitivity (A), specificity (B), and AUC of the SROC curve (C) regarding BALF
mNGS for detecting non-viral (bacterial or fungal) pulmonary infection. Pooled analysis of sensitivity (D), specificity (E), and AUC of the SROC curve
(F) regarding blood mNGS for detecting non-viral (bacterial or fungal) pulmonary infection.
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type. Due to the suppression of immune function, the virus cannot

be cleared in time; and once the patient is infected, common

pneumonia will rapidly progress to severe pneumonia, and may

even cause death (Xian et al., 2023; Rucar et al., 2024). Due to the

poor effect of routine microbiological detection in the diagnosis of

mixed infection, a false positivity or false negativity often appears.

Therefore, mixed infection is common, but the diagnosis is difficult,

and most of the diagnosis of mixed infection is based on NGS results

(Dong and Zhou, 2023). Besides, the direct comparison of diagnostic

performance between mNGS in BALF and blood is lacking in

previous studies; thus, future comparative studies are needed.

This meta-analysis also performed a subgroup analysis regarding

the pathogen types. At the same time, we also divided the pathogens

of pneumonia patients into viral and non-viral pathogens for

subgroup analysis. In viral pneumonia patients, both the sensitivity
Frontiers in Bacteriology 08
and specificity of blood mNGS were greater than those of BALF

mNGS (0.37 versus 0.29 and 0.94 versus 0.81, respectively). In non-

viral pneumonia patients, the sensitivity of BALF mNGS was more

accurate than that of blood mNGS (0.67 versus 0.46), but the

specificity of BALF mNGS was less accurate than that of blood

mNGS (0.54 versus 0.64). According to the AUC of the SROC, the

diagnostic efficiency of BALF mNGS was more accurate than that of

blood mNGS (0.83 versus 0.73). These results can be attributed to the

fact that viral pathogens cannot be cultured by conventional means,

and imaging methods are mainly used for clinical diagnosis. On the

other hand, bacterial and fungal pathogens can be diagnosed by

conventional culture methods, resulting in a higher detection rate of

bacterial pathogens in clinics than viral pathogens. Additionally, most

papers lack independent introductions on tuberculosis and specific

pathogens, such as parasites, mycoplasma, and chlamydia, which
TABLE 3 Sensitivity analysis.

Study

BALF mNGS Blood mNGS

Pooled sensi-
tivity (%,
95%CI)

P
I2

(%)

Pooled speci-
ficity (%,
95%CI)

P
I2

(%)

Pooled sensi-
tivity (%,
95%CI)

P
I2

(%)

Pooled speci-
ficity (%,
95%CI)

P
I2

(%)

(Wang
et al.,
2023)

0.94 (0.90 to 0.97) 0.000 71.2 0.27 (0.19 to 0.37) 0.000 77.9 0.63 (0.55 to 0.71) 0.000 82.9 0.70 (0.62 to 0.76) 0.000 86.3

(Chien
et al.,
2022)

0.93 (0.89 to 0.96) 0.001 68.8 0.26 (0.18 to 0.36) 0.000 78.1 0.61 (0.53 to 0.69) 0.000 80.4 0.82 (0.75 to 0.88) 0.587 0.0

(Duan
et al.,
2022)

0.94 (0.90 to 0.97) 0.000 71.3 0.27 (0.19 to 0.36) 0.000 78.1 0.64 (0.56 to 0.72) 0.000 83.6 0.70 (0.63 to 0.76) 0.000 86.3

(Ma
et al.,
2022)

0.94 (0.90 to 0.97) 0.000 70.9 0.27 (0.19 to 0.36) 0.000 78.1 0.64 (0.56 to 0.71) 0.000 83.5 0.70 (0.63 to 0.76) 0.000 86.3

(Sun
et al.,
2022)

0.92 (0.88 to 0.96) 0.001 66.6 0.26 (0.18 to 0.35) 0.000 77.7 0.74 (0.65 to 0.82) 0.000 77.0 0.69 (0.62 to 0.75) 0.000 86.0

(Wei
et al.,
2022)

0.93 (0.88 to 0.96) 0.001 67.9 0.40 (0.28 to 0.52) 0.057 45.6 0.62 (0.54 to 0.70) 0.000 81.8 0.57 (0.48 to 0.66) 0.000 78.7

(Wu
et al.,
2022)

0.93 (0.89 to 0.96) 0.000 70.7 0.28 (0.18 to 0.39) 0.000 78.2 0.62 (0.54 to 0.70) 0.000 82.4 0.68 (0.59 to 0.75) 0.000 86.2

(Chen
et al.,
2021)

0.97 (0.93 to 0.99) 0.272 18.6 0.25 (0.17 to 0.34) 0.000 74.9 0.65 (0.57 to 0.73) 0.000 83.5 0.69 (0.62 to 0.76) 0.000 86.2

(Jiang
et al.,
2021)

0.94 (0.89 to 0.96) 0.000 70.7 0.27 (0.19 to 0.36) 0.000 78.1 0.59 (0.51 to 0.67) 0.000 76.5 0.70 (0.63 to 0.76) 0.000 86.3

(Xie
et al.,
2021)

0.94 (0.90 to 0.97) 0.000 71.4 0.27 (0.19 to 0.36) 0.000 78.2 0.65 (0.57 to 0.72) 0.000 83.5 0.70 (0.63 to 0.76) 0.000 86.3

(Chen
et al.,
2020)

0.95 (0.91 to 0.97) 0.001 68.1 0.20 (0.13 to 0.30) 0.003 63.8 0.69 (0.60 to 0.76) 0.000 79.3 0.68 (0.61 to 0.75) 0.000 86.0

Combined 0.94 (0.90 to 0.97) 0.000 68.2 0.27 (0.19 to 0.36) 0.000 75.8 0.64 (0.56 to 0.72) 0.000 81.8 0.69 (0.62 to 0.76) 0.000 84.8
f
rontiers
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limits further subgroup analysis (Varadi et al., 2017). Similarly, most

articles lack independent introductions on whether patients have

undergone solid organ transplantation and have low immune

function, resulting in missing data. The pathogens of lung

infection in patients with solid organ transplantation and

immunocompromised function differ from those in the general

population. Therefore, it is meaningful to compare the results of

mNGS technology in blood and BALF in solid organ transplantation

and immunocompromised populations. For some viruses, if not

found in BALF mNGS but detected in blood mNGS, the surface

viruses are less possible to be the pathogens of lung infection;

otherwise, the viruses may come from other parts of the body,

enter the blood system, and spread in the blood. Some viruses

commonly found in lung infections, such as EBV, can also be

complications due to impaired host immunity (Tian et al., 2022).

Although mNGS has gained widespread use in the diagnosis of

infectious diseases, its clinical application is still subject to some

doubts due to its relatively expensive nature as a new technology.

Specifically, in the diagnosis of pulmonary infectious diseases,

previous meta-analyses aimed to compare the diagnostic efficacy

of BALF mNGS with that of traditional detection methods.

However, published studies have also found inconsistent

comparisons between blood and BALF. A previous meta-analysis

was published on the application of second-generation sequencing

technology in the diagnosis of pulmonary infection, mainly

comparing the application of second-generation sequencing

technology and conventional culture technology in the diagnosis

of pulmonary infection. For critically ill patients with no clear

pathogen diagnosis from routine testing, early selection of mNGS is

recommended or even earlier when diagnosis is not possible.

Although this meta-analysis compares mNGS with conventional

detection methods, there is no doubt that the diagnostic

performance of mNGS is superior to that of conventional

methods due to its advanced nature. The current meta-analysis

further compared the diagnostic performance of mNGS among

different samples (blood and BALF) and explores its application in

clinical practice, enabling clinicians to choose the most appropriate

detection methods. On the one hand, selecting the most appropriate

methods can reduce the burden on patients and minimize the

occurrence of excessive medical treatment (Chen et al., 2022).

There are certain limitations in this meta-analysis. For instance,

although this meta-analysis discusses the comparative analysis of the

clinical application of blood and alveolar lavage fluid mNGS, it

concludes that the diagnostic efficacy of alveolar lavage fluid is

superior to that of blood. Pulmonary infection is a disease that

changes and develops rapidly, and it exhibits different characteristics

at different stages. For instance, when pulmonary infection

progresses to sepsis and pathogens enter the blood, the detection

rate of mNGS will naturally increase. Additionally, for blood-borne

pulmonary infection, mNGS may be detected earlier in the blood

than in the alveolar lavage fluid referring to our experience. Different

pathogens have different causes of bacterial entry into the blood or

treatment. Therefore, determining when to conduct mNGS detection

is a problem that must be addressed. However, the continuous and

dynamic use of mNGS to detect blood and alveolar lavage will
Frontiers in Bacteriology 09
impose a significant financial burden and some adverse effects on

patients (Sun et al., 2022). Furthermore, we used clinical

comprehensive diagnosis as the gold standard, including pathogen

culture, imaging detection, nucleic acid detection, etc. As a result,

there were significant differences in diagnosis among the included

papers, resulting in substantial heterogeneity. At the same time, only

a portion of the articles explained whether antibiotics and antiviral

drugs were used before detection, but the original data and specific

situation could not be provided. Microbial contamination also

complicates the interpretation of mNGS results, and the rich

genetic background of the human host limits the amount of

pathogen gene sequences (Chen et al., 2020; Wei et al., 2022).

mNGS offers significant advantages and potential in detecting

certain pathogens, particularly in cases of low pathogen DNA load

and atypical symptoms. For instance, Dan Xie et al. proposed that

mNGS could be utilized for diagnosing Pneumocystis jirovecii

pneumonia (PJP) in kidney transplant recipients, specifically for

psittacosis, pneumocystis pneumonia, and other specific pathogenic

microorganisms (Xie et al., 2021). This study provides guidance for PJP

prophylaxis and immunosuppressant use in renal transplant recipients

during and after acute rejection treatment. Juan Jiang et al. suggested

that simultaneous detection of mNGS in BALF and blood samples

obtained from the same patient among ordinary PJP patients was

highly consistent with the detection of Pneumocystis jirovecii (Jiang

et al., 2021). Therefore, when bronchoscopy is ineffective, mNGS in

blood samples may be a viable option for PJP patients. XiaoxuMa et al.

demonstrated that peripheral bloodmNGS could be used in diagnosing

invasive pulmonary aspergillosis (Ma et al., 2022). Zhimei Duan et al.

believed that mNGS had greater potential in diagnosing psitsitosis

fever, and BALF samples, in particular, were a promising diagnostic

sample in all kinds of samples (Duan et al., 2022). However, in patients

who cannot tolerate bronchoscopy, blood samples can still be used as

an alternative method for early diagnosis of psitsitosis with mNGS,

even though the pathogen DNA load in the samples is lower than that

in BALF. For these particular pathogens, are the microorganisms

detected by mNGS clinically significant pathogens or colonizing

microorganisms? Blood samples may help distinguish pneumocystis

colonization from infection. The pathogen is present in the respiratory

tract of healthy individuals, so interpreting the mNGS results from

BALF specimens can sometimes be challenging. Therefore, identifying

PJP in blood samples by mNGS may be more convincing, as it should

not be present in the blood of healthy individuals (Hammarstrom

et al., 2019).

Conclusively, this meta-analysis summarizes that BALF mNGS

is superior to blood mNGS for pathogenic detection in pulmonary

infection patients, especially for non-viral (bacterial or fungal)

pathogens. Interestingly, for viral detection, BALF mNGS exhibits

similar diagnostic efficiency to blood mNGS in pulmonary infection.
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