
Frontiers in Bacteriology

OPEN ACCESS

EDITED BY

Daniel Yero,
Autonomous University of Barcelona, Spain

REVIEWED BY

Ruian Ke,
Los Alamos National Laboratory (DOE),
United States
Samantha J. Lycett,
University of Edinburgh, United Kingdom

*CORRESPONDENCE

Carl J. E. Suster

carl.suster@health.nsw.gov.au

Vitali Sintchenko

vitali.sintchenko@sydney.edu.au

RECEIVED 24 October 2023

ACCEPTED 23 February 2024
PUBLISHED 06 March 2024

CITATION

Suster CJE, Pham D, Kok J and Sintchenko V
(2024) Emerging applications of artificial
intelligence in pathogen genomics.
Front. Bacteriol. 3:1326958.
doi: 10.3389/fbrio.2024.1326958

COPYRIGHT

© 2024 Suster, Pham, Kok and Sintchenko.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Mini Review

PUBLISHED 06 March 2024

DOI 10.3389/fbrio.2024.1326958
Emerging applications
of artificial intelligence in
pathogen genomics
Carl J. E. Suster1,2*, David Pham3, Jen Kok1,2,3

and Vitali Sintchenko1,2,3*

1Centre for Infectious Diseases and Microbiology – Public Health, Westmead Hospital, Westmead,
NSW, Australia, 2Sydney Infectious Diseases Institute, The University of Sydney, Sydney,
NSW, Australia, 3Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of
Clinical Pathology and Medical Research, NSW Health Pathology, Westmead, NSW, Australia
The analysis of microbial genomes has long been recognised as a complex and

data-rich domain where artificial intelligence (AI) can assist. As AI technologies

have matured and expanded, pathogen genomics has also contended with

exponentially larger datasets and an expanding role in clinical and public health

practice. In this mini-review, we discuss examples of emerging applications of AI

to address challenges in pathogen genomics for precision medicine and public

health. These include models for genotyping whole genome sequences,

identifying novel pathogens in metagenomic next generation sequencing,

modelling genomic information using approaches from computational

linguistics, phylodynamic estimation, and using large language models to make

bioinformatics more accessible to non-experts. We also examine factors

affecting the adoption of AI into routine laboratory and public health practice

and the need for a renewed vision for the potential of AI to assist pathogen

genomics practice.
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1 Introduction

Artificial intelligence (AI) has long been recognised as a powerful tool for analysing

genome sequences. The AI boom of the 1980s propelled by the emerging popularity of

expert systems saw the development of knowledge-based platforms to assist with

experimental planning in genetics (Stefik, 1981; Friedland et al., 1982). The nascent

application of AI to molecular biology was viewed with much optimism as a means to

make sense of the complex data that were amassing; ambitious visions conceived of a

computer intelligence that would not merely process data but would execute the scientific

processes of hypothesising, experimental design, and knowledge synthesis (Hunter, 1992;

Rawlings et al., 1994). Over the subsequent decade, AI approaches including algorithmic
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classifiers and artificial neural networks were applied to tasks from

distinguishing translational initiation sites in bacteria (Stormo et al.,

1982) to predicting protein structure and function (Hunter, 1993).

Excitement in AI driving knowledge discovery was tempered by the

realisation that contemporary technology and understanding were

not sufficiently mature to realise the vision.

In the intervening years, both AI technology and the breadth

and scope of pathogen genomics have advanced exponentially. AI

has been employed across diverse aspects of the response to the

COVID-19 pandemic (Syrowatka et al., 2021; Arora et al., 2021;

Chen et al., 2022; Ahmed et al., 2022; Sarmiento Varón et al., 2023;

Malhotra and Sodhi, 2023), and in clinical and molecular medicine

applications more broadly (Gomes and Ashley, 2023; Haug and

Drazen, 2023). The central focus has shifted from integrated

knowledge systems to more specialised tools for tasks including

predicting antimicrobial resistance (Anahtar et al., 2021) and

identifying patterns in larger disease surveillance datasets

(Brownstein et al., 2023).

In this mini-review, we focus on innovative applications of AI to

pathogen genomics that model diagnostic problems in a novel

manner or adopt existing approaches in an unconventional way.

We discuss several illustrative examples of how AI can already—or

might soon—assist clinical and public health investigations, as

summarised in Figure 1 and Table 1. We outline themes shaped

by current challenges in the analysis of medically relevant

microbial genomic data and the possibilities promised by

emerging technologies.
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2 AI primer

AI broadly encompasses intelligent behaviours exhibited by

machines. The field is organised around a long-term goal of

producing intelligent and autonomous artificial agents capable of

equalling or exceeding human cognitive abilities. Current

applications draw on specific facets of intelligence such as

reasoning for classification and decision-making, knowledge

retrieval and representation, perception, and communication in

natural language (Jiang et al., 2022). Machine learning (ML) refers

to methods where a task is performed by an algorithm or agent that

improves its performance by some measure as it acquires more

experience or data (Mitchell, 1997). In general, MLmethods are data-

driven instead of relying on behaviours fully specified a priori. They

are broadly grouped by learning paradigm (Bonaccorso, 2018).

Supervised learning requires labelled examples: a ground truth

established by independent means. A candidate model is proposed

by relating input features (e.g. attributes of specimens and

patients, gene presence, representations of nucleotide or amino

acid sequences) to the target variable, which is discrete for

classification problems or continuous for regression problems.

Learning proceeds iteratively by adjusting the model’s parameters

to decrease the error in its predictions. If the model has too closely

learned the contours of its training data then it will reproduce

spurious correlations and biases present in those examples that do

not represent general patterns, and it is said to have overfit its

training data. Robust models have sufficient and representative
FIGURE 1

Illustration of the roles of major categories of AI in the workflow from sample to results (grey circle). Conventional workflows (grey arrows) use
phenotypic testing or genomic analysis to derive information of public health or clinical relevance. Large language models can assist with generating
code, interpreting phenotypic findings, or retrieving information. Supervised ML models are trained with examples to make predictions from
genomic data. Unsupervised ML models identify patterns in genomic data without requiring examples. The choice of genome representation is
important for AI methods. AMR, antimicrobial resistance; NGS, next generation sequencing; mNGS, metagenomic NGS.
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TABLE 1 Example applications of AI to a selection of problems in pathogen genomics.

Required datasets AI technology Target
pathogens

Features Reference

Predict host or specimen of isolation

Genomic microarray Decision trees;
random forest;
support vector
machine; regression

Legionella
pneumophila

Using a narrow dataset of clinical isolates and associated environmental
isolates, feature selection highlighted genomic markers informative of
clinical strains.

(van der Ploeg
and
Steyerberg,
2016)

Assembled genomes Support
vector machine

Escherichia
coli O157

Core genome analysis was often unable to distinguish bovine from
human isolates, but a classifier using the genes in the accessory genome
(i.e. present in a minority of the genomes) performed well.

(Lupolova
et al., 2016)

Assembled genomes Various Salmonella
enterica
serovar
Typhimurium

Review of several ML techniques applied to a host attribution task
based on accessory genome content.

(Lupolova
et al., 2019)

Assembled genomes Random forest Streptococcus
pneumoniae

The presence of particular genes from a pangenome analysis were
associated by the classifier with strains isolated from sterile sites as a
proxy for invasive disease.

(Obolski
et al., 2019)

Assembled genomes Hidden Markov
model; random forest

Campylobacter
jejuni

To distinguish strains isolated from extraintestinal (invasive) and
gastrointestinal sources, the accessory genome content was insufficient
whereas a measure of acquired rare mutations in key genes
was informative.

(Wheeler
et al., 2019)

Predict genotype

Assembled and
aligned genomes

Multinomial
regression; decision
trees; random forest

SARS-CoV-2 Rapidly assigned sequences to granular viral lineages during a period
where data accumulated faster than manually curated rulesets
could accommodate.

pangoLEARN
(O’Toole
et al., 2021)

Annotated and aligned
haemagglutinin genes

Hidden Markov
model; support
vector machine

Influenza H5N1
and H9N2

A hierarchical clade designation method that addressed limitations of
the status quo: time-consuming manual curation and analysis with a
reference phylogenetic tree.

LABEL
(Shepard
et al., 2014)

Genomic microarray Gradient boosting
machine;
random forest

Streptococcus
pneumoniae

Predicts serotype from microarray data covering the capsular
polysaccharide synthesis (cps) genes.

(Newton and
Wernisch,
2017)

Identify novel pathogens from (meta)genomic data

Next generation
sequencing reads

Convolutional neural
network; long short-
term memory

Staphylococcus
aureus; SARS-
CoV-2

Predicts novel viral and bacterial pathogens in real time (i.e. while a
sequencing run is ongoing) for both Nanopore and Illumina platforms.

(Bartoszewicz
et al., 2021)

Gene families (annotated
assembled genomes)

Random forest Various Distinguishes pathogens from commensal bacteria in clinical isolates
using the presence of gene families.

(Naor-
Hoffmann
et al., 2022)

Either short reads or
assembled contigs; curated
AMR databases

Neural network Various Predicts AMR genes with a goal to reduce false negative rates with
respect to direct matching to reference databases without compromising
on the true positive rate.

DeepARG
(Arango-
Argoty
et al., 2018)

Amino acid sequence;
curated AMR databases

Convolutional
neural network

Pseudomonas
aeruginosa

Predicts novel AMR genes, associated drug class, resistance mechanism,
and mobility; in vitro confirmation of a selection of predicted
AMR genes.

HMD-ARG (Li
et al., 2021)

Draft assembly Random forest;
hidden Markov
models; deep learning

Clostridioides
difficile;
Klebsiella
pneumoniae

Predicts mobile genetic elements and genes associated with virulence
factors, toxins, or AMR, using separate pipelines that are assembled
into a single report.

PathoFact (de
Nies
et al., 2021)

Amino acid sequence;
curated virulence database

Support vector
machine; random
forest
(alternative model)

Shigella flexneri;
Mycobacterium
tuberculosis

Predicts the presence and function of virulence genes based on
physicochemical properties of proteins, validated on a range of
bacterial taxa.

MP4 (Gupta
et al., 2022)

(Continued)
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TABLE 1 Continued

Required datasets AI technology Target
pathogens

Features Reference

Identify novel pathogens from (meta)genomic data

Assembled genomes from
long reads

Decision trees; logistic
regression; support
vector machine

Escherichia coli Classifier identified six genes capable of distinguishing highly
pathogenic Shiga toxin-producing E. coli strains from closely-
related bacteria.

(Vorimore
et al., 2023)

Identify viruses from metagenomic data

— — Bacteriophages Evaluation of several different tools for detecting viral mNGS reads
using a consistent benchmarking dataset.

(Ho
et al., 2023)

Draft assembly; curated
viral database

Random forest Bacteriophages Initial version predicts tailed phages of the Caudovirales order only, but
can group phage reads rather than analysing single contigs.

MARVEL
(Amgarten
et al., 2018)

Metagenome-assembled
scaffolds; curated
viral database

Neural network
(multi-
layer perceptron)

Bacteriophages Uses a sequence similarity search that is not based on references to find
likely annotations for novel sequences, with a focus on recovering high-
quality viral scaffolds.

VIBRANT
(Kieft
et al., 2020)

k-mers from draft assembly
or mNGS reads; curated
viral database

Convolutional
neural network

Bacteriophages Early application of deep learning to the task, with a focus on
performance for short sequences such as reads.

DeepVirFinder
(Ren
et al., 2020)

1-kbp fragments of
assembled genomes; curated
viral database

Long short-term
memory network
(recurrent
neural network)

Bacteriophages Uses longer sequence fragments and a training process designed to
detect novel phage sequences that are not represented in the curated
viral database.

Seeker
(Auslander
et al., 2020)

Draft assembly; curated
viral database

Random forest;
hidden
Markov models

DNA and
RNA viruses

Designed for novel virus discovery, using a modular design where
specific parts of the model can be disabled to improve performance for
different datasets.

VirSorter2
(Guo
et al., 2021)

k-mers from assembled
genomes; curated
viral database

Representation/
transfer
learning (DNABERT)

Bacteriophages A language-based model that combines the performance of database-
based approaches and the speed of alignment-free methods.

INHERIT (Bai
et al., 2022)

Complete contigs; curated
phage database with
lifestyle annotations

Convolutional
neural network

Bacteriophages Distinguishes temperate from virulent phage sequences. DeePhage (Wu
et al., 2021)

Information retrieval and code generation

CovSpectrum database LLM (GPT-4) SARS-CoV-2 Chatbot interface converts a freeform user query into a database query,
executes the query, and presents the result alongside a
short explanation.

GenSpectrum
Chat (Chen
and
Stadler, 2023)

Off-the-shelf LLM models LLMs (GPT-4, Bing,
Bard, FreedomGPT,
and others)

Influenza virus;
variola major
virus;
Nipah virus

Widely available chatbots explained how to generate pandemic-causing
pathogens despite safeguards intended to prevent their use to
cause harm.

(Soice
et al., 2023)

CORD-19 (curated COVID-
19 scientific
literature corpus)

LLM (GPT-2) SARS-CoV-2 Extracts and tabulates viral variants and associated effects such as
clinical outcomes and viral replication from paper abstracts.

CoVEffect
(Serna Garcıá
et al., 2023)

Off-the-shelf LLM model LLM (ChatGPT) — Case studies of applications of a chatbot to assist with bioinformatic
tasks in a pedagogical setting.

(Shue
et al., 2023)

Off-the-shelf LLM models LLM (GPT-3,
ChatGPT, Bing,
and others)

— Test suite of genomic tasks used to evaluate different LLMs and their
ability to understand and perform bioinformatic tasks.

GeneTuring
(Hou and
Ji, 2023)

Ontology of bioinformatic
tools; laboratory workflows

Graph neural network — Recommends bioinformatic tools to complete analysis workflows. BTR
(Green, 2023)

Predict effect of mutations

Amino acid sequences of
viral proteins; corresponding
replication fitness

Constrained semantic
change search;
unsupervised ML

SARS-CoV-2;
HIV;
Influenza virus

Language-based model to predict immune escape potential
of mutations.

(Hie
et al., 2021)

(Continued)
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training data and a meaningful cross-validation procedure. Popular

supervised models include random forests and support vector

machines (Bonaccorso, 2018).

By contrast, unsupervised learning aims to discover structure

directly from unlabelled data. This often involves using a similarity

measure to cluster the data, and by extension identifying anomalous

departures from typical patterns. Common unsupervised techniques

include principal component analysis and k-means clustering

(Bonaccorso, 2018). Hidden Markov models are a type of latent

variable model widely deployed in bioinformatic tools for tasks such

as homology detection and sequence alignment, and often trained in

an unsupervised manner (Eddy, 2004).

Deep learning refers to the class of models based on artificial

neural networks with a multi-layer network topology (Sarker, 2021;

Esteva et al., 2019). Training to determine the weights connecting

nodes can be supervised, unsupervised, or a combination. In feed-

forward networks (e.g. multilayer perceptrons) signals flow through

the network in one direction, whereas recurrent networks (e.g. long

short-term memory) contain loops allowing long-range patterns to

be learned efficiently (Hochreiter and Schmidhuber, 1997).

Convolutional layers incorporate two-dimensional relationships

in input data, with applications in computer vision (Gu et al.,

2018). Many deep learning models (e.g. variational autoencoders)

are designed for representation learning: i.e. to take raw data and

automatically discover relevant features that would otherwise have

been engineered by the analyst (Bengio et al., 2013).

Natural language processing (NLP) is the multidisciplinary area

of research concerned with computer analysis of the full gamut of

linguistics from the physical manifestations of language to the syntax

governing their combination and systems for conveying meaning

and style. Recent attention has focused on the advances in large

language models (LLMs). These are artificial neural networks with

billions of parameters trained using extensive corpora to produce

plausible text continuations. Most current LLMs use a transformer

architecture based on the ML concept of attention as an alternative

to recurrence for capturing long-range patterns (Vaswani et al., 2017;

De Santana Correia and Colombini, 2022; Choi and Lee, 2023).

Current models can respond to prompts in a way that convincingly

suggests the involvement of cognitive skills like comprehension,

language production, and reasoning, despite lacking explicit models

of grammar or knowledge (Wolfram, 2023; Bubeck et al., 2023).
Frontiers in Bacteriology 05
All applications of AI to genomic data must make a choice of

how to represent the genome in a usable form. Models processing

raw sequencing reads must cope with uninformative variation

including reverse complements, primer adapters, and characteristic

errors associated with the sequencing platform. On the other hand,

more processed forms such as draft genome assemblies risk

discarding potentially relevant information. Many models use k-

mers—short overlapping fragments of a small number, k, of

nucleotides—as a convenient encoding (Alam and Chowdhury,

2020), while others use larger pieces of genomes. The choice may

be influenced by characteristics of the AI techniques employed and

the context and quality of data.
3 Virulence and genotype prediction

The characterisation of medically-relevant pathogens—as

distinct from non-virulent colonising organisms—is one of the

most urgent tasks in clinical microbiology. This task includes the

identification of pathogens present in a specimen, their type based on

antigenic markers or genomic features (Ramadan, 2022), and their

virulence and antimicrobial resistance (AMR) phenotypes. These

findings inform clinical management, public health responses to

outbreaks, and the objectives of surveillance programs including risk

planning and antimicrobial stewardship. Analysis of microbial whole

genome sequences (WGS) has been increasingly complementing or

in some instances replacing traditional microbiological assays in this

setting (Gilbert, 2002). The greater depth of biologically meaningful

information contained in WGS enables considerable nuance in

investigations and commensurate challenges for interpretation.

With a suitably large collection of related microbial genomes, it

becomes possible to search for genomic determinants of specific

phenotypes. Supervised ML classifiers are well-suited to this task as

they can uncover weak signals that correlate with membership in

particular classes. A number of studies have examined surveillance

datasets consisting of genomes isolated from both clinical and

environmental samples, using Legionella pneumophila genome

microarray data (van der Ploeg and Steyerberg, 2016) and WGS

for Escherichia coli (Lupolova et al., 2016) and Salmonella enterica

(Lupolova et al., 2019). These studies trained ML classifiers to

predict which sequences were associated with clinical sources. This
TABLE 1 Continued

Required datasets AI technology Target
pathogens

Features Reference

Predict effect of mutations

Amino acid sequences of
epitopes; experimental data
for calibrating
structural models

Deep neural
networks;
unsupervised ML

SARS-CoV-2 Combines a language-based model with structural modelling of
antibodies and receptor binding kinematics.

(Beguir
et al., 2023)

Amino acid substitutions;
corresponding phenotypes

Hierarchical Bayesian
model;
unsupervised ML

SARS-CoV-2 Explainable model that allows generalising limited genotype-phenotype
data to predict the effect of novel mutations.

LANTERN
(Tonner
et al., 2022)
The type of genomic data used and any special additional datasets required for model training are noted, along with the major AI technology, major pathogens used in the study or for validation,
and a brief summary.
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information by itself is of limited value since it is known to the

laboratory in most circumstances. Instead, it is the ability to

interrogate the workings of the classifiers that turns out to be

useful. Identifying genomic features that the classifiers relied upon

can direct subsequent experimental confirmation of virulence

determinants. Examples where the classifiers incorrectly predict

environmental isolates to be clinical are suggestive of enhanced

zoonotic potential, and could prompt further investigation.

Public health and clinical laboratories may not have ready access

to environmental samples if they are processed by independent

pathology providers. Similar studies have trained ML models to

distinguish isolates collected from sterile and non-sterile sites for

Streptococcus pneumoniae (Obolski et al., 2019) and Campylobacter

jejuni (Wheeler et al., 2019). Collection from sterile sites was used as a

proxy for invasive disease. Examination of the models revealed genes

associated with invasive disease that could then be compared to

experimentally verified virulence determinants. More generally,

genome-wide association studies (GWAS) using ML for identifying

virulence markers may incorporate in vivo or in vitro empirical

measures of virulence, clinical data such as disease severity and

therapeutic responses, and statistical correction for population

structure confounding associations (Allen et al., 2021). By

combining genomic data with detailed phenotypic and clinical

information, ML can discover nuanced relationships between

microbial virulence factors and host risk factors to inform

personalised treatment (Recker et al., 2017).

SARS-CoV-2 lineage designations have been a crucial tool in

the COVID-19 pandemic response, including for disease

surveillance. Being a novel virus, lineage definitions were

developed de novo based on complete viral genomes: the

challenge was in updating the scheme to keep pace with viral

evolution and the deluge of reported sequences. The dynamic

Pangolin scheme emerged as the de facto international standard,

accompanied by the pangoLEARN tool to predict lineages using an

ML classifier (O’Toole et al., 2021). Over time the classifier was

changed from multinomial logistic regression to decision trees, and

then to a random forest with version 4 of Pangolin (O’Toole et al).

The classifier operated on a representation of the complete aligned

genome with uninformative sites removed. In principle, lineage

designation could have used a manually curated set of rules based

on the presence of expected mutations, but in practice this was not

feasible given the weekly update cadence adopted to maintain

relevancy. A revised ML model could be trained in 30 minutes

and could call lineages for 1000 genomes in 25 seconds, meaning

that it offered a practical solution. Subsequent analysis reported that

pangoLEARN was less accurate and less stable across versions

compared to an alternative approach using phylogenetic

placement (Schneider A de et al., 2023).
4 Pathogen discovery from
metagenomic data

Metagenomic next generation sequencing (mNGS)—the

minimally biased recovery and analysis of all nucleic acid from a

clinical specimen—has emerging applications in clinical (Chiu and
Frontiers in Bacteriology 06
Miller, 2019) and public health (Ko et al., 2022) microbiology. Their

inclusive approach to sequencing allows metagenomic methods to

be highly sensitive and to avoid specifying details of the target

organism a priori as would be required in amplicon sequencing. As

a consequence, analyses must contend with a large number of

mNGS reads from the host organism, laboratory environment, and

other non-target sources (Salter et al., 2014). Reads that cannot be

assigned to known reference sequences constitute the “microbial

dark matter”: fastidious organisms that are not readily cultured in

standard media, or organisms that are otherwise absent from or

underrepresented in genomic databases.

One option for progress is to painstakingly shed light on the

dark matter as is done by a number of cataloguing projects, novel

and more inclusive culturing approaches, and culture-independent

sequencing experiments (Lok, 2015; Jiao et al., 2021). In parallel,

AI-based approaches have sought to transfer hard-earned

experimental data about known microorganisms to under-

characterised or novel organisms by identifying structural

similarities in genomes (Hoarfrost et al., 2022). Deep learning

models are well-suited to this problem of learning subtle patterns

from vast accumulations of mNGS reads. They have been deployed

to identify novel pathogens (Bartoszewicz et al., 2021; Naor-

Hoffmann et al., 2022) as well as genes associated with AMR

(Arango-Argoty et al., 2018) or virulence (de Nies et al., 2021;

Gupta et al., 2022) in bacteria. Li et al. (2021) experimentally

confirmed in vitro resistance for some examples of Pseudomonas

aeruginosa AMR genes predicted by their model in cases where

direct sequence similarity methods would have failed due to low

nucleotide identity with existing databases.

A class of ML-based methods is devoted to identifying viruses or

viral fragments from metagenomic data, including methods with a

specific focus on bacteriophages (Ho et al., 2023; Amgarten et al.,

2018; Kieft et al., 2020; Auslander et al., 2020; Guo et al., 2021; Bai

et al., 2022). The principle underpinning these methods is that

fragments of a viral genome share more features with other viruses

than they do with non-viral organisms present in the library. Subtle

differences in nucleotide or k-mer frequency, or particular motifs

might provide enough clues for a model to identify a viral read even

when it is quite dissimilar to its nearest relative in reference databases.

Other tools sub-categorise viral reads including to distinguish

temperate phages from virulent phages (Wu et al., 2021).

AI techniques have also been applied to biome source tracking:

the task of identifying source microbial communities that contributed

to a specimen (Zha et al., 2022). Rather than searching for fragments

of genomes to explain a pathology, this task is concerned with

grouping all of the data into likely communities of organisms.

Shenhav et al. (2019) developed an unsupervised learning approach

based on expectation maximisation, which they used to predict the

contribution of maternal microflora to infant microbiome, to identify

evidence of food and soil contaminants in longitudinal samples from

a household, and to distinguish gut microbiota of critically ill patients

from those of healthy adults. Deep learning approaches have been

successfully applied to classify human microbiomes by the associated

disease group with high accuracy and reduced computational

requirements for prediction compared to existing approaches

(Chong et al., 2022).
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5 The genome as biological language

One approach to genome modelling derives from early in the

history of genomic sequencing and uses the framework of

computational linguistics to make rigorous the metaphor of

genomes as a biological language (Brendel and Busse, 1984;

Searls, 2002; Searls, 2013). This tradition views RNA secondary

structure, transcription, translation, regulation, expression, protein

folding, and various other biological processes as adhering to

particular formal grammars and therefore amenable to analysis

with tools and insights developed in the context of natural and

computer languages. Protein language models such as ESMFold

(Lin et al., 2023) are an alternative to protein structure prediction

methods that use multiple sequence alignments, such as the

successful AlphaFold2 model (Bertoline et al., 2023).

DNABERT builds on the BERT language representation model by

treating DNA sequences as sentences composed of individual k-mer

“words” (Ji et al., 2021). DNABERT first learns the basic syntax of this

language through exposure to DNA sequences with sections masked,

attempting to predict the missing sections. The training is then

transferred and specialised for specific applications. This approach

was used in the INHERIT model to identify bacteriophage sequences:

Bai et al. (2022) selected 6-mers (i.e. k-mers 6 nucleotides in length) as

their unit of analysis and pre-trained their model separately on

examples of bacterial genomes and phages. The pre-trained models

were then fine-tuned to perform the phage classification task. The final

model out-performed several other ML tools across multiple measures

of accuracy when compared by the authors.

Protein language models have been applied to predict the effect

of novel mutations on viral epitopes. Hie et al. (2021) developed one

such method to predict the immune escape potential of mutations

in several viral antigens. Models for specific viral proteins were

trained using corpora of amino acid sequences and experimental

data quantifying the replication fitness of different mutations. Using

a framework developed for NLP, amino acids were treated as words

and replication fitness was modelled as “grammaticality”. Although

the models were provided with no specific data about immune

escape—their training was unsupervised in this respect—they

successfully predicted amino acid residues with elevated potential

for immune escape including the receptor binding domain of the

SARS-CoV-2 spike protein. This was done by enumerating possible

mutations and searching for examples that were grammatical (i.e.

without a substantial fitness cost) but conferred a “semantic” (i.e.

functional) change. Clustering based on the embedding learned by

the models showed high correlation with host species.
6 Phylogenetic and
phylodynamic inference

In public health settings, pathogen genomics plays in

increasingly pivotal role alongside traditional epidemiology in

detecting and investigating infectious disease outbreaks

(Sintchenko and Holmes, 2015). The prevailing paradigm applies

statistical models to infer likely phylogenies from sequence data.
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Phylodynamic approaches use molecular clock and nucleotide

substitution models to produce time-scaled phylogenies, and to

these fit epidemiological models (e.g. compartmental or birth-death

models). This yields estimates of population dynamics parameters

such as basic reproduction numbers and generation times, or

inferred transmission trees (Grenfell et al., 2004; Attwood et al.,

2022; Stockdale et al., 2022). In addition to genome sequences and

sample collection dates, phylodynamic approaches can incorporate

epidemiological data to infer host-related events such as disease

introductions into discrete geographic regions, or to constrain

transmission hypotheses with contact data (Volz et al., 2013;

Ingle et al., 2021). Phylodynamic inference is computationally

expensive and requires the explicit formulation of a likelihood

appropriate for the available data and model assumptions

(Voznica et al., 2022).

Recent work has shown that likelihood-free deep learning models

can converge on similar epidemiological parameter estimates to

equivalent phylodynamic models in a fraction of the computational

time (Voznica et al., 2022; Kupperman et al., 2022; Thompson et al.,

2023). The incentive is that AI can overcome fundamental scalability

issues in likelihood-based models both in terms of computational

tractability with large datasets, and the requirement for increasingly

complex likelihoods as models are made more biologically realistic.

The incentive is that AI can overcome fundamental scalability issues

in likelihood-based models both in terms of computational

tractability with large datasets, and the requirement for increasingly

complex likelihoods as models are made more biologically realistic.

On the other hand, phylodynamic models are attractive because they

are inferential frameworks where such assumptions are explicit and

inspectable, and the uncertainty of parameter estimates can be

rigorously computed. As an emerging area of research, much

remains to be understood about the feasibility and limitations of AI

approaches for phylodynamic estimation.
7 Automating genomic analysis

Recent advancements in LLMs have led to an explosion of

interest in their potential to perform cognitively demanding tasks

that have traditionally been out of reach for AI. The technology

powering the models is undergoing rapid development to the extent

that it is challenging for researchers outside the field to assess its

genuine capabilities. Many models are part of tools published by

for-profit entities such as ChatGPT (OpenAI) (OpenAI, 2023), Bard

(Google), and LLaMa (Meta), which have an interest in developing

markets for their technology.

In microbial genomics research, a natural question to consider

is whether LLMs are capable of directly performing bioinformatic

analysis of sequencing data. General-purpose language models have

been shown to be weak at certain tasks that are simple for humans,

including counting the occurrence of a letter or word in an example

text (Wang H. et al., 2023), and models are limited in the amount of

input they can process. This suggests that current models are poorly

suited to sequence analysis tasks such as computing nucleotide

frequencies. AI platforms are evolving rapidly and addressing some

practical limitations, however significant obstacles remain (Wang L.
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et al., 2023). There will often be no means to verify quantitative

results proposed by LLMs without independently conducting

the computation.

While LLMs might not be suitable for computation, many are

designed to be able to produce computer source code. Preliminary

studies have explored the limitations and possibilities of using LLMs

for bioinformatic coding tasks (Piccolo et al., 2023; Shue et al., 2023;

Hou and Ji, 2023). Current generation models perform well at

generating functional code, but often contain subtle errors due to a

lack of understanding about the context in which the code will be

used. Without specific prompting, they will often propose code that

imperfectly implements routines such as parsing the FASTA file

format, overlooking the existence of well-tested implementations in

specialised software libraries such as Biopython (Cock et al., 2009).

Despite the need for caution and verification, LLMs can be useful

for increasing productivity and expanding the accessibility of

routine bioinformatic tasks to students or non-experts.

LLMs excel at responding to queries in natural language and

extracting information from text. This capacity has been used to

provide an experimental query interface to the CovSpectrum

database, allowing users to ask for up-to-date details of circulating

SARS-CoV-2 variants in natural language (Chen and Stadler, 2023).

A pedagogical exercise has illustrated that general-purpose LLMs can

be coerced into providing relevant information to non-experts

requesting instructions for the synthesis of biothreat agents despite

safeguards intended to prevent this (Soice et al., 2023). LLMs have

also been used to automatically extract information about

characterised SARS-CoV-2 mutations from published scientific

literature (Serna Garcıá et al., 2023). Their ability to generate

plausible text has implications for academic publication and

translational research, with associated bioethical considerations that

remain to be explored in detail (Page et al., 2023; Coiera et al., 2023).
8 Discussion

AI offers exciting possibilities for diverse practices within the

field of microbial genomics. There are plentiful demonstrations in

research settings of its capabilities for analysis of genomic and

associated data that exceed what can be achieved within a realistic

amount of time and effort by human experts. Despite this, AI for

pathogen genomics is not yet ubiquitous in public health and

diagnostic laboratory operations.

As a prerequisite for adoption of AI, a case must be developed in

economic terms for its impact on day-to-day operations in settings

where pathogen WGS or mNGS is established practice. Indeed in

clinical microbiology laboratories more broadly, AI is already

gaining traction as a consequence of increasing laboratory

workflow automation and robotics (Naugler and Church, 2019;

Bailey et al., 2019; Lakbar et al., 2023). Such a case would address

expected utility: the perceived benefits of AI must justify the burden

of implementation and validation before introducing a meaningful

dependency on the technology. Training in clinical and laboratory

science does not typically emphasise the skills required to robustly

use even simpler classes of AI, whereas AI experts may face

difficulty accessing the data and contexts relevant to health
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practitioners in specific settings. Workforce capacity is an

important barrier to uptake.

In common with other applications of AI in the medical

domain, high-stake clinical decisions have ethical and medico-

legal consequences that demand defensibility. Research done to

develop explainable AI for transparency of decision-making

(Wadden, 2022; Durán and Jongsma, 2021; Minh et al., 2022)

and to understand algorithmic discrimination (Obermeyer et al.,

2019; Heinrichs, 2022) is underdeveloped in many relevant

applications. It remains important to be cognisant of how AI

tools are designed so that their outputs are interpreted in the

context of their limitations and strengths (Scott et al., 2021;

Couckuyt et al., 2022; Sokhansanj and Rosen, 2022). Regulatory

frameworks will need to contend with these issues before

widespread adoption of AI in clinical diagnostics is appropriate.

Even where stakes are potentially lower, the reliability of AI must

be demonstrated. ML models are developed using specific datasets

for training and validation and it is challenging to evaluate the extent

to which they will reliably generalise. Cross-validation using

available data has little bearing on performance with qualitatively

different data including in different health systems, cohorts, and

populations (Futoma et al., 2020). Tools may also perform poorly

with different sequencing platforms, as has been noted with viral

detection models in metagenomic experiments aimed at taxonomic

characterisation of microbiomes when comparing short- and long-

read data (Zaragoza-Solas et al., 2022). In general, local validation of

AI tools is necessary. As microbial populations, public datasets, and

disease epidemiology evolve, models require regular maintenance to

ensure their performance.

Current genomic data are heavily biased towards geographic

regions with sequencing capacity (Brito et al., 2022). The

development of AI tools requires large datasets; equitable access to

health technologies including AI requires that low- and middle-income

countries be in a position to directly benefit from sequence data that

they contribute to global efforts. This constitutes a key principle

identified by the World Health Organization in its guidance for

sharing pathogen genomic data (World Health Organization, 2022).

In this mini-review, we have presented examples of emerging

applications of AI technology to tasks concerning pathogen

genomics in clinical and public health settings. Approaches along

these lines will play an increasing role in diagnostic and public

health laboratories as well as in microbial genomics research, with

expanding access to rich genomic, epidemiological, and laboratory

data. Some of the obstacles that curbed early enthusiasm for the

potential of artificial intelligence are being overcome by maturing

technology, however we now ask that AI is not merely technically

capable, but that it operates in accordance with our core principles

of ethics, equity, and reliability.
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