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Bacterial hypothetical proteins
may be of functional interest
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Genomic analysis is part of the daily routine for many microbiology researchers.

These analyses frequently unveil genes that encode proteins with uncertain

functions, and for many bacterial species, these unknown genes constitute a

significant proportion of their genomic coding sequences. Because these genes

do not have defined functions, they are often overlooked in analyses.

Experimentally determining the function of a gene can be challenging;

however, ongoing advancements in bioinformatics tools, especially in protein

structural analysis, are making it progressively easier to assign functions to

hypothetical sequences. Leveraging various complementary tools and

automated pipelines for annotating hypothetical sequences could ultimately

enhance our comprehension of microbial functions and provide direction for

new laboratory experiments.
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1 Introduction

High-throughput sequencing has made its mark in the biological sciences, and it is now

possible to sequence complete genomic DNA samples at low cost. Genomic analyses are

currently routine in bacteriology, and can be used, among other things, to identify new

organisms (Richter and Rosselló-Móra, 2009) and virulence genes (Li et al., 2018) and to track

the spread of antibiotic resistance determinants (Orlek et al., 2023). This explosion in

sequences has required the creation of databases to archive, classify, and make genomic data

accessible. Some databases—such as the well-known RefSeq (O’Leary et al., 2016), which

includes non-redundant, well-annotated sequences—are generalists. Others are specialized

and contain sequences from model organisms or organisms that have been extensively

studied, such as Pseudomonas (Winsor et al., 2016) or Mycobacterium (Kapopoulou et al.,

2011). Finally, some databases, such as EggNOG (Huerta-Cepas et al., 2019) or STRING

(Szklarczyk et al., 2015), are geared toward the functional categorization of genes. These latter

databases are particularly useful for determining the role of proteins and possibly their
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interactions in a network. Obviously, functional databases require

more precise gene sequence information than generalist databases.

Generally, functional characterization of a gene involves

modifying the gene by molecular biology techniques and then

observing differences between the mutant strain (with the

modified gene) and the parental strain. Although increasingly

effective strategies—such as CRISPR-Cas9 (Doudna and

Charpentier, 2014)—are available, the characterization of a gene

can still be arduous and time-consuming. For example, the

integration of the exogenous genetic material into cells, required

for genetic manipulation, can be difficult in little-studied organisms

for which few or no protocols are available. In some cases, the effect

caused by gene alteration may be subtle and difficult to observe.

Finally, detecting differences when modifying an essential gene is

often impossible because these changes can be fatal for the cell.

Sequence similarity searches using bioinformatics tools such as

BLAST (Altschul et al., 1990) or DIAMOND (Buchfink et al., 2015)

enable the function of genes to be inferred from their evolutionary

proximity to other known genes. This principle of inference

underlies all automatic annotation tools, such as Prokka

(Seemann, 2014), Bakta (Schwengers et al., 2021), and RAST

(Aziz et al., 2008). Homology is also useful for assigning

functions to genes in organisms that are difficult to manipulate

genetically. However, to assign a function to a gene with these tools,

at least one evolutionarily close sequence must already have been

characterized and be in the database used.

Following a homology search, it is possible that no homologous

sequence is found. This gene is considered an ORFan (Fischer and

Eisenberg, 1999), and may be either a chance open reading frame

(ORF) that codes for nothing, or a real gene identified for the first

time. However, homology searches more commonly identify

sequences with no known function. These gene sequences are

generally considered to code for hypothetical proteins.
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2 Hypothetical proteins: the case of
Escherichia coli

By October 2023, the RefSeq database included approximately

5,000,000 protein sequences from Escherichia coli, one of the most

studied organisms. The genome of the reference strain E. coli

O157:H7 str. Sakai (RefSeq GCF_000008865.2) contains 5155

protein-coding genes. However, more available genomic

sequences obviously means that more genes are listed, because

each strain—having a life of its own—may have acquired genes

horizontally from other bacteria. By the same date, just over

35,000 genomic assemblies were available for E. coli. In addition

to the large number of sequences available, E. coli is known to have

an open pan-genome, meaning that it has great facility in

acquiring genes from other bacteria in its environment (Rasko

et al., 2008).

Of the 5,000,000 protein sequences, approximately 500,000

(10%) correspond to hypothetical proteins. These hypothetical

protein sequences vary in length (Figure 1), some being far too

long to believe they are from coincidental open reading frames.

Several sequences even exceed 1000 amino acids (AAs) long,

whereas an average bacterial gene, in general, is around 1000 bp

(~333 AAs) long. The longest sequence (RefSeq WP_301221190.1)

is 7556 AAs. BLASTP analysis against the nr/nt database identified

that the sequence of this protein is also present in different species of

Staphylococcus, in addition to E. coli.

Interestingly, a re-annotation of the hypothetical protein

sequences with a local installation of the eggNOG-mapper tool

(Cantalapiedra et al., 2021) revealed a categorization for 145,225

sequences, i.e., almost 30% of the hypothetical sequences (Figure 2).

Unfortunately, the category with the most sequences was “S,

function unknown,” indicating that the sequences have several

homologs in the EggNOG database, but their functions are also
FIGURE 1

Length distribution of E. coli hypothetical protein sequences found on RefSeq.
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unknown. Despite this, many sequences are thought to be involved

in cell membrane biogenesis and cell metabolism. Even if it is

impossible to assign a clear function to the sequences in the “S”

category, a description is often offered by the tool, which can help to

determine a potential role for these proteins. For example, of the

44,441 sequences in the “S” category, 5625 (~12.6%) have the term

“phage” in the description, suggesting a viral origin.
3 Should we be interested in
hypothetical proteins?

Many bioinformatics analyses require the investigation of a

multitude of bacterial genes (e.g., mutation screening, differential

gene expression). Typically, these analyses generate a list of genes of

interest. Obviously, the reflex is to look only at known genes,

especially those that might have a link with the reason for the

analysis, and assume the hypothetical protein-coding genes are

non-existent or negligible from a biological point of view. However,

if the analysis has identified these genes, they may be of interest.

Some research groups have demonstrated the value of

investigating genes coding for hypothetical proteins. For example,

Rahman et al. identified genes involved in the adaptation of Bacillus

paralicheniformis and other genes of potential biotechnological

interest among the genes coding for hypothetical proteins (Rahman

et al., 2022). In 2020, Araújo et al. characterized genes coding for

hypothetical proteins that could be involved in the pathogenesis of

the bacterium Corynebacterium pseudotuberculosis (Araújo et al.,

2020). A 2017 study also demonstrated that characterizing the

coding sequences for hypothetical proteins in Mycobacterium

tuberculosis, one of the deadliest bacteria in humans, was of interest

in providing new therapeutic targets (Raj et al., 2017). Similar

discoveries have been made in eukaryotic organisms. For example,

Silva et al. identified a hypothetical protein in Penicillium rubens as

having an important role in glucose/galactose metabolism (Silva et al.,

2020). Finally, in a recent study, the Q6S8D9_SARS protein of the

virus SARS-CoV was determined to potentially alter the host antiviral

inflammatory cytokine and interferon production pathways

(Rahman et al., 2023), demonstrating that hypothetical viral

proteins may also be of interest to investigate.
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4 Discussion and perspectives

When a gene is no longer needed by a bacterium, it tends to

accumulate mutations due to reduced conservation pressure and

drift into a pseudogene that is quickly eliminated (Kuo and

Ochman, 2010). Therefore, if genes coding for hypothetical

proteins are maintained, it is reasonable to believe that they have

a function necessary for the proper functioning or survival of the

cell. There is some evidence to support the importance of a gene

coding for a hypothetical protein: a gene is too long to be an

adventitious reading frame, homologous sequences are found in

several organisms, and a transcript is present.

One of the challenges with hypothetical protein-coding genes is

assigning functions to them efficiently and with a good degree of

certainty. As previously demonstrated by the E. coli example, it may

be possible to assign putative functions to several proteins encoded

by these genes using various bioinformatics tools. Not all tools use

the same databases, algorithms, and criteria to find homologous

sequences. Using different, complementary tools can, therefore, lead

to better functional annotation. This rationale for using

complementary tools was addressed in 2019 by Ijaq et al., who

proposed a nine-point classification to help assign function to

hypothetical proteins (Ijaq et al., 2019). In addition to sequence

homology annotation against different databases, the authors also

proposed the use of other tools to infer protein–protein

relationships, cellular localization, and protein structures.

The increasing availability of genomic and metagenomic

sequences, coupled with advancing computing power, allows for

the implementation of large-scale strategies to investigate protein

distribution, such as clustering proteins into homologous groups. A

recent endeavor clustered 415,971,742 genes predicted from 1749

metagenomes and 28,941 bacterial and archaeal genomes into

2,940,257 high-quality clusters (Vanni et al., 2022), with 43% of

clusters identified as unknowns. This information can be important

because hypothetical protein families that are conserved in multiple

genomes are likely to be functional. Inferring the taxonomy of the

microorganisms carrying these unknown families, and considering

the environment where they were found, can provide valuable

insights. Unknown families typically exhibit narrower taxonomic

and ecological distributions compared with known families,
FIGURE 2

The 10 functional categories containing the most E. coli hypothetical protein sequences and annotated by eggNOG-mapper.
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indicating their potential significance for niche adaptation (Coelho

et al., 2022; Vanni et al., 2022). Intriguingly, another recent study

revealed that many unknown families of proteins are conserved in

archaeal groups, suggesting their importance in the emergence and

diversification of these groups (Méheust et al., 2022).

Protein functions and structures are closely linked, which is why

two proteins with similar structures can also have similar functions,

even if no sequence homology is detected (Sousounis et al., 2012).

Tools for determining 3D protein structures from primary sequences

have taken an incredible leap forward in recent years with the

integration of deep learning into their algorithms. For instance, the

AlphaFold2 tool (Jumper et al., 2021), developed by DeepMind, has

enabled the prediction of the structure of over 200 million sequences

in the UniProt database; these results are accessible through a

database called AlphaFold DB (Varadi et al., 2022). Many of these

structures are for hypothetical proteins and may eventually be used to

infer the functions of these proteins. An automated pipeline, 3DFI,

exploits these structure prediction tools to infer the functionality of

hypothetical proteins (Julian et al., 2021). In 2022, a tool called I-

TASSER-MTD was published and can predict, from the primary

sequence of a protein, its 3D structure, function, ligand, and more

(Zhou et al., 2022). Other bioinformatics resources, such as CATH

(Knudsen and Wiuf, 2010), enable searches based on protein

structures rather than sequences. Realistically, the growing number

of protein structures will enable these tools to be increasingly used

and integrated into analysis pipelines.

Although bioinformatics tools to effectively predict protein

functions are becoming more available, these analyses can be

computationally demanding. Specialized computing and human

resources may be required to successfully perform analyses,

especially on tens or even hundreds of hypothetical protein

sequences. However, computer hardware is also becoming more

efficient, including graphics cards with great computing power

through GPUs; these are widely used in protein structure

prediction algorithms.

In conclusion, coding sequences for hypothetical bacterial

proteins are common in databases, such as RefSeq. However, just

because proteins are hypothetical does not mean they are not

interesting and without biological function. The use of several

complementary tools can significantly aid the functional annotation

of protein sequences. The development of bioinformatics tools and

tools related to protein structures, combined with the improvement

of computer equipment, make it possible that new functions will be

assigned to proteins currently considered hypothetical. These

analyses, by providing functional evidence, will facilitate the

experimental confirmation of these proposed functions.
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