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Most hearing conservation programs repeatedly monitor a subject’s pure tone

thresholds before, during, and after exposure to audiopathic agents. Changes

to the audiogram that meet significant shift criteria such as ASHA, CTCAE, and

so forth are considered evidence of audiopathic injury. Despite a wide variety

of definitions for significant change, all current serial monitoring methods are

biased due to regression to the mean and are prone to inconclusive results.

These problems diminish the diagnostic accuracy and utility of serial monitoring.

Here we propose adopting Gaussian processes to address these issues in a

manner that maximizes time e�ciency and can be administered using portable

equipment at the point of care.
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1 Introduction

Audiometric serial monitoring is the act of evaluating changes in hearing thresholds.

Audiologists identify changes in a patient’s hearing by comparing audiogram results

over time. The rationale is that pure tone sensitivity, as measured by the audiogram, is

susceptible to damage from audiopathic exposures such as noise or ototoxic medications,

and reflect changes associated with normal aging and certain disease conditions. A change

in pure-tone sensitivity is taken as evidence of potential audiopathic injury, motivating

follow-up care and/or removal from the audiopathic exposure.

There are many serial monitoring criteria described in the audiology literature (reviews

in King and Brewer, 2018 andMoore et al., 2022). There are three particular difficulties with

all existing approaches:

1) Lack of a gold standard: since there is no gold standard for audiopathic injury and

thus no way to evaluate the accuracy of these various criteria, it is up to the clinician

or employer to choose among serial monitoring criteria based on clinical objectives,

convention, intuition, invasiveness, time, expense, or any other priority. Priorities

differ among the end users such as the audiologist, primary care clinician, employer,

and patient. The various monitoring criteria can not simultaneously achieve the

objectives of all stakeholders resulting in inefficient care.

2) Bias due to no response: the audiologist must also decide how to handle thresholds

that exceed audiometer test limits, called “No Response” (NR), or how to handle

missing thresholds due to patient non-response. The latter is particularly challenging

in pediatric applications, while the former often occurs in older populations of

patients. HowNR andmissing thresholds are handled will impact clinical judgements.
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3) Bias due to regression to the mean: regression to the

mean is the (almost) ineluctable fact that, barring any real

changes, bigger than average baselines are always expected

to get smaller and that smaller than average baselines are

always expected to get bigger. This is necessarily true in

(almost) any homeostatic system, real or imaginary. The

previous parenthetical statements invoke certain technical

points that can be studied in Samuels (1991). In the absence

of audiopathic injury, regression to the mean (Royston,

1995) guarantees that on average a “large” or “high” baseline

threshold will be followed by a “smaller” or “lower” one, and

that a “small” baseline threshold will be followed by a “larger”

one. This is expected regardless of any audiopathic injury that

may have occurred. This clearly confounds any attempt to

judge audiometric changes in terms of potential injury to the

patient, because any observed changes are at least partially

due to regression to the mean. A proper approach is to

statistically condition the expected follow-upmeasurement on

the previously observed baseline (Royston, 1995). The clinical

expectation about a patient at follow-up naturally depends

on what was observed at baseline, and a proper statistical

expectation for a patient at follow-up must also depend on the

previously observed baseline. Regression to the mean induces

bias in all existing serial monitoring criteria (Royston, 1995).

Point (1) impacts most every facet of audiology or medicine.

Points (2) and (3) occur in most hearing monitoring criteria

because standard methods of evaluating changes in pure tone

sensitivity are based on the computed difference between

baseline and follow-up audiograms. While intuitive, the computed

difference approach will cause bias and loss of information. The

audiologist must manually perform the differencing computations

to determine if a given criterion has been met. Subsequently, the

audiologist must communicate the results to the patient and other

stakeholders in their care (family, care team). There is a need for

rapid or even real-time communication of these results, particularly

when results indicate the need for care coordination, for example

to eliminate or reduce the audiopathic exposure, or promote

timely access to treatment. An unbiased, rapid and transparent way

to communicate serial monitoring results would promote more

efficient care.

We propose a different approach in this paper to address

points (2) and (3). In our view, serial monitoring occurs under the

assumption that pure tone sensitivity does not change between the

baseline and follow-up time point. We call this the “Homeostasis

Hypothesis,” and audiometric serial monitoring is conducted to

evaluate whether or not the Homeostasis Hypothesis is true.

In this paper we develop a statistical model of the relationship

between the audiogram and a patient’s underlying pure tone

sensitivity under the assumption that the Homeostasis Hypothesis

is true. If the follow-up audiogram is unusual with respect to the

expectations of the Homeostasis Hypothesis, then the audiologist

has evidence against the assumption that pure tone sensitivity has

remained constant over the course of exposure. Follow-up action is

therefore warranted.

Figure 1 illustrates our approach as described in this paper.

Given the patient’s baseline audiogram as an input, we compute

the predictive distribution of the follow-up audiogram under

FIGURE 1

Serial monitoring an adult male, 77 years old, being treated for

Oropharyngeal cancer with 40 mg/m2, weekly. Solid lines show the

pre-treatment baseline audiogram (top row) and 6-week follow-up

(bottom row) after four infusions of cisplatin equaling a cumulative

dose 200 mg/m2. The dashed line is the ISO 1999-2013 (ISO, 2013)

age-sex specific mean threshold obtained from population-based

pure-tone threshold data. The “X” indicates No Response at that test

frequency. The shaded area is a 90% prediction region for this

patient’s audiogram under the assumption that pure tone sensitivity

hasn’t changed from their baseline test. Follow-up thresholds

exceeding the prediction region (circled) are “significant” changes to

the audiogram that warrant follow-up.

the assumption that the Homeostasis Hypothesis is correct.

Correlations between thresholds in each ear and at neighboring

frequencies, as well as population-based pure-tone threshold data

are used to narrow the patient-specific predictive distribution. This

predictive distribution is expressed as a simultaneous prediction

region, which can be easily interpreted: nine out of 10 follow-up

audiograms on the patient will be entirely within the region if the

Homeostasis Hypothesis is correct. A follow-up audiogram that

exceeds the audiogram prediction region at any frequency in either

ear is evidence that the Homeostasis Hypothesis is false and that

pure tone sensitivity has changed.

In this paper we will take advantage of recent interest in

Gaussian Processes in audiology (Song et al., 2015; Bao et al., 2017;

Barbour et al., 2019). This methodology provides an alternative

to traditional grading or binary scales that are prone to the

biases discussed above. This methodology is suitable for patients
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and employees at risk of audiopathic injury from any type

of exposure (e.g., noise, bactericidal or antineoplastic therapies,

etc.) as long as baseline audiometry is available. We do not

make recommendations about pure tone test frequencies, testing

intervals, or procedures for treating patients with audiopathic

injury. These decisions are specific to each exposure and are left to

the serial monitoring program. Our approach avoids bias and loss

of information that affects current approaches, and we believe it can

serve a wider range of clinical objectives and stakeholder priorities

than standard criteria currently in use. These benefits are achieved

at the cost of computational efficiency; i.e., a computer is required,

though this burden is small since all computation is automated

and done offline. This is an additional benefit of our approach

over existing criteria since it maximizes time efficiency and can be

administered using computer-based portable audiometry systems

at the point of care. The prediction region such as seen in Figure 1

are computed prior to the follow-up exam, and thus do not impinge

on patient-audiologist contact time.

2 Methods

The clinical problem for the audiologist is that of deciding

whether a follow-up audiogram measured on a patient

demonstrates evidence that pure tone sensitivity has degraded and

that the Homeostasis Hypothesis is false. The statistical problem is

that of defining (1) the relationship between pure tone sensitivity—

a theoretical construct that we cannot observe directly—and its

representation as the audiogram, and (2) defining the expected

relationship between baseline and follow-up audiograms under the

assumption that the Homeostasis Hypothesis is correct.

We assume that pure tone sensitivity δ in each ear e and across

the frequency spectrum f at baseline time 0 and follow-up time t

are Gaussian Processes with covariance functions K0 and Kt , and

population gender- and age-specific mean function µ
(

e, f
)

:

δ0
(

e, f
)

∼ GP
(

µ
(

e, f
)

, K0
)

δt
(

e, f
)

∼ GP
(

µ
(

e, f
)

, Kt

)

.

This model contains the important assumption that the time

that passes between baseline and follow-up measurements (i.e.

t) is less than the amount of time that is required before the

population age-specific mean function µ
(

e, f
)

changes. In other

words, the model assumes that monitoring occurs over months,

during which time normal presbycusis is effectively unmeasurable,

and not decades, when many accumulated factors unrelated to the

exposure of concern can induce hearing changes. An expanded

model is described in Bao et al. (2017).

The pure tone sensitivity δ
(

e, f
)

is measured by the audiogram

at test frequencies defined by the clinical protocol. Viewed in this

way, the baseline and follow-up audiograms are each an error-

susceptible sample from the pure tone sensitivity processes δ0
(

e, f
)

and δt
(

e, f
)

. For our purposes, the audiogram Y is comprised of

{Left Ear thresholds at 0.5, 1, 2, 3, 4, 6, 8}, {Right Ear thresholds at

0.5, 1, 2, 3, 4, 6, 8} so that Y has 14 elements. The ordering of ears

and frequencies in Y must be consistent for intelligibility. Y0 and

Yt correspond to audiometry at baseline and follow-up. Moving

forward, we use δ0 and δt to represent the functions δ0
(

e, f
)

and

δt
(

e, f
)

evaluated in the ears and pure tone frequencies specified by

the testing protocol. The process mean µ is defined the same way.

By virtue of the Gaussian process model, Y0 and Yt are

multivariate normal random variables with respectivemeans δ0 and

δt and residual covariance matrices
∑

0 and
∑

t:

Y0|δ0 ∼ N

(

δ0,
∑

0

)

and

Yt|δt ∼ N

(

δt,
∑

t

)

.

The Homeostasis Hypothesis states that pure tone sensitivity

has not changed, i.e. that δt=δ0. An important, but often tacit

assumption is that variance components, such as
∑

and K (see

below) are assumed constant over the monitoring period, so that

any contradiction to the Homeostasis Hypothesis is taken as

evidence of audiopathic injury and not to changes model variance

components. With these assumptions, the joint distribution of the

audiograms at baseline and follow-up time points conditional on δ0

according to the Homeostasis Hypothesis is

Y0

Yt
|δ0 ∼ N

(

δ0

δ0
,

[

∑

0

0
∑

] )

. (1)

We don’t know the baseline pure tone sensitivity δ0 so we

integrate expression (1) with respect to the distribution of δ0. This

gives the unconditional joint distribution of Yt and Y0 as

Y0

Yt
∼ N

((

µ

µ

)

,

[

∑

+K K

K
′ ∑

+K

])

, (2)

where K is a matrix of evaluations of the covariance function

K at the frequencies and ears specified by the testing protocol.

The conventional squared exponential covariance model between

binary ear indicators (0 = left, 1 = right) e and e∗ and log2
frequencies f and f ∗ is used for this purpose:

K
(

e, e
∗
, f , f

∗
)

= ϕ2 • exp
(

−α •
(

e− e
∗
)2

− β •
(

f − f
∗
)2
)

,

which implies between-ear correlation of 1
eα and between-octave

correlation of 1
eβ
. We also assume that

∑

is a diagonal matrix with

constant diagonal elements σ 2. Expression (2) is the multivariate

form of the “Linear mixed model” (McCulloch and Searle, 2004).

We can think of two uses of expression (2) in serial monitoring.

First, we can compute the distribution of the difference between the

baseline and follow-up audiograms as

(Yt − Y0) ∼ N
(

0, 2 •
∑

)

Frontiers in Audiology andOtology 03 frontiersin.org

https://doi.org/10.3389/fauot.2024.1389116
https://www.frontiersin.org/journals/audiology-and-otology
https://www.frontiersin.org


McMillan et al. 10.3389/fauot.2024.1389116

and then develop prediction regions based on this model.

Application of this approach is hampered by missing data or NR at

either baseline or follow-up, and regression to the mean is in effect

so that unusually large differences are often incorrectly interpreted

as evidence of physiological change (Royston, 1995).

Instead, we use the pre-exposure baseline audiogram as an

unbiased estimate of pure tone sensitivity in the absence of any

audiopathic injury caused by the exposure. Having first observed

the baseline audiogram, prior to any exposure, it’s natural to think

of the follow-up audiogram as a test of stability within the auditory

system that generated the baseline audiogram, i.e. the follow-up

audiogram is a test that the Homeostasis Hypothesis is correct. This

motivates computing the conditional distribution of the follow-

up audiogram given the observed baseline under Homeostasis.

The multivariate Normal model of Yt and Y0 implies that the

conditional distribution Yt|Y0 is also multivariate Normal with

expected value

µ + K •
(

∑

+K
)−

•
(

y0 − µ
)

(3)

and covariance

(

∑

+K
)

− K •
(

∑

+K
)−

• KT (4)

McCulloch and Searle (2004) and Rasmussen and Williams

(2005).

The goal is to evaluate whether the follow-up audiogram

is consistent with expectations given by the baseline audiogram

assuming that the Homeostasis Hypothesis is true. We do this by

comparing the follow-up audiogram to the multivariate Normal

distribution parameterized by expressions (3) and (4). To facilitate

clinical applications, the predictive distribution is typically distilled

into one or more prediction intervals. A follow-up threshold that

lies outside the prediction interval is unexpected and worthy of

further consideration, either by clinical referral or even ignoring

the result. This decision is left to the attending audiologist.

Ninety percent pointwise prediction intervals for the follow-

up threshold at each frequency are given by expression (3) ± 1.64

times the square root of the diagonal elements of expression (4)

(a 95% prediction interval substitutes 1.96 for 1.64 and so forth).

The result is a vector of lower and upper 90% prediction limits for

each ear and test frequency within which each follow-up threshold

is predicted to lie. These 90% pointwise prediction intervals are

called “pointwise” because they provide 90% prediction intervals

for that specific test ear and frequency “point” only. This distinction

is important: A 90% pointwise prediction interval for one ear and

test frequency is an interval such that 9 in 10 follow-up thresholds

in that ear and test frequency will be within the interval. However,

we usually want to monitor multiple frequencies in both ears

rather than single frequencies in any one ear. A 90% simultaneous

prediction region is one in which 9 in 10 audiograms are completely

inside the region. We can’t use the pointwise intervals for this

purpose because potentially far more than one in 10 follow-ups

will yield one or more audiometric thresholds outside the 90%

pointwise limits if the Homeostasis Hypothesis is correct. Such a

naïve application will yield more false-referrals than expected.

We require a 90% simultaneous prediction region for the entire

left and right ear audiogram, and not for each ear and frequency

individually. Nine in 10 follow-up audiograms should lie entirely

within the prediction region if the Homeostasis Hypothesis is

correct. Any frequency in either ear with a threshold outside the

interval is cause for concern. We define this prediction region

following the “volume tube” methodology outlined in Krivobokova

et al. (2010), McMillan and Hanson (2014), and Bao et al. (2017).

The idea is to numerically expand the width of all the pointwise

prediction intervals until exactly 90% of the predicted audiograms

are completely contained within the adjusted intervals in both

ears and at each test frequency. Let mj, lj, and uj denote the

expected value, upper and lower 90% pointwise prediction limits

for the jth ear-by-frequency combination. We first simulate a large

number of audiograms from multivariate Normal parameterized

by expressions (3) and (4). A 90% simultaneous prediction region

is found by numerically searching for a constant c > 1 that

adjusts the lower and upper prediction limits at each frequency

by mj − c
(

mj − lj
)

and mj + c
(

uj −mj

)

so that 90% of the

simulated audiograms completely lie within the adjusted intervals

at all frequencies in both ears.

2.1 Estimation

The predictive distribution of the follow-up audiogram given

its baseline is given by the parameters in expressions (3) and

(4) and requires as inputs the age-sex specific population mean

audiogram µ, the baseline audiogram y0 and estimates of σ , ϕ, α,

and β . The population mean thresholds for men and women are

taken from ISO 1999-2013 (ISO, 2013). We use these population

mean estimates to center the distribution of pure tone sensitivities,

though the model allows for considerable variation with respect

to the population. Unless there are NR thresholds in the baseline

response, the model parameters are easily estimated by maximizing

themarginal likelihood in expression (2) (Rasmussen andWilliams,

2005). We prefer a Bayesian approach so as to easily propagate

uncertainty about the parameter estimates into the predictions.

This is done through MCMC evaluation of the joint posterior

distribution of the model parameters and using those same MCMC

evaluations to compute the predictive distribution of Yt given Y0.

These predictions are then used in the volume-tube methodology

for computing prediction regions for the entire audiogram.

A pure tone threshold that exceeds the audiometer’s test limits

is called “No Response” (NR) in audiology and more generally

called “Right-Censored” at the detection limit d in statistics. This

feature is commonly observed in time-to-event data such as patient

survivorship in biomedical research or equipment reliability in

manufacturing. There are several approaches to handling NR

thresholds in hearing research, such as imputing the NR threshold

to d plus 5 dB or some other constant. Another approach is

to treat the NR measurement as completely missing. Neither of

these approaches is appealing because imputation by adding an

arbitrary constant implies an observation (the NR limit + 5 dB)

that was never made, which implies greater certainty about pure

tone thresholds than the audiologist can legitimately claim. This

will increase the false-referral rate beyond the nominal levels
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TABLE 1 Priors on the parameters and the induced parameters of the

proposed model.

Parameter Prior quantiles

5% 50% 95%

σ 2.3 6.0 12.7

E(|test-retest|) in dB= 2σ√
π

2.5 6.8 14.3

ϕ 1.9 28.3 122.9

E(|max-min sensitivity|) in dB= 2ϕ√
π

2.2 31.9 138.7

α 0.03 0.34 0.98

Correlation between ears= 1
eα

0.38 0.71 0.97

β 0.06 0.68 1.95

Correlation between octaves= 1
eβ

0.14 0.51 0.94

dictated by the monitoring protocol. Conversely, treating the NR

measurement as completely missing isn’t a valid approach either,

since the audiologist knows that the pure tone threshold exceeds the

detection limit d. Thresholds that exceed the audiometer detection

limit provide valuable information for making accurate inferences

about K and
∑

so that more accurate predictions about the follow-

up audiogram can be made.

We approach NR thresholds using censored-data models.

Expression (1) represents the likelihood σ , ϕ, α, and β conditional

on δ. Without creating additional notation, the Gaussian Process

model for δ
(

e, f
)

implies that δ is also a multivariate normal

random variable, δ ∼ N (µ, K). In the absence of any NR

thresholds, we eliminate dependence on δ by marginalizing the

likelihood in (1) giving expression (2). However, when there

are one or more NR in the audiogram we factor the likelihood

into scalar contributions from thresholds that we observe as

N
(

y; δ, σ 2
)

and into scalar contributions from NR thresholds as

1 − 8
(

d; δ, σ 2
)

. This latter expression is one minus the Normal

cumulative distribution function evaluated at the audiometer’s

detection limit d.

There is no closed form integral of this factored likelihood

with respect to the distribution of δ (Ertin, 2007) meaning that

the simplicity achieved with a complete baseline audiogram is lost.

However, we can use MCMC to evaluate the joint distribution of

δ and the parameters σ , ϕ, α, and β conditional on the baseline

audiogram. Each of these MCMC evaluations generate a predicted

follow-up audiogram according to expressions (3) and (4). The 90%

pointwise prediction interval are the 5th and 95th percentiles of

the generated predictions at each frequency and ear. The volume

tube methodology is applied to these predictive distributions to

achieve 90% prediction regions over the entire audiogram. The

result is a shaded region (Figures 1, 3–5) that expresses the clinical

expectation that 9 in 10 follow-up audiograms will lie completely

within the shaded region if the Homeostasis Hypothesis is correct.

The width of the interval can be changed, depending on the

clinical application. Chemotherapy monitoring may demand a very

low false referral rate so as not to withhold life-saving anti-cancer

therapy. Larger apparent changes are admissible before alerting

the audiologist to deleterious side effects of the therapy. A 95%

reference interval may be preferable in this instance instead of the

90% intervals used throughout this paper.Workplace noise damage

monitoring may prefer a higher false-referral rate to avoid financial

liability. Smaller threshold changes in the noise exposure context

will therefore provoke a response from administrators, so that

an 80% reference interval may be preferred. These considerations

illustrate the relationship between the consequences of a false-

referral and the desired width of the reference interval. If false-

referrals provoke little harm, then a narrower interval is acceptable,

but if the ramifications of a false-referral are serious, then wider

reference intervals are desirable. Our approach provides the user

complete control over the nominal false-referral rate.

2.2 Priors

We establish priors on α and β by recalling that the between-ear

correlation is 1
eα and between-octave correlation is 1

eβ
. We believe

that the between-ear correlation in pure tone sensitivity is likely

to be >0.5. We also believe that the between-octave correlation

is likely to be >0.5, but we admit much greater uncertainty since

this feature may vary widely among patients. These requirements

suggest to us that α ∼ Half − Normal(0.52) and β ∼ Half −
Normal(12). We also take advantage of the fact that of Yt, Y0,

and δ0 are multivariate normal random variables, such that the

expected value of the absolute difference over time between any

two corresponding elements of Yt and Y0 is
2σ√
π
and between any

two pure tone sensitivities across ears and frequencies on the same

person is 2ϕ√
π
. Average absolute test-retest differences are expected

below about 15 dB and average between 5 and 10 dB. This suggests

the prior σ ∼ Gamma (4, 0.6), which has expected value 4
0.6 and

variance 4
0.62

. The range of pure tone sensitivities across frequencies

is expected to vary markedly among patients, though we expect no

more than about 135 dB range among pure tone sensitivities within

a patient. We assume the prior ϕ ∼ Gamma (1, 0.025), which is

parameterized as for the prior on σ . Summary statistics for each of

these priors, as well as the induced priors on the correlations and

test-retest differences are shown in Table 1. Prior histograms are

shown in Figure 2, along with posterior distributions for the patient

shown in Figure 1.

2.3 Computation

The sampler is started at the posterior means from the model

in expression (1), initializing NR thresholds at the test limit d.

These initial values are fed into a new MCMC sampler replacing

expression (2) with expression (1). We find it sufficient to run

the MCMC sampler for 500,000 iterations using SAS Enterprise

Guide Software, v. 8.3, PROC MCMC, though visual confirmation

of efficient mixing is advisable, particularly for unusual audiograms

having, for example, elevated left-right asymmetry or many

NR thresholds.

3 Results

Figures 3–5 illustrate model results in the context of additional

case studies, following the format of Figure 1. The prediction region
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FIGURE 2

Prior (red) and posterior (blue) MCMC samples for the induced parameters in the model fit to the baseline data shown in Figure 1.

shown for these patients were generated by inputting the baseline

audiogram thresholds, age, and sex into expressions (3) and (4),

and following the Volume Tube methodology. Figure 3 shows

results for a patient with Cystic Fibrosis who was treated with IV

Tobramycin for a bacterial lung infection. Figure 4 shows results for

a patient with cancer who was treated with cisplatin, and Figure 5

shows results for an individual exposed to workplace noise over

a five-year period. Note that this subject did not provide baseline

3 and 6 kHz thresholds, though the model structure still allows

predictions at these frequencies.

4 Discussion

In this paper we describe a Gaussian process regression

model of the audiogram that is suitable for serial monitoring

in clinical and industrial applications. Additional applications

suitably addressed with our approach include monitoring patients

for improvements in hearing, for example following surgical

intervention such as ossicular reconstruction. The innovative

aspects of our approach are three-fold. First, it uses a patient’s

baseline hearing, known correlations among test frequencies and

ears, together with population-based hearing data, to calculate

an individualized prediction region for that patient. Second, it

provides a unified framework for monitoring the audiogram that is

much more intuitive than the various shift criteria commonly used

in clinical practice. The automated audiogram region estimated

using our approach is simply the region where the follow-up

audiogram is predicted to land if that patient’s hearing has remained

stable. Follow-up thresholds that exceed the predicted region at

ANY audiometric frequency can be interpreted as evidence for

a statistically significant hearing change. Third, our approach

overcomes the problem of regression to the mean, which is a nearly

ubiquitous but largely overlooked problem in serial monitoring.

The flexibility and ease of interpretation of this model allows for the

implementation of the criteria directly into audiometers and other

computerized hearing testing platforms, increasing the potential

user base and uptake of serial monitoring across contexts.

4.1 Limitations

Our proposal doesn’t include any explicit model training

commonly used in prediction algorithms. We embed information

about the population into the informative priors on the model

parameters. An expanded approach is to further train the model

in a large sample to identify the joint distribution of model

parameters. Training must be done in a population for which the

Homeostasis Hypothesis is unequivocally true. Furthermore, this is

computationally challenging because of the factored likelihood in

the presence of NR thresholds. Training model parameters is the

subject of ongoing work by our research group.

Our approach mitigates some of the difficulty of NR thresholds

in serial monitoring, though it cannot solve the problem entirely.

We can generate prediction regions in the presence of baseline NR,

however, any NR observed during follow-up measurements can

create difficulties. These are illustrated in Figure 1. The baseline,

left-ear, 8 kHz threshold is NR, but ourmethodology still allows one

to identify the prediction region for follow-up thresholds at that

frequency and ear. The left-ear, 3 kHz threshold is NR at follow-

up, which is outside the expectations established by proposed

Frontiers in Audiology andOtology 06 frontiersin.org

https://doi.org/10.3389/fauot.2024.1389116
https://www.frontiersin.org/journals/audiology-and-otology
https://www.frontiersin.org


McMillan et al. 10.3389/fauot.2024.1389116

FIGURE 3

Serial monitoring of a 42 year-old male with a history of pancreatic

insu�ciency and diabetes mellitus related to his Cystic Fibrosis. The

patient presented to emergency unit with a pulmonary infection and

was admitted to the hospital where they received between 6.75 to

12.5ml of IV tobramycin. Visit A: baseline audiogram. Visit B:

audiogram taken 1 week after the baseline exam during their course

on IV tobramycin therapy as an inpatient. Visit C: first follow-up visit

conducted about 1 month after end of IV course of treatment. X =
no response, NR. Circled thresholds are significant changes.

methodology. In these instances our approach is handling the NR

measurement without any trouble as expected. Difficulties arise

when the prediction region “straddles” the NR level such as left-

ear, 4, 6, and 8 kHz. The observed NR are consistent with the

prediction region that spans the test limit, so that no violation of

the Homeostasis Hypothesis is observed. However, this isn’t exactly

true: anNR thresholdmay actually be outside the prediction region,

but the test limit doesn’t permit the audiologist to observe this.

There is thus some degree of uncertainty one has to accept in

these instances.

Although we have developed and described this approach to

address the clinical challenge of determining when audiopathic

damage has occurred for an adult patient or worker, the framework

is easily extended to pediatric applications as long as suitable priors

FIGURE 4

Serial monitoring of a 66 year old patient with a tumor of the

suraglottis larynx who received cisplatin-based chemotherapy prior

to surgical removal. The patient received five infusions of cisplatin

for a total of 240 mg/m2. X = no response, NR. Circled thresholds

are significant changes.

for this population can be identified. Thismethodology is also easily

generalized to “objective measures” of auditory sensitivity that can

be obtained reliably in infants and young children. Otoacoustic

emissions are an attractive measure to use due to their sensitivity to

noise and ototoxic exposures (Dreisbach et al., 2023) and the large

literature of test-retest data in unexposed young controls (Bao et al.,

2017; Konrad-Martin et al., 2020). Digital audiometry platforms to

determine what constitutes a statistically significant hearing change

for that patient, will also provide important efficiencies for future

clinical trials.

5 Conclusions

Audiogram forecasting such as described in this paper

can substantially improve serial monitoring over traditional

approaches. Our method avoids sources of bias that reduce

diagnostic accuracy and standardizes the definition of a “significant

hearing change”. This has the added benefit of leaving clinical

interpretations about the functional impacts, implications for

follow-up, and treatment options up to the treating audiologist and

other clinical stakeholders.
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FIGURE 5

Serial monitoring of a 47 year old patient who worked as a chemical

engineer and reported exposure to loud machine noise. His initial

audiogram was completed at age 47, with a follow up occurring at

age 52. Baseline thresholds are missing at 3 and 6 kHz. 3 kHz

thresholds are missing at five-year followup. X = no response, NR.

Circled thresholds are significant changes.
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