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Gestational diabetes mellitus (GDM) represents a significant health concern during

pregnancy, impacting bothmaternal and fetal well-being.While conventional diagnostic

protocols typically rely on blood glucose levels in the latter stages of pregnancy, there is

a pressing need for early detection methods to mitigate potential risks. A plethora of

glucose-based or non-glucose-based biomarkers have been investigated for their

potential to predict GDM in early pregnancy. Though specific biomarkers showed

promise in predicting GDM, their clinical usage has been constrained by the lack of

validation and limitation in translating them into routine clinical use. This review aims to

highlight and discuss the potential and practical utility of existing biomarkers and

emergent biomarkers, such as microbiomes, in diagnosing GDM. A comprehensive

analysis of recent studies reveals significant alterations in the composition and diversity

of microbiota among women with GDM, suggesting their potential utility as predictive

markers for this condition. For instance, distinct microbial profiles characterized by an

increased abundance of Eisenbergiella, Tyzzerella 4, and Lachnospiraceae NK4A136,

alongside decreased levels of Parabacteroides, Parasutterella, and Ruminococcaceae

UCG 002, correlated with fasting blood glucose levels, hinting at their relevance in early

GDM detection. Furthermore, proposed microbiota-targeted panels demonstrated

promising predictive accuracy. Beyond gut microbiota, recent investigations have also

explored the potential of oralmicrobiota as predictive biomarkers forGDM. Studies have

highlighted the discriminatory capacity of specific oral microbes, such as Streptococcus

in saliva and Leptotrichia in dental plaque, in distinguishing GDM from healthy

pregnancies. Moreover, the examination of gut microbiota-derived metabolites has

shown promising results in serum-based GDM prediction. These findings collectively

underscore thepotential ofmicrobiota and itsmetabolites as valuable biomarkers for the

early detection of GDM. However, further research is warranted to elucidate the

mechanistic links between microbial dysbiosis and GDM pathogenesis, ultimately

facilitating the development of targeted therapeutic interventions and personalized

management strategies.
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1 Introduction

Gestational Diabetes Mellitus (GDM) is characterized by varying

degrees of severe glucose intolerance with onset or first seen during

pregnancy (American Diabetes Association, 2020b). GDM often

develops between the 24th and 28th week of gestation. In middle

and later pregnancy, GDM is one of the most prevalent maternal

complications (Guariguata et al., 2014; Simjak et al., 2018; Kim et al.,

2021). GDM is estimated to affect 10%–25% of all pregnancies

globally, and its prevalence depends on diagnostic guidelines

(Lauring et al., 2018), screening procedures (Nguyen et al., 2018),

and obesity (Huvinen et al., 2018). The prevalence of GDM has risen

in recent decades in parallel with Westernized living and conceiving

at an older age, accompanied by an economic boom (Simjak et al.,

2018). Specific racial and ethnic groups, including Hispanics, Asians,

and Black women, reported higher odds of developing GDM than

non-Hispanic Whites (CDC, 2020; Gardner et al., 2022). GDM is

typically asymptomatic but is associated with adverse maternal

outcomes like preeclampsia (Yogev et al., 2010), postpartum

hemorrhage, and increased cesarean deliveries (O’Sullivan et al.,

2011). It also leads to undesirable infant outcomes such as

macrosomia, neonatal hypoglycemia (HAPO Study Cooperative

Research Group et al., 2008), perinatal mortality (Wendland et al.,

2012), and large gestational age (Saravanan et al., 2020). GDM can

lead to long-term consequences in mothers, such as an increased risk

of type 2 diabetes (Hakkarainen et al., 2016), metabolic syndrome

(Hakkarainen et al., 2018), and cardiovascular diseases (Fraser et al.,

2012). Additionally, there is a significant risk of recurrent GDM in

subsequent pregnancies, with estimates ranging from 29–80%

(Schwartz et al., 2016). The children of mothers with GDM also

face long-term health risks, including a higher incidence of obesity,

type 2 diabetes, and neurodevelopmental disorders (Farahvar et al.,

2019). These consequences highlight the importance of early

detection and proper management of GDM to minimize health

impacts on both mother and child.

Various countries use different diagnostic approaches to assess the

prevalence of GDM due to the lack of uniform criteria for its diagnosis.

Currently, most GDM diagnoses are made in the later stages of the

second trimester (Rani and Begum, 2016), putting the vulnerable fetus

at risk for intrauterine metabolic abnormalities and epigenetic

modifications (Elliott et al., 2019; Chu and Godfrey, 2020). Hence,

early prediction and diagnosis of GDM, preferably prior to the onset of

elevated blood sugar levels, including during pre-pregnancy, are

crucial. This timely identification would facilitate proactive measures

to mitigate complications and health hazards linked with GDM. The

identification of GDM biomarkers during early pregnancy and even

pre-conception could enhance existing clinical risk assessments,

pinpointing high-risk individuals who could benefit from tailored

strategies to mitigate GDM development. Advancements in

metagenomics have allowed the study of the human microbiota,

providing valuable insights into its diagnostic and therapeutic

potential (Martin et al., 2014; Malla et al., 2018). Quantitative

analysis of biological samples using next-generation sequencing

methods has yielded extensive data on the role of microbiota as a

diagnostic tool across various diseases (Qin et al., 2012; Yu et al., 2017).

Exploring microbiota as a novel biomarker holds promise for the
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future diagnosis of GDM. This review aims to discuss and evaluate

existing screening and diagnostic strategies for GDM. Additionally, we

provide insights into emerging biomarkers, with a particular focus on

microbiota, that exhibit potential for predicting GDM.
1.1 Screening strategies of GDM

The detection of GDM involves a screening process followed by

necessary diagnostic measures, with methods and diagnostic

thresholds varying among countries (International Diabetes

Federation, 2019; American Diabetes Association, 2020a). Three

main approaches to GDM screening exist: universal, two-step, and

selective. Universal screening involves testing all pregnant women,

regardless of symptoms or glycemic status, with a non-fasting 50 g

glucose challenge test (GCT) to assess the likelihood of GDM (Tieu

et al.). Two-step screening includes the 50 g GCT followed by a 3-

hour 100g oral glucose tolerance test (OGTT) for those exceeding the

GCT threshold (Vandorsten et al., 2013; Cundy et al., 2014). Selective

screening examines women with specific risk factors, such as high

body mass index (BMI), family history of GDM, smoking history,

and age at pregnancy (Tieu et al.). In 2010, the International

Association of Diabetes and Pregnancy Study Groups (IADPSG)

proposed a one-step approach using a 2-hour, 75 g OGTT for all

pregnant women at 24–28 weeks (International Association of

Diabetes and Pregnancy Study Groups Consensus Panel et al.,

2010). This approach has gained acceptance by organizations like

the World Health Organization (WHO), the American Diabetes

Association (ADA), the International Federation of Gynecology

and Obstetrics (FIGO), and the Australasian Diabetes in Pregnancy

Society (ADIPS). However, not all major health organizations

worldwide, including the American College of Obstetricians and

Gynecologists (ACOG) and the National Institute for Health and

Care Excellence (NICE), have endorsed the IADPSG screening and

diagnostic approach. Due to the array of recommendations available,

there is a lack of consensus on the screening and diagnosis of GDM.

The decision of to screen for GDM or not, as well as the choice of

screening approach, continues to be a subject of controversy.
2 Biomarkers for GDM screening

Multiple laboratory assays have been utilized for screening GDM,

examining both direct and indirect hyperglycemic markers. Direct

hyperglycemic biomarkers include fasting plasma glucose (FPG),

GCT, or OGTT. In addition, indirect hyperglycemic biomarkers

include glycosylated hemoglobin A1c (HbA1c) and more current

biomarkers, many of which have been explored through proteomic or

metabolomic studies. Nonetheless, the optimal approach for GDM

detection has not been definitively established.
2.1 Glucose markers

Glucose serves as a critical biomarker in the screening,

diagnosing, monitoring, and management of GDM. Over the past
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decade, several guidelines have been proposed or updated to

improve diagnostic accuracy and global consistency. WHO

guidelines emphasized predictive accuracy rather than endorsing

a specific gold standard. Typically, GDM diagnosis is confirmed

through a 75 g or 100 g OGTT, with most guidelines recommending

testing between 24 and 28 weeks of gestation (International

Association of Diabetes and Pregnancy Study Groups Consensus

Panel et al., 2010; Nankervis et al., 2014; American Diabetes

Association, 2015; Imoh et al., 2017) (Table 1). However, the

exact association between various OGTT parameters and

pregnancy outcomes is still unknown (Feng et al., 2017) and may

vary among populations (Farrar et al., 2016). Furthermore, the

OGTT has limitations such as poor reproducibility (Davidson,

2002; Munang et al., 2017), dependence on ethnicity (Bonongwe

et al., 2015), and time-intensive nature, as it necessitates fasting and

a commitment of 2 hours to complete the test (Buckley et al., 2012).

Moreover, the OGTT does not account for maternal BMI when

determining the glucose load to administer (Bonongwe et al., 2015).

Side effects such as vomiting, nausea, and diarrhea can also occur

following OGTT administration (ACOG Practice Bulletin No.

180, 2017).

Compared to GCT and OGTT, FPG testing was reported to be

more patient-friendly, rapid, economical, and reproducible

(Agarwal and Dhatt, 2007). Several countries have supported

using an FPG concentration of 92 mg/dL as a cut-off for

increased blood sugar during the first trimester (International

Association of Diabetes and Pregnancy Study Groups Consensus

Panel et al., 2010; American Diabetes Association, 2015; Imoh et al.,

2017). ADA and IADPSG recommended an FPG concentration ≥

92 mg/dl, while NICE andWHO suggested an FPG concentration ≥

100 mg/dl and 92–125 mg/dl, respectively, for diagnosing GDM

(International Association of Diabetes and Pregnancy Study Groups

Consensus Panel et al., 2010; NICE, 2015; American Diabetes

Association, 2015; Imoh et al., 2017). However, researchers have

highlighted the need for a precise cut-off of FPG for the first

trimester (Sacks et al., 2002) as the current cut-offs are not

relevant at earlier gestational stages (Sacks et al., 2018). In
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addition, the sensitivity and specificity of FPG for screening

GDM showed significant regional variations (Agarwal et al., 2011;

Zhu et al., 2013a; Trujillo et al., 2014), and its low specificity makes

it unsuitable as a standalone screening test for early pregnancy

(Riskin-Mashiah et al., 2010; Zhu et al., 2013b).

In addition to OGTT and FPG, HbA1c is also an acceptable

method for early pregnancy diabetes screening, as recommended by

the ADA and IADPSG (International Association of Diabetes and

Pregnancy Study Groups Consensus Panel et al., 2010; American

Diabetes Association, 2016). However, the American College of

Obstetricians and Gynecologists disapproves of HbA1c as a

standalone screening test due to its low sensitivity in identifying

early hyperglycemia (ACOG Practice Bulletin No. 190, 2018).

While HbA1c is considered precise and accurate in non-pregnant

women (Jia, 2016), studies have shown that it is subpar as a

screening test for GDM (O’Connor et al., 2012). Furthermore, the

diagnostic potential of HbA1c in early pregnancy and its

interpretation are still uncertain, as pregnancy-specific thresholds

for identifying early GDM have not been established (Göbl et al.,

2014; Shinar and Berger, 2018). Hence, the validity of HbA1c

during pregnancy as a diagnostic tool for early GDM

remains debatable.
2.2 Non-glucose biomarkers

Despite advancements in healthcare and updated screening

approaches, the diagnosis of GDM is still arguable. Challenges

such as limited sensitivity, specificity, invasiveness, racial/ethnic

variations, and testing costs have hindered the prediction of GDM.

To address these challenges, numerous studies have investigated

non-glucose biomarkers as potential diagnostic tools for GDM.

These biomarkers include inflammatory markers like C-reactive

protein (CRP), tumor necrosis factor-alpha (TNF-a), and

interleukin-6 (IL-6), as well as adipocyte-derived markers such as

adiponectin, leptin, and visfatin. Additionally, other biomarkers

such as pregnancy-associated plasma protein A (PAPP-A),
TABLE 1 Global guidelines using FPG and OGTT for diagnosing GDM.

Establishments Countries
recommended

FPG 1 hour
75 g
OGTT
(post-
meal)

2 hours
75 g OGTT
(post-meal)

Age
of

gestation

References

mg/dl mg/dl mg/dl weeks

WHO Multiple countries 92–125 180 153–199 20–28 Imoh et al., 2017

ADA USA/North America ≥92 ≥180 ≥153 24–28 American Diabetes Association, 2015

NICE United Kingdom ≥100 ≥140 24–28 NICE, 2015

IADPSG Multiple countries ≥92 ≥180 ≥153 24–28 International Association of Diabetes and
Pregnancy Study Groups Consensus Panel

et al., 2010

ADIPS Australasia ≥92 ≥180 ≥153 24–28 Nankervis et al., 2014

FIGO Multiple countries ≥92 ≥180 ≥153 24–28 Hod et al., 2015
FPG, fasting plasma glucose; OGTT, oral glucose tolerance test; WHO, World Health Organization; ADA, American Diabetes Association; NICE, National Institute for Health and Care
Excellence; IADPSG, International Association of Diabetes and Pregnancy Study Groups; FIGO, International Federation of Gynecology and Obstetrics.
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placental growth factor (PLGF), insulin-resistant markers, urinary

markers like alanine, L-tryptophan, and serotonin, genetic markers,

growth factors, glycoproteins, hormones, microRNAs, single

nucleotide polymorphisms (SNPs), and DNA methylation have

been explored.

However, the clinical utility of these biomarkers is still under

investigation. Inflammatory biomarkers, such as CRP, are affected

by factors such as limited clinical data and variations in ethnicity

and immunological assays (Amirian et al., 2020). Adiponectin has

shown a moderate correlation with predicting GDM, while visfatin

and leptin levels have produced inconsistent results (Iliodromiti

et al., 2016). Low levels of PAPP-A have been suggested as a link to

GDM and insulin resistance (Ramezani et al., 2020), although

conflicting findings exist (Savvidou et al., 2012; Syngelaki et al.,

2015). PLGF, despite some studies indicating its potential as

predicting GDM during the first trimester of pregnancy

(Eleftheriades et al., 2014), lacks consistent evidence to validate its

use as a dependable biomarker (Mosimann et al., 2016; Maymon

et al., 2019). Reduced levels of sex hormone-binding globulin have

shown associations with obesity and insulin resistance, hinting at its

potential as a GDM biomarker in the first trimester (Zhang T. et al.,

2018); however, its diagnostic significance is influenced by factors

such as BMI, ethnic disparities, and family history (Corcoran

et al., 2018).

Furthermore, urinary markers like 3-hydroxybutanoic acid, and

specific amino acids, such as serotonin, valine amino acid, and L-

tryptophan, have been found to increase in GDM cases during the

12th and 26th weeks of gestation (Leitner et al., 2017). Yet, further

evaluation is warranted to determine their precise predictive and

clinical significance. Genetic markers such as microRNAs, SNPs,

and DNA methylation have also shown promise (Yahaya et al.,

2020); however, contradictory reports (Jamalpour et al., 2018;

Tagoma et al., 2018) highlight the need for further studies to

determine their clinical usefulness. It is also important to note

that most biomarkers have been evaluated in limited case-control

studies without additional prospective confirmation, emphasizing

the need for more extensive research.
2.3 Microbiota in GDM

Recent research indicates that the gut microbiota plays a

significant role in the etiology of metabolic illnesses, such as

diabetes (Brunkwall and Orho-Melander, 2017), cardiovascular

disease (Tang et al., 2017), and obesity (DiBaise et al., 2008).

Microbiota often plays a pivotal role in developing and shaping

the immune and endocrine systems (Mohajeri et al., 2018; Rastelli

et al., 2019). Advancements in metagenomics have provided a

deeper understanding of the human microbiome, which

comprises bacteria, archaea, and eukaryotes (Marchesi, 2010;

Rajilić-Stojanović and De Vos, 2014). Alterations in microbiota

composition have been observed in women with GDM throughout

pregnancy (Liu et al., 2017) (Table 2). Specifically, the gut

microbiota exhibits increased a diversity and reduced b diversity

in the first trimester, while this pattern reverses in the third

trimester, characterized by reduced a diversity and increased b
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diversity. The a diversity measures species richness and evenness

within a single sample, b diversity quantifies differences in species

composition between different samples or communities (Ionescu

et al., 2022; Tang et al., 2022). These measures help in identifying

potential alterations in microbial communities associated

with GDM.

The dysbiosis or imbalance in gut microbiota diversity starts

early in pregnancy, with decreased diversity observed in women

with GDM. Reduced gut microbiota abundance in GDM has been

associated with insulin resistance and inflammation (Le Chatelier

et al., 2013). Numerous investigations have provided insights into

the significant alterations in microbiome diversity in women with

GDM. For example, Kuang et al. (2017) observed a higher

abundance of Parabacteroides distasonis and Klebsiella variicola in

GDM. They also reported a strong correlation between blood

glucose tolerance levels and the ratio of overall abundances of

GDM-enriched to control-enriched metagenome linkage groups.

These findings suggest that the alteration of the microbiome may be

directly linked to the pathogenesis of GDM.

Furthermore, Crusell et al. (2018) reported a higher abundance of

phylumActinobacteria and specific genera such as Collinsella, Rothia,

and Desulfovibrio in the GDM women during the third trimester.

These women also exhibited increased enrichment in

Faecalibacterium and Anaerotruncus species, while species

annotated to Clostridium sensu stricto and Veillonella showed

reduced enrichment. Certain operational taxonomic units (OTUs),

like Christensenella, have been linked to higher glucose levels (Crusell

et al., 2018), whereas Akkermansia has demonstrated potential in

enhancing insulin sensitivity (Crusell et al., 2018) and regulating

metabolic syndromes (Christiansen, 2013; Dao et al., 2016).

Remarkably, GDM women maintained these altered microbiota

months after postpartum (Crusell et al., 2018), indicating a

potential long-term impact on metabolic health. Additional studies

have shown an increased abundance of Collinsella and Blautia and

decreased abundance of Sutterella in GDM women (Crusell et al.,

2018; Cortez et al., 2019; Li G. et al., 2021). Moreover, the ratio of

Firmicutes/Bacteroidetes was reported to be higher in GDM women

(Li G. et al., 2021). These findings underscore the potential impact of

gut microbiota on GDM pathogenesis and highlight the need for

further investigation in this field. Furthermore, Cortez et al. (2019)

revealed an increased abundance of Ruminococcus, Eubacterium, and

Prevotella genera, along with a reduced abundance of Akkermansia,

Bacteroides, Parabacteroides, Roseburia, and Dialister in the third

trimester of GDM women. Wei et al. (2022) found an increased

abundance of Ruminococcus bromii, Clostridium colinum, and

Streptococcus infantis in GDM women at 24–28 weeks of

gestational age. Notably, S.infantis was associated with a higher risk

of GDM (Wei et al., 2022). Moreover, GDM women exhibited a

reduced abundance of genera such as Megasphaera, Barnesiella, and

Blautia in both the first and third trimesters. Conversely, the genera

Acidaminococcus, Clostridium, and Allisonella showed higher

abundance in GDM women during these trimesters (Abdullah

et al., 2022). Ye et al. (2023) demonstrated that microbiota and its

short-chain acids play a role in the development of GDM, with

reduced abundance of several genera (Faecalibacterium, Prevotella,

and Streptococcus) and species (Bacteroides coprophilus, Eubacterium
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siraeum, Faecalibacterium prausnitzii, Prevotella copri, and Prevotella

stercorea) observed in GDM women. Furthermore, Xu et al. (2020)

found that during the third trimester of pregnancy, the gut

microbiome of GDM women had higher b-diversity and an

increased abundance of Gammaproteobacteria and Haemophilus.

Additionally, they observed reduced a-diversity, elevated levels of

Selenomonas and Bifidobacterium, and decreased levels of

Fusobacteria and Leptotrichia. They further identified a significant
Frontiers in Bacteriology 05
correlation between maternal blood sugar levels and the oral

microbiome, particularly in relation to Streptococcus, Leptotrichia,

and Veillonella, suggesting a potential link between the oral

microbiome and glucose tolerance in later stages of pregnancy (Xu

et al., 2020).

Wang et al. (2018) reported significant oral microbiome

alteration in GDM, with increased Proteobacteria but reduced

Firmicutes and Leptotrichia (Wang et al., 2018). Moreover, Hu
TABLE 2 Abundance of microbiota in GDM.

Study
by

Study
location

GDM/
Non-
GDM

women

Age in years Diagnosis
criteria

Age
of

Gestation

Sample Microbiota in GDM women

GDM Non-
GDM

Ye
et al., 2023

China 50/54 31.74
± 5.45

30.20
± 4.77

IADPSG 24–28 weeks Stool Decrease abundance of Bacteroides
coprophilus, Eubacterium siraeum,
Faecalibacterium prausnitzii, Prevotella
copri, and Prevotella stercorea

Pinto
et al., 2023

Israel 44/350 33.1
± 3.77

31.2
± 4.43

Two-step
screening

10–15 weeks Stool Decreased abundance of Prevotella

Wei
et al., 2022

China 15/18 30.10 ± 3.5 26.10 ± 3.6 IADPSG/
WHO

24–28 weeks Stool Increased abundance of Ruminococcus
bromii, Clostridium colinum, and
Streptococcus infantis

Abdullah
et al., 2022

Malaysia 12/26 30.42
± 3.8

30.62
± 4.2

<13 weeks
>28 weeks

Stool Reduced abundance of genera Megasphaera,
Barnesiella, and Blautia Increased
abundance of Acidaminococcus, Clostridium,
and Allisonella

Li G.
et al., 2021

China 23/29 29.80
± 2.19

29.0
± 1.88

ADA >28 weeks Stool Increased abundance of Blautia, producta,
Clostridium spiroforme,
Collinsella aerofaciens, Coprococcus catus,
Eubacterium dolichum,
Pyramidobacter piscolens, Ruminococcus
callidus, and Ruminococcus gnavus

Hu
et al., 2021

China 201/201 28.2 ± 4.5 27.90
± 4.0

IADPSG 6–25 and
24–28 weeks

Stool Increased abundance of Enterobacteriaceae,
Ruminococcaceae spp., and
Veillonellaceae spp

Xu et al.,
2020;
Rastelli

et al., 2019

China 30/31 33.7 ± 4.7 32.3 ± 4.3 WHO 24–28 weeks Stool Increased abundance of
Gammaproteobacteria and Haemophilus

Saliva Increased abundance of Selenomonas and
Bifidobacterium, and reduced abundance of
Fusobacteria and Leptotrichia

Cortez
et al., 2019

Brazil 36/42 35.07
± 3.75

28.23
± 5.68

WHO 28–36 weeks Stool Increased richness of Ruminococcus,
Eubacterium and Prevotella and
Reduced richness of Akkermansia,
Bacteroides, Parabacteroides, Roseburia,
and Dialister.

Vaginal Increased abundance of Bacteroides,
Veillonella, Klebsiella, Escherichia-Shigella,
Enterococcus, and Enterobacter

Crusell
et al., 2018

Denmark 50/161 34.4 ± 4 33.3 ± 4.6 Two-step
screening

27–33 weeks Stool Increased abundance of Collinsella, Rothia
and Desulfovibrio

Wang
et al., 2018

China 77/98 ADA 24–28 weeks Saliva Increased abundance of Proteobacteria and
reduced abundance of firmicutes
and Leptotrichia

Kuang
et al., 2017

China 43/81 30.5 ± 3.3 28.8 ± 3.1 ADA 21–29 weeks Stool Increased abundance of Parabacteroides
distasonis, Klebsiella variicola
Decreased abundance of Bifidobacterium,
Eubacterium, Roseburia spp.
WHO, World Health Organization; ADA, American Diabetes Association; IADPSG, International Association of Diabetes and Pregnancy Study Groups.
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et al. (2021) noted a higher prevalence of Enterobacteriaceae,

Ruminococcaceae spp., and Veillonellaceae spp. very early in

pregnancy (at 6–15 weeks of gestation) of GDM women. Majority

of the research findings highlight an increased abundance of

Proteobacteria, Neisseria (Wang et al., 2018; Li X. et al., 2021),

Prevotella (Ganiger et al., 2019; Crusell et al., 2020), and

Capnocytophaga (Yao et al., 2019; Li X. et al., 2021) in GDM. In

contrast, a reduced abundance of Streptococcus (Yao et al., 2019;

Crusell et al., 2020; Li X. et al., 2021), Firmicutes and Leptotricia

(Wang et al., 2018; Li X. et al., 2021) is consistently observed across

multiple studies investigating GDM women. Inconsistent findings

were also noted in the study conducted by Xu et al. (2020) where

they reported a reduced abundance of Neisseria in GDM. GDM is

often associated with adverse perinatal outcomes as well as dysbiosis

in vaginal flora (Hirji et al., 2012; Goncalves et al., 2016). It is widely

accepted that pregnant women with GDM have an increased

susceptibi l i ty to Candida colonizat ion in the vagina

(Guggenheimer et al., 2000; Hirji et al., 2012). Zhang X. et al.

(2018) identified Lactobacillus listeri, Lactobacillus amylovorus, and

Lactobacillus fructivorans as abundant in GDM but absent in

healthy pregnant women. They further reported Lactobacillus

acidophilus being the most abundant among Lactobacillus,

followed by Lactobacillus crispatus and Lactobacillus inersclone in

GDM women compared to healthy pregnant women (Zhang X.

et al., 2018). Nevertheless, regardless of whether women had GDM

or were healthy during pregnancy, they did not notice significant

differences in the abundance and diversity of vaginal flora between

the 28–30 weeks and 37–40 weeks gestation periods. Notably,

Lactobacillus emerged as the dominant bacteria during both

stages of pregnancy (Zhang X. et al., 2018). Cortez et al. (2019)

reported an increased abundance of vaginal microbiomes such as

Bacteroides , Veillonella , Klebsiella , Escherichia-Shigella ,

Enterococcus, and Enterobacter in GDM women (Cortez et al.,

2019). The studies highlighted above emphasize the substantial

role of microbiota in GDM, showcasing altered diversity and

composition that impact metabolic health during pregnancy.

These alterations, occurring notably in the first and third
Frontiers in Bacteriology 06
trimesters, may influence perinatal outcomes. Further

investigation is needed to comprehend these alterations fully,

offering insights for diagnostic and therapeutic strategies aimed at

managing GDM and enhancing maternal and fetal outcomes.

Collectively, these findings contribute to our understanding of

GDM pathogenesis, suggesting a potential link between gut, oral,

and vaginal microbiota and the development of GDM.
2.4 Microbiota as predictors of GDM

Various studies have revealed significant alterations in the

composition and diversity of microbiota, suggesting their

promising role as predictors of GDM (Table 3). Ma et al. (2020)

observed an increased relative abundance of Eisenbergiella, Tyzzerella

4, and Lachnospiraceae NK4A136 in women with GDM. Conversely,

their microbiota was predominantly dominated by Parabacteroides,

Megasphaera, and Eubacterium eligens. Furthermore, fasting blood

glucose levels were positively correlated with an increased abundance

of Eisenbergiella and Tyzzerella 4, while Parabacteroides,

Parasutterella, and Ruminococcaceae UCG 002 showed the

opposite trend. The authors suggested that dysbiosis in early

pregnancy might be associated with the development of GDM.

Their study identified five microbiota-targeted panels

(Parabacteroides, Ruminococcus 2, Ruminococcaceae UCG-014,

Alloprevotella, and uncultured-Ruminococcaceae) that could

potentially serve as predictors of GDM, with an area under the

curve (AUC) of 0.696 (Ma et al., 2020). Zheng Wei et al. (2020)

identified a moderately good performance of a three-bacteria

component consisting of Coprococcus, Intestinimonas, and

Veillonella in predicting GDM in the first trimester. Additionally,

they proposed a potential association between the reduced abundance

of Coprococcus (a butyrate producer) and Streptococcus (a lactate

producer) and the development of insulin resistance and GDM

during both the first and second trimesters. Furthermore, they

hypothesized that the progression of GDM might be facilitated by

a stable gut microbiota composition or a lack of typical dynamic
TABLE 3 Microbiota as predictors of GDM.

Study
by

GDM/Non-
GDM women

Age
of

gestation

Age of GDM
women in years

Sample AUC Microbiota in GDM women

Li X.
et al., 2021

44/67 3rd trimester 31.5 ± 4.55 Saliva 0.83 Streptococcus

Dental
Plaque

0.83 Lautropia and Neisseria

Ma
et al., 2020

98/98 10–14 weeks 31.0 ± 3.0 Stool 0.696 Parabacteroides, Ruminococcus 2, Ruminococcaceae UCG-014,
Alloprevotella, and uncultured -Ruminococcaceae

Zheng
et al., 2020

31/130 1st trimester 32.58 ± 4.1 Stool 0.743 Coprococcus, Intestinimonas, and Veillonella

Xu
et al., 2020

30/31 24–28 weeks 33.7 ± 4.7 Stool 0.66 Hemophilus

Saliva 0.70 Leptotrichia

Mokkala
et al., 2017

15/60 ≤17 weeks 18–45 Stool 0.73 Ruminococcaceae
AUC, Area under the curve; GDM, Gestational diabetes malleates.
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changes (Zheng et al., 2020). Sililas et al. (2021) found that the

Firmicutes/Bacteroidetes ratio serves as a more sensitive marker of

severe GDM than a specific microbe. On the other hand, Mokkala

et al. (2017) observed that an increased relative abundance of the

Ruminococcaceae family correlated with higher odds of a positive

GDM diagnosis, along with a significant positive correlation between

Ruminococcaceae and OGTT results. They noted that the

Ruminococcaceae family exhibited an AUC of 0.73 for predicting

GDM, suggesting that alterations in gut microbiota composition may

influence the onset of GDM by affecting glucose metabolism through

inflammatory mechanisms (Mokkala et al., 2017).

Apart from gut microbiota, recent studies have also implicated

oral microbiota as potential predictors of GDM. Li X. et al. (2021)

demonstrated that Streptococcus in saliva (AUC=0.83) and

Lautropia and Neisseria in dental plaque (AUC=0.83) could

efficiently distinguish both GDM and healthy pregnant women,

highlighting their potential as predictors of GDM.

Xu Yajuan et al. (2020) reported that oral microbes such as

Leptotrichia (AUC=0.70) or gut microbes such as Haemophilus

(AUC=0.66) could serve as potential biomarkers to predict GDM

status. In a separate investigation conducted by Gao et al. (2022), it

was found that gut microbiota-derived metabolites hold promise as

potential serum biomarkers for predicting GDM. Valeric acid, in

particular, demonstrated the highest predictive potential with an

AUC of 0.831 for GDM diagnosis. A combination of metabolites

panel (isobutyrate, isovalerate, valerate, caproic acid, GUDCA,

THDCA + TUDCA, and LCA-3S) could distinguish GDM

patients from healthy women with a highest AUC of 0.890.

These findings collectively highlight the potential of microbiota

and its metabolites as non-invasive biomarkers for early GDM

diagnosis. Future research is needed with focus on longitudinal

studies to elucidate microbiota dynamics during pregnancy.

Additionally, mechanistic investigations are crucial to uncover the

underlying pathways linking microbiota alterations and GDM

development. Validation studies are also necessary to confirm the

reliability of microbiota-based biomarkers. Furthermore, integrating

these biomarkers with clinical parameters, conducting large-scale

clinical trials, and exploring broader clinical applications are essential

steps to fully leverage microbiome potential in improving GDM

prediction, management, and maternal–child health outcomes.
2.5 Microbiota as a dietary intervention
in GDM

Dietary interventions, including probiotics, prebiotics, and

synbiotics, present a promising avenue for altering the diversity and

richness of the gut microbiota. (Zheng et al., 2020) and potentially

reducing the risk of GDM.Microbial metabolites play a significant role

in glucose regulation through intestinal gluconeogenesis (De Vadder

et al., 2016). In women with GDM who followed dietary

recommendations, there was a decrease in the abundance of

Bacteroides species along with improved glycemic control

(Ferrocino et al., 2018). In a clinical trial, the administration of daily

supplements containing Lactobacillus rhamnosus HN001, at a dosage

of 6 x 109 colony forming units (CFU), between weeks 14 to 16 of
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pregnancy has demonstrated correlations with reduced incidence and

recurrence rates of GDM. This effect appears to be particularly notable

among older pregnant women and those with a history of GDM

(Wickens et al., 2017). Additionally, a clinical trial conducted by

Kijmanawat et al. (2019) found that GDM women who took

probiotics containing Lactobacillus and Bifidobacteria in the second

trimester demonstrated advantages for glucose metabolism, fasting

plasma glucose, insulin fasting, and insulin resistance. Moreover, the

administration of a combination of probiotics, including Lactobacillus

acidophilus LA-5, Bifidobacterium BB-12, Streptococcus thermophilus

STY-31, and Lactobacillus delbrueckii bulgaricus LBY-27, led to a

reduction in fasting blood glucose levels (Dolatkhah et al., 2015).

Furthermore, studies on symbiotic supplements containing

various strains of bacteria (such as Lactobacillus acidophilus,

Lactobacillus casei, and Bifidobacterium bifidum) along with

inulin have demonstrated improvements in very-low-density

lipoprotein cholesterol and insulin sensitivity among GDM

women (Ahmadi et al., 2016). However, some reports have

indicated inconsistency in the efficacy of dietary interventions

involving microbiota (Pellonperä et al., 2019; Shahriari et al.,

2021). Further research is warranted to fully explore the potential

of dietary supplement interventions in modulating gastrointestinal

microecology during pregnancy. The field is still in its early stages

and requires additional investigation.
3 Conclusion

GDM impacts a significant percentage of women during

pregnancy, and the incidence of GDM is anticipated to increase as

obesity prevalence rises worldwide. If accurately predicted in the early

stages of pregnancy and effective measures implemented, the clinical

course of GDM with its accompanying gestational complications and

long-termmaternal and fetal health risks could bemitigated. Although

there have been advancements in the study of accurate biomarkers for

diagnosing GDM, none have proven high clinical utility and validity.

The microbiome provides an exciting insight into the biology of

metabolic disorders, increasing the likelihood of novel biomarkers for

clinical application in GDM and their possible use as targeted

therapeutics. The processing of enormous metagenomics datasets

has the potential to provide more accurate models of GDM, even in

the earliest stages of pregnancy. In addition, diagnosing GDM via

microbiota assessment for dysbiosis is simple and pragmatic.

Obtaining stool and salivary samples from pregnant women is more

manageable than blood collection via venipuncture after an oral

glucose challenge load. Doctors, nurses, and pregnant women can

collect oral and stool samples. In several trials, it is encouraging to see

that a small number of bacteria can produce an acceptable level of

discrimination, allowing for the development specialized bacterial

probes for GDM detection.

Furthermore, well-designed prospective clinical trials are

necessary to define and develop the ideal biomarkers. Thanks to

these novel biomarkers, our understanding of the pathophysiology

and progression of GDM will expand and deepen. The obvious and

necessary goal is improved outcomes in maternal–fetal health on a

global scale.
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