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Tackling antimicrobial resistance requires the development of new drugs and

vaccines. Artificial intelligence (AI) assisted computational approaches offer an

alternative to the traditionally empirical drug and vaccine discovery pipelines. In

this mini review, we focus on the increasingly important role that AI now plays in

the development of vaccines and provide the reader with the methods used to

identify candidate vaccine candidates for selected multi-drug resistant bacteria.
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1 Introduction

Increased life expectancy in the developed world in the 20th century can be attributed to

several factors – sanitation infrastructure and clean water, increased food security,

population-based healthcare systems, mass vaccination programs for the most prevalent

infectious diseases of childhood and the use of antibiotics. The discovery of penicillin in

1928 by Alexander Fleming and its purification by Howard Florey and Ernst Chain in 1940

ushered in the ‘antibiotic age’ and laid the foundation for exploring the potential of a

plethora of novel antimicrobials (Hutchings et al., 2019; Lima et al., 2020; Vila et al., 2020).

Currently, it takes about 12 years to get a drug to the market for public use and the process

is hugely expensive, with “median development costs for a new antibiotic exceeding $1

billion and sponsor costs of ~$350m to complete post-approval work and manufacture of

the compound during its first 10 years on the market” (Wouters et al., 2020). However, not

long after the first clinical use of penicillin, micro-organisms were observed to acquire

antibiotic resistance through several different mechanisms (Christaki et al., 2020; Huemer

et al., 2020; Larsen et al., 2022). The World Health Organization (WHO) has highlighted

the priorities for tackling drug resistance in bacteria, viruses, parasites, and fungi, which

requires a globally coordinated multi-sector approach (Tacconelli et al., 2018).

Antimicrobial resistance has undeniably been aggravated by i) the extensive use of

broad-spectrum antibiotics in agriculture, veterinary and medical practices, ii) in self-
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medication, iii) with poor diagnostics, and iv) with a heavy patient

load on healthcare systems (Sulis et al., 2022). Antibiotic resistance

is also spreading rapidly in the environment due to contamination

of water bodies through the discharge of untreated domestic sewage,

hospital wastewater, effluents from the antibiotic manufacturing

units, open defecation, and mass bathing. These contaminated

water bodies may lead to the massive growth of resistant bacteria

and act as a pool for antibiotic resistance transfer (Davies and

Davies, 2010; Perry et al., 2016; Hutchings et al., 2019; Christaki

et al., 2020). Prevailing antibiotic resistance has led to a rapidly

diminishing pool of bioactive compounds and plausible solutions to

combat the challenges posed by pathogen resistance include i) the

modification of existing antibiotic classes (repurposing), ii)

exploring new structural classes, and iii) the development of

prophylactic vaccines. Recent antimicrobial development regimes

use resistance gene(s) screening, whole genome(s) sequencing, and

correct pathogen detection approaches (Vila et al., 2020; Wang

et al., 2022).

Increased antibiotic resistance in micro-organisms, specifically

amongst bacteria, has stimulated the development of novel

antimicrobials and vaccines using Artificial Intelligence (AI),

Machine Learning (ML) and Neural Networks (NN) (Dalsass

et al., 2019; Stokes et al., 2020; David et al., 2021; Sahayasheela

et al., 2022). The AI-based learning techniques can be categorized

into three classes: 1) supervised learning, where the prediction

model learns from the previous examples of classification, 2)

unsupervised learning, where the prediction model learns by

exploring different patterns in the training data, and 3)

reinforcement learning, where the prediction model learns by

implementing a scheme of operations depending upon reward

sequences and penalty. In general, development of an AI-based

prediction model requires data pre-processing followed by

encoding, feature extraction, training/learning from the features,

and testing, validation and evaluation on unseen data with the help

of different AI platforms available to the developer. Some of the

widely used AI platforms include TensorFlow, Google AI, Microsoft

Azure, OpenAI, amongst many. TensorFlow is an open-source ML

platform that offers a broad range of AI algorithms to build and

design deep learning models from training data of interest. Google

AI is a division of Google, focusing on artificial intelligence through

the Google Cloud AI platform that hosts several AI tools armored

through generative AI (for prototyping and testing generative AI

models), vertex AI (to create, train, test, monitor, tune, and deploy

ML and AI models), natural language AI (derive insights from

unstructured text using Google machine learning), translation AI

(multilingual with fast, dynamic machine translation), vision and

video AI (detect objects, understand text, videos and more), and so

on. The Google AI platform is another extensive suite of open-

source AI algorithms with a fast and easy implementation to build

used defined prediction models. Microsoft Azure is a

comprehensive set of cloud services that offers solutions for AI

analytics through its AI tools and frameworks, equipped with multi-

layered data protection. OpenAI is an AI research and deployment

driven company focusing on benefiting humanity through artificial

general intelligence, controlled through a unique capped-profit

model, and it delivers very powerful models (e.g. Generative Pre-
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trained Transformer 4, GPT-4) that are trained to generate ‘human-

like’ text and to enable multi-domain applications. ChatGPT and

DALL-E2 are among the famous models developed by OpenAI.

OpenAI is a potential game-changing state-of-the-art AI platform

with the potential to translate languages, write articles and answer

operator questions. An AI platform can enable users to develop

their own deep leaning models and to utilize pre-trained models for

their specific research problems. Trained prediction models can be

evaluated with different evaluation matrices that include mean

absolute error (MSE), root mean square error (RMSE), various

statistics derived from confusion matrix, accuracy, precision, area

under curve (AUC), receiver operating (ROC) curve, etc. The

prediction model can be implemented for practical purposes after

the desired accuracy - as defined by the different evaluation matrices

- is achieved (Wang et al., 2019; Yang et al., 2019; Jiang et al., 2020).

The use of AI computational approaches validated fast-tracked

novel drugs, drug repurposing and vaccine designs during the

COVID-19 pandemic, along with developing infection diagnostics

(Shrock et al., 2020; DeGrace et al., 2022; Thomas et al., 2022). AI

assisted prediction of B-cell and T-cell epitopes and novel

vaccine candidates is rigorously driving immuno-informatics-

based approaches towards developing refined AI- and ML-based

prediction servers. AI systems reason to find the microbial

components that are unlikely to mutate or alter, to guarantee that

a vaccine remains effective for a long duration. Computational

analysis aided with ML algorithms have played a pivotal role in

vaccine development. For example, AI-based approaches can

provide structural and molecular insights on SARS-CoV2 viruses

and predict the viral components that can trigger potentially

protective immune responses and interpret experimental findings.

By combining data from multiple experimental and real-world

sources, AI can monitor the genetic changes (mutations) in the

SARS-CoV2 genome over time to maximize future vaccine

efficacy (Waltz, 2020). Different AI and ML techniques have

already demonstrated their potential in diverse healthcare and

biomedicine related fields, for example by accelerating the

discovery of novel antimicrobials in a cost-effective manner,

reducing expenses on equipment, synthesis, and human

resources. Some well-known AI/ML techniques include support

vector machine (SVM), logistic regression (LR), random forest

(RF), and different types of neural networks, including multi-

layer perceptron (MLP), recurrent neural networks (RNN),

convolutional neural networks (CNN) and deep neural networks

(DNN), amongst others (Wang et al., 2019; Jiang et al., 2020; Stokes

et al., 2020; Vila et al., 2020; Sahayasheela et al., 2022; Thomas et al.,

2022). The SVM algorithms implement a supervised statistical

leaning approach for linear and non-linear data classification and

regression analysis. The LR algorithms utilize standard logistic

(sigmoid), and probability (log-odds) functions derived from the

explanatory variables to predict the outcome variables. The RF

algorithms implement an extensive multiple decision tree approach

to learn from the training data and perform the prediction. These

algorithms utilize bagging and feature randomness to generate a

random forest of decision trees. The MLP algorithms implement a

completely connected feed-forward artificial neural network with at

least three hidden layers along with an input layer and an output
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layer. The flow of information passes from input layer to output

layers through hidden layers, controlled by an activation function.

The RNN algorithms are the advanced version of the MLP

algorithms where the flow of information can also occur in a

cyclical manner in the hidden layer to impart recurrent learning

from the input layer. Likewise, the CNN algorithms are regularized

MLP algorithms. The regularization nullifies the possibility of over

fitting of data during training due to fully connected layers in the

MLP. The CNN algorithms implement convolutions functions

instead of matrix multiplication functions. The DNN algorithms

broadly cover MLP, RNN, CNN, and several other neural network

algorithms. The neural network that implements multiple hidden

layers can be categorized as DNN. It should be noted that the list of

different AI techniques mentioned above is not exhaustive and

providing their fundamental details are beyond the scope of this

mini-review.

It is worth mentioning also that AI and ML are intricately

related (as both are supervised learning), but conceptually different.

AI is a broad field of computer science focused on creating

machines or systems that can perform tasks requiring human

intel l igence, such as problem-solving, reasoning, and

understanding natural language. ML is a subset of AI that focuses

on the development (training, fine tuning, testing, and deployment)

of task-orientated prediction models. ML involves training

machines to learn from data and make predictions or decisions

without explicit programming. In essence, ML is a technique used

within the broader field of AI to achieve ‘intelligent behaviour’.

Hereon in, we will use the broader term AI to embrace the diverse

subfields of AI and avoid any ambiguity and inconsistency. The

field of AI is anticipated to flourish in coming years to become a

vital tool to combat microbial infectious diseases. Considering the

principles of AI based techniques, the focus of this mini-review is to

provide an overview of current AI practices in the discovery and

development of vaccines.
2 AI in vaccine development

The 21st century has seen unparalleled and innovative growth

and development of cutting-edge technologies to benefit society

(Jaffee et al., 2017; Vetrano et al., 2022). AI and ML technologies

have made significant contributions to the healthcare and medicine

sectors, with the market expected to expand to $45.2 billion by 2025

(Kruk et al., 2018; Ahmed et al., 2020). Recent advances in high

throughput experimental techniques have generated a considerable

amount of ‘big data’ in the healthcare and biomedical sectors. These

data sets fuel AI to deliver highly accurate projections and

predictions in the fields of vaccine development and drug

discovery. Notably, ~40% of companies engaged in drug

discovery are using various AI techniques to identify drug targets

and for novel drug design (Lee et al., 2022; Zeng et al., 2022; Blanco-

González et al., 2023).

The emergence of new infect ious pathogens and

increased antimicrobial resistance amongst existing pathogens has

accelerated AI-assisted vaccine development in recent years

(Thomas et al., 2022). The availability of high throughput
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genomic and proteomic data garnered from various infectious

diseases could serve as a catalyst for developing reliable AI driven

predictive models. Vaccine design benefits from an AI-assisted

better understanding of the pathogen infection cycle at the

genetic, molecular, and cellular levels (Ong and He, 2022;

Goodswen et al., 2023).

Identification of potential antigen(s) is the important step for

vaccine development. Conventional experimental approaches for

antigen detection were laborious and time intensive and the arrival

of Reverse Technology (RV) has revolutionized the field of vaccine

development. RV is a computationally assisted genome-based

approach of vaccine design that circumvents the necessity of

developing bacterial cultures to prioritize vaccine targets. The

analysis of pathogen genomes with computational bioinformatics

has benefitted the screening of potential vaccine candidates

significantly. Recent advances in RV techniques are assisted by

the incorporation of modern AI techniques at various stages of

vaccine development, and these AI based models are beginning to

expedite the discovery and optimization of potential vaccine

candidates. The contribution of AI computational tools to the

development of SARS-CoV-2 vaccines has demonstrated the

potential of AI for vaccine development against different

microbial pathogens. One of the major challenges for AI is to

accurately identify the potential antigens that can trigger host

immune responses from amongst the thousands of pathogen

components. In the following section we discuss the relevance of

AI in vaccine development, its checkpoints, and potential solutions.
2.1 Reverse vaccinology and newer
AI-based methods

In general, most vaccines in use today induce antibody-

mediated immunity, and they include live-attenuated vaccines,

inactivated vaccines, messenger RNA vaccines, toxoid vaccines,

recombinant and conjugate vaccines, viral vector vaccines, etc.

Identification of the protein/peptide antigen that stimulates

immunity is the first step in vaccine design (Schubert-Unkmeir

and Christodoulides, 2013; Guimaraes et al., 2015; Hardt et al.,

2016; Vetter et al., 2018) and AI methods can deliver reliable

antigen identification in a time efficient manner and with

improved accuracy. Vaxijen was one of the first AI driven

prediction methods for antigen identification, and it assumed that

antigenicity was inherently encoded in the protein sequence and

could be captured directly through the chemical properties of the

amino acid residues. The prediction model was trained on the

chemical properties of known bacterial antigens to deliver highly

reliable and robust results for antigen identification and

quantification (Doytchinova and Flower, 2007).

Affordable and fast sequencing technologies have made

microbial whole genome sequences available widely and publicly.

The first successful implementation of RV resulted in the eventual

development of the meningitis vaccine Bexsero/4CMenB, which

includes the antigens Neisseria Heparin Binding Antigen (NHBA,

previously known as Genome-derived Neisseria Antigen (GNA)

2132), factor H binding protein, (fHBP or lipoprotein (LP)2086,
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previously known as GNA1870) and Neisserial adhesin A (NadA,

previously known as GNA1994). In addition, GNA1030 and

GNA2091 were selected because they also induced protective

immunity and these were fused to NHBA and fHBP, respectively,

which enhanced immune responses to the individual antigens

(Pizza et al., 2000; Masignani et al., 2019; Deghmane and Taha,

2022). Bexsero is currently the only RV-developed bacterial vaccine

that has been introduced into the routine immunization schedules

for children. It should be stressed that the development of Bexsero

vaccine did not include direct assistance of modern-day AI

techniques but laid the foundation of incorporating various in

silico tools into a RV based vaccine development pipeline. The

development of Bexsero is a noteworthy achievement in

vaccinology, independent from contemporary AI technologies.

Computational analysis and screening of several different

pathogen genomes and proteomes is being used broadly to

identify potential vaccine candidates using RV (Ong and He,

2022; Thomas et al., 2022). Exploring host-pathogen interactions

at the molecular level and implementation of genomic and

proteomics approaches should provide novel insights into the
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mechanisms of acquiring protective immunity and assist in

developing next-generation vaccines. Several computational

methods/pipelines have been developed since the introduction of

RV and these use various AI techniques (Hardt et al., 2016; Vetter

et al., 2018; Bradley et al., 2019; Yang et al., 2019; Ong and He, 2022;

Thomas et al., 2022) (Table 1).

The pace of development in vaccine-informatics requires that

emerging novel technologies are integrated with the existing state-

of-the-art methods/pipelines for improved accuracy in antigen

selection and optimization. However, this integration is ongoing

and yet to be achieved.
2.2 Success stories of AI assisted vaccine
development against multidrug
resistant bacteria

Recent advances of AI techniques, especially several variants of

ML with an ability to rationally learn from the features derived from

large volumes of data, have resulted in several applications in
TABLE 1 A summary of AI-based state of the art methods/pipelines for identifying potential vaccine candidates.

Method
AI

Approach
Availability Remarks/Availability/Pros and Cons

Reference

VaxiJen3
XGB, RF,
kNN

Webserver

Implemented auto-cross covariance transformation of protein sequences and utilizes
physicochemical properties of proteins without using alignment for prediction of candidate vaccine
subunits.
Pros: fast and easy to use; option to select target organism
Cons: batch processing is limited to 100 sequences
https://www.ddg-pharmfac.net/vaxijen3

(Ong et al.,
2021)

PanRV LR, SVM, RF Standalone

Integrative computational pipeline that utilizes microbial pangenome to identify potential vaccine
candidates.
Pros: available as standalone; pangenome approach; broad-spectrum and species-specific target
identification.
Cons: computationally intensive; difficult to implement for non-experts.
https://sourceforge.net/projects/panrv2

(Naz et al.,
2019)

ReVac
LR, SVM,

NN,
Standalone

Implement several tools for protein feature prediction and scoring by a redundancy-based approach
and perform Pangenome analysis for vaccine design.
Pros: standalone with possibility of parallel implementation; time efficient
Cons: dependence on several third-party tools makes it difficult to have a smoothly running
installed version of ReVac.
https://github.com/admelloGithub/ReVac-package

(D’Mello
et al., 2019)

Vaxign-
ML

SVM, LR, RF,
kNN, XGB

Standalone/
Webserver

Prediction framework for rational vaccine design, and epitope prediction and analysis.
Pros: time efficient and easy to use; available as standalone as well as server; batch processing on
standalone version.
Cons: trained on limited dataset of bacterial antigens.
https://github.com/VIOLINet/Vaxign2-django

(Ong et al.,
2020)

Antigenic RF
Standalone/
Webserver

Utilizes physico-chemical properties of proteins to predict protective antigen and antibody
responses.
Pros: available as standalone as well as server; batch processing on standalone version; extensive
benchmarking with state-of-the-art methods.
Cons: very limited documentation and user manual.
https://github.com/srautonu/AntigenPredictor

(Rahman
et al., 2019)

iVAX LR, SVM Webserver

Predicts epitope-based candidate vaccines from genome sequences by integrating molecular
interactions, T-cell receptor, conserved regions, etc.
Pros: integrates 6 different algorithms for reliable prediction; demonstrated application on several
pathogens; easy to use.
Cons: commercial tool
https://epivax.com/ivax-vaccine-design

(Moise et al.,
2015)
LR, logistic regression; SVM, support vector machine; NN, neural networks; RF, random forest; kNN, k-nearest neighbor; XGB, extreme gradient boost; DA-PLS, discriminant analysis by partial
least square.
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medicine and healthcare (Yang et al., 2019; Stokes et al., 2020; Melo

et al., 2021; Sahayasheela et al., 2022; Thomas et al., 2022). We are

potentially entering a technologically advanced, efficient, and

productive era of vaccine development, supported with generous

global finance. The fast-tracked development of various COVID-19

mRNA vaccines is irrefutable proof-of-concept for AI-assisted

vaccine development against different pathogens (Polack et al.,

2020; Feikin et al., 2022; Zheng et al., 2022). Several studies have

used the AI driven methods described in Table 1 to try and develop

bacterial vaccines. For example, in silico identification of 22

membrane proteins as potential antigens in the Helicobacter

pylori proteome was done using AI approaches (Rahman et al.,

2020). Likewise, Acinetobacter baumannii was studied with the help

of AI based methods, and an outer membrane protein named FilF (a

putative pilus assembly protein), was proposed and experimentally

validated as a potential vaccine candidate (Singh et al., 2016). In a

separate study of 33 A. baumannii genomes, AI driven RV methods

identified candidates to develop vaccines to protect against infection

with antibiotic resistance strains (Chiang et al., 2015).

Computational identification and characterization of T-cell

epitopes in Mycobacterium spp has also been reported. The

immunoinformatics of Mycobacterium tuberculosis (Mtb) aided

by several AI based methods/tools, identified immunogenic
Frontiers in Bacteriology 05
epitopes with the potential for inclusion in candidate vaccines for

testing in follow up in vitro studies (Panigada et al., 2002; Hossain

et al., 2017; Das et al., 2021). In Table 2, we summarize studies that

have used AI-RV platforms to develop vaccines against major

multidrug resistant bacteria.

The journey of vaccine development using traditional

approaches has been very successful against several viral and

bacterial pathogens. However, efficacious vaccines are yet to be

developed for several infectious diseases, owing to the high rate of

mutagenesis and sequence variability, antigenic complexity, and

pathogen persistence. The lack of efficient vaccines against

tuberculosis, and several viral pathogens including herpes simplex

virus, respiratory syncytial virus, and human immunodeficiency

virus, present some serious challenges to AI-ML models applied to

vaccine development. Implementation of novel AI techniques along

with the advances in nucleic acid and viral vectors could

revolutionize vaccine development programs.
3 Conclusions and prospectus

The WHO asserts that antimicrobial resistance (AMR) is one of

the top 10 global threats to human health and development. In
TABLE 2 A summary of AI powered RV platforms to develop vaccines against multidrug resistant bacteria.

Bacteria Description
Experimental
laboratory
validation

Reference

Pseudomonas
aeruginosa

52 antigens (31 known + 21 unknown) identified from genome-wide screening; known proteins vital for
pathogenicity and maintenance. Individual modules from different AI-assisted pipelines were used for initial
screening.

Yes (Bianconi
et al., 2018)

Proposed recombinant OprF (maintenance of cell structure, membrane permeability, adhesion, virulence, and
biofilm formation) as a vaccine candidate. Minimal implementation of AI-assisted computational methods.

Yes (Bahey-El-Din
et al., 2020)

Assessed combined PcrV, Opr1, Hcp1 vaccine; capable of inducing better protection. Several statistical and
bioinformatics tools were used at different stages.

Yes (Yang et al.,
2017)

Proposed chimeric vaccine with recombinant PcrV; induce a Th17 immune response and broad protection.
Mainly experimental study with minor assistance of computational tools at initial stages for sequence
screening.

Yes (Wang et al.,
2020)

Streptococcus
pneumoniae

Analysis of 151 proteins from clinical pneumococcal strains to identify 13 promising vaccine candidates
(highly conserved); possibility for a broad-spectrum vaccine. AI-assisted computational methods were used to
analyze protein sequence divergence and convergence.

Yes (Argondizzo
et al., 2015)

PCV20 (Pfizer) includes 13-valent pneumococcal conjugate vaccine + 7 new serotypes; well tolerated in
adults between 18 and 49 years old. Different regression models were used for serotype-specificity.

Yes (Klein et al.,
2021)

Combination of pneumococcal histidine triad protein D (PhtD) and Pneumolysin (dPly) by
GlaxoSmithKline, for 6–12 weeks-old infants, immunogenic and well tolerated in clinical trials. Various
regression models were used for statistical analysis at different stages of the study.

Yes (Hammitt
et al., 2019)

Klebsiella
pneumoniae

Selected 15 outer membrane proteins through computational methods, 4 vaccine constructs, one selected for
molecular docking analysis with different (HLA) alleles. The candidate proteins were screened through
different AI-assisted tools (e.g. LIPOP, TatP, SignalP) for transmembrane domains (HMMTOP and
TMHMM), and for cellular localization (PSORTb and CELLO).

No (Solanki et al.,
2021a)

Vaccine constructed based on MHC binding capabilities; CusC (copper silver efflux system) and FepB
(transport of siderophore enterobactin) targeted. Different AI-assisted bioinformatics tools (e.g. Bacterial Pan
Genome Analysis Tool, protein BLAST) were used to analyze proteome of K. pneumoniae. PanRV platform
was used for candidate prioritizing.

No (Mehmood
et al., 2020)

(Continued)
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2022, at least 1.27 million deaths per year are directly attributable to

AMR (Murray et al., 2022) and by 2050, 10 million deaths are

estimated per annum from infections caused by AMR bacteria, with

economic healthcare-associated costs in the trillions of dollars

(USD). Vaccines represent a prophylactic strategy to combat

AMR, although it is worth mentioning that vaccine development

against certain pathogens is hampered by a lack of understanding of

the mechanisms of infection and of how immunity develops. The

accelerated development of COVID-19 vaccines has shown how

state-of-the-art biomedical technologies can serve society during

pandemic crises. It is inevitable that new and developing AI and ML

techniques will be used to develop vaccines for infections caused by

many viruses, bacteria and parasites that have proved particularly

intractable. Implementation of advanced AI techniques in research

dates to the start of 21st century. Undoubtedly, the development of

AlphaFold (Higgins, 2021; Jumper et al., 2021; Binder et al., 2022;

Varadi et al., 2022), a deep ML-based method for protein structure

prediction, and the discovery of halicin, a potent antibiotic

compound identified with a deep learning approach (Stokes et al.,

2020) has imparted a belief amongst scientific communities of the

potential of AI driven methods and technologies.

In summary, the integration of AI in vaccine development

represents a transformative leap forward, expediting the process,

enhancing precision, and broadening our understanding of
Frontiers in Bacteriology 06
infectious diseases. Whilst AI will significantly streamline the

development of vaccines, we emphasize that these technologies

are not a panacea. The integration of AI should always complement

and not replace, rigorous ‘wet’ laboratory experimentation and

animal and human trials, which remain indispensable steps in

ensuring vaccine safety, efficacy, and are essential for regulatory

approval. Nevertheless, as we continue to harness the power of AI-

driven tools, the future holds great promise for the rapid creation of

effective vaccines, particularly for emerging biological threats. We

predict that AI assisted research and innovation in antimicrobial

and vaccine development programs will ultimately improve global

human health and increase life expectancy.
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TABLE 2 Continued

Bacteria Description
Experimental
laboratory
validation

Reference

Escherichia coli Uro-Vaxom – a lyophilized mixture of membrane proteins from 18 uropathogenic E. coli; safe, well tolerated,
and effective; used in over 40 countries globally. Minimal implementation of AI-assisted computational
methods at different stages.

Yes (Brodie et al.,
2020)

OmpA identified as promising vaccine candidate; characteristics and function in localization and
pathogenesis; confers protection in adult and neonatal mice. AI-assisted computational methods were used to
screen candidate sequences.

Yes (Gu et al.,
2018)

EatA + EtpA + Yghj antigens induced serum and mucosal immune responses in a human experimental
Enterotoxigenic E. coli challenge. Various machine learning based tools were used for comparative genomics,
and identification of potential surface molecules.

Yes (Chakraborty
et al., 2018)

Staphylococcus
aureus

VSA30 – a multi-epitope vaccine based on 30 epitopes; initial screening of 7290 proteomes; high antigenicity
and low allergenicity. Various machine learning based tools were used for identification of potential surface
molecules, lipoprotein signal peptide detection, and protein localization. Vaxign platform was used adhesion
analysis.

No (Solanki et al.,
2021b)

SA4Ag – a multi-epitope vaccine targeting capsular polysaccharides (CPs) and virulence-associated surface
proteins; safe, tolerable, and efficient among human participants in trials. Mainly experimental study with
minor assistance of computational tools at initial stages for sequence screening.

Yes (Begier et al.,
2017)

Recombinant 5-antigen (ClfA + MntC + Hla + SpA + SEB) vaccine; formulated and assessed for its
immunogenicity in animal models. Implementation of AI-assisted computational methods at different stages.

Yes (Zeng et al.,
2020)

Acinetobacter
baumannii

Recombinant OmpA vaccine; 4200 A. baumannii genomes; capable of producing high levels of IgG; enhances
Type 2 immune responses. AI-assisted computational methods were used for detection of exposed proteins,
epitope prediction, and virulence and interatomic analysis.

No (McConnell
and Martin-
Galiano, 2021)

Analysis of 21 strains to identify conserved antigens; 15 proteins selected; LptE with best antigenicity LptE
involved in generation of lipopolysaccharides and pathogenesis. Several AI-assisted computational methods
were implemented for conserved antigen identification, prediction of sub-cellular localization and protein
solubility, B-cell epitope prediction, etc. Vaxign was used for evaluation of antigenicity.

No (Beiranvand
et al., 2021)

Small protein A (SmpA) and phospholipase D (PLD); immunogenic for a subunit vaccine formulation,
producing positive responses in protective efficacy. Limited implementation of AI-assisted computational
methods at different stages.

Yes (Li et al.,
2017)
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