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This integrative review and perspective article synthesizes current knowledge

about the co-morbidity of Type 1 Diabetes (T1D) and sensorineural hearing loss

(SNHL), a�ecting an estimated 9.2 per 1,000 T1D patients annually. Combining

data from clinical, preclinical, and mechanistic studies, the article elucidates

the complex pathological mechanisms contributing to SNHL in T1D. It is

established that T1D accelerates age-related SNHL and brings about detrimental

changes in the auditory system, including damage to outer hair cells (OHCs),

inner hair cells (IHCs), the stria vascularis (SV), and the spiral ligament (SL).

Furthermore, T1D-associated peripheral neuropathy, microvascular damage, and

chronic inflammation in the inner ear contribute to auditory deficits. Although

some consistency exists between animal models and human conditions, notable

discrepancies warrant the refinement of preclinical models to more accurately

mirror human clinical scenarios. This perspective article highlights the need

for targeted research to bridge existing knowledge gaps and accelerate the

development of early-stage interventions for SNHL in T1D patients. Advancements

in this field hold the promise of enhancing clinical prognosis and improving the

quality of life of individuals having T1D.

KEYWORDS

sensorineural hearing loss, type 1 diabetes, sensory cells, inner ear, pathological

mechanisms

Introduction

Diabetes mellitus (DM) is a chronic metabolic disorder characterized by elevated blood
glucose levels. It is a significant global public health concern, affecting both developed and
developing countries to varying degrees (Lawrence et al., 2021; Mahase, 2022; Abraham
et al., 2023; Wu et al., 2023). As of 2017, the global incidence of DM reached 22.9 million,
with a steady increase in its prevalence, which now stands at 476.0 million (Lin et al., 2020;
Mahase, 2022). There are two main types of diabetes: Type 1 (T1D) and Type 2 (T2D). T1D
is characterized by autoimmune-mediated β-cell destruction, resulting in life-long absolute
insulin deficiency. In contrast, T2D is marked by metabolically-mediated progressive β-cell
dysfunction in the setting of insulin resistance, leading to relative insulin deficiency (Eizirik
et al., 2020; Ingrosso et al., 2023). Central to the pathogenesis of DM is pancreatic β-cell
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dysfunction and death (Ingrosso et al., 2023). Globally, about 9
million people live with T1D, representing approximately 2% of all
estimated cases of DM (Green et al., 2021).

Incidence of sensorineural hearing
loss in type 1 diabetes

T1D is accompanied by numerous co-morbidities, including
sensorineural hearing loss (SNHL). Approximately 9.2 per 1,000
individuals with T1D develop debilitating SNHL each year (Kim
et al., 2017). Both preclinical and clinical studies have shown
the occurrence of SNHL in T1D. In a preclinical Akita mouse
model of T1D, it was observed that the insulin-dependent Akita
group showed significantly increased hearing thresholds at 16 and
32 kHz compared to the wild-type (WT) group, indicating that T1D
causes hearing impairment (Lee et al., 2020). In a large prospective
cohort clinical study with over 250,000 participants, it was found
that individuals with DM were at an increased risk of SNHL,
even after adjusting for multiple potential confounders, including
demographic characteristics, occupational noise exposure, lifestyle
risk factors, and other metabolic abnormalities (Kim et al., 2017).
The risk of SNHL increased progressively with increasing A1c levels
above 5% (Kim et al., 2017). A meta-analysis that explored auditory
brainstem-evoked responses (ABR) showed that diabetic patients
had a significantly slower nerve conduction into the auditory cortex
than control patients suggesting peripheral diabetic neuropathy
(Mujica-Mota et al., 2018).

Another human study found that T1D is a factor that can
damage hearing, the negative effect of which is compounded by
aging (Horváth et al., 2023). In patients with T1D aged 19–39, the
hearing threshold in middle to high frequencies (500 to 4000Hz)
was significantly higher when compared to controls of the same age;
however, the hearing threshold in both groups was still below 25
dB at all frequencies. In patients with T1D aged 40–60, the hearing
threshold in high frequencies (4,000–8,000Hz) was significantly
higher when compared to same-aged controls, requiring thresholds
of 25 to 30 dB where controls had thresholds of 5–10 dB (Horváth
et al., 2023). The hearing of the 19–39 aged T1D group was most
like that of the 40–60 aged control group, and the most significant
SNHL was demonstrated in the 40–60 aged T1D group; these
results show that T1D could accelerate age-related SNHL (Horváth
et al., 2023).

Several pathological mechanisms have been proposed to
explain the association between T1D and SNHL, including
microvascular damage, neuropathic complications, and chronic
inflammation, known to affect other organ systems in patients
with diabetes, that may also impact the structures of the inner ear
(Figure 1). Among the proposed mechanisms are damage to outer
hair cells (OHCs) and inner hair cells (IHCs), loss of spiral ganglion
neurons (SGNs) through apoptosis-mediated cell death, thickening
of the basement membrane (BM), and pathologies involving the
stria vascularis (SV) and spiral ligament (SL) of the cochlear lateral
wall (LW) (Fukushima et al., 2005; Kariya et al., 2010; Akinpelu
et al., 2014; Kim et al., 2017; Lee et al., 2020) (Table 1).

This perspective article aims to delve into the recent
advancements regarding our understanding of the pathological
mechanisms underlying SNHL in T1D (Figure 1). By gaining a

better insight into these pathological underpinnings, we can lay the
foundation for the development of novel, effective preventive, and
therapeutic strategies for SNHL in individuals with T1D.

Proposed pathological mechanisms
underlying sensorineural hearing loss
in type 1 diabetes

Outer hair cell and inner hair cell loss

Sensory outer and inner hair cells within the organ of
Corti (OC) play a crucial role in sound perception and signal
transmission to the auditory cortex in the brain (Driver and Kelley,
2020; Helwany et al., 2023;White et al., 2023). Therefore, damage to
these sensory cells has been implicated in SNHL. Human temporal
bone studies have revealed significant loss of OHCs in individuals
with T1D compared to the control group (Fukushima et al., 2005).
Moreover, in the same study, an accelerated rate of age-related
OHC loss was observed in patients with T1D compared to the
control group, further highlighting the association between T1D
and OHC damage.

Conversely, no loss of OHCs and IHCs has been observed
in preclinical animal models of T1D, despite exhibiting SNHL.
There were no histopathological changes in OHCs and IHCs in
the Akita mouse model of T1D compared to the WT animals
(Lee et al., 2020). These findings suggest that the OHC and
IHC loss observed in human T1D cases may involve factors
not adequately represented in the current animal models. This
discrepancy highlights the necessity for refining animal models to
better replicate the human clinical conditions of T1D, as OHC loss
appears to be a contributor to SNHL in humans with T1D but not
in the animal models investigated.

Loss of spiral ganglion neurons

Spiral ganglion neurons (SGNs) are bipolar neurons that
facilitate transferring auditory signals from sensory cells to the
cochlear nucleus in the brainstem (Sun et al., 2021).

SGNs play a crucial role in auditory signal transmission, and
their loss has been implicated in SNHL (Hoshino et al., 2019; Liu
et al., 2019; Zhang et al., 2022). Notably, animal models of T1D
have shown a significant reduction in SGNs. Lee et al demonstrated
that in the Akita mouse, the most striking observation was a
substantial decrease in the number of SGNs (Lee et al., 2020). At
the ultramicroscopic level, SGNs in these mice showed abnormal
mitochondria compared to WT, leading to disruptions in their
normal structures. Histological analysis of the cochlea confirmed
these findings, indicating a significant loss of SGNs in the Akita
mice compared to the control animals.

However, cochlea from patients with T1D showed no
significant difference in number of SGNswhen compared to control
(Fukushima et al., 2005). These discrepancies underscore the
importance of developing improved models of T1D and to advance
our understanding of the role of SGNs in T1D-related SNHL.
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FIGURE 1

Potential pathological mechanisms underlying sensorineural hearing loss in Type 1 diabetes (T1D). Taken and adapted from Horváth et al. (2023)

distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any

medium, provided the original author and source are credited.

TABLE 1 A summary of changes in cochlear structures leading to sensorineural hearing loss (SNHL) in type 1 diabetes mellitus (T1D).

Sensory cell-type a�ected Model Major findings References

Outer hair cells (OHCs) and inner hair
cells (IHCs)

Preclinical - No histopathological changes in IHCs and OHCs in the Akita
mouse model of T1D

Lee et al., 2020

Human temporal bone - Significant loss of OHCs. Fukushima et al., 2005

Stria vascularis (SV) and spiral ligament
(SL)

Preclinical - Thickness of the SV was significantly decreased in the middle to
basal turns of the cochlea in Akita mouse model of T1D.

Lee et al., 2020

Human temporal bone - Higher expression of cleaved caspase-3 in the SV and type I, II,
and IV fibrocytes of Akita mice compared to the WT group.

- Atrophy of SV and loss of SL cells in apical turns in patients
with T1D.

Fukushima et al., 2005

Spiral ganglion neurons (SGNs) Preclinical - Decrease in number of SGNs.
- Markedly abnormal mitochondria in SGNs of Akita mice,
resulting in disruption of normal structures of SGNs.

Lee et al., 2020

Human temporal bone - Cochlea from human TID patients showed no significant
difference in number of SGNs when compared to the
control sample.

Fukushima et al., 2005

Na+/K+-ATPase α1 Preclinical - Decreased expression of Na+/K+-ATPase α1 in type II and IV
fibrocytes as well as in SNS in Akita mouse model.

Lee et al., 2020

- Decrease in SV thickness in middle to basal turn.

Cochlear spiral modiolar artery Human temporal bone - Changes in cochlear spiral modiolar artery of patients with T1D. Kariya et al., 2010

Basement membrane Human temporal bone - Thickness of vessels in basement membrane significantly thicker
in patients with T1D compared to control.

Fukushima et al., 2005

- Basement membrane was remarkably thickened in T1D patients. Akinpelu et al., 2014

Pathological changes in stria vascularis and
spiral ligament

The cochlear lateral wall (LW), including the stria vascularis
(SV) and spiral ligament (SL), plays an integral role in the
maintenance of the endolymphatic potential (Liang et al., 2003,

2004; Hibino et al., 2010; Patuzzi, 2011). In Akita mice, the
thickness of the SV was significantly decreased in the middle to
basal turns of the cochlea compared to the WT group (Lee et al.,
2020). Atrophy of the SV and loss of SL cells in the apical turns have
also been observed in human cochlear studies (Fukushima et al.,
2005).
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TheAkitamice also showed abnormal shapes in both the blood-
labyrinth barrier and capillary formations, unlike the WT mice
(Lee et al., 2020). The vessel walls of the SV in the cochlea were
stained positively for cluster of differentiation 31 (CD31), which
was significantly decreased in Akita mice compared to WT mice.
This reduction in CD31 expression at the SV may be correlated
with the altered capillary shapes observed in Akita mice. Similarly,
human temporal bones studies have demonstrated changes in the
cochlear spiral modiolar artery in patients with T1D (Kariya et al.,
2010).

The enzyme Sodium-Potassium Adenosine Triphosphatase
(Na+/K+-ATPase) is a critical player in specialized ear
electrophysiological functions and is present in the SV and
LW structures (Gratton et al., 1995; Liu and Rask-Andersen, 2022;
Avillion et al., 2023). The Na+/K+-ATPase oligomer consists of
several isoforms of multiple subunits (Ding et al., 2018; Stephenson
et al., 2021). Notably, the α subunit within this oligomer contains
binding sites for ATP and cations (Na+ and K+). The Akita mouse
study examined the expression levels of Na+/K+-ATPase α1 in
the cochlea of both WT and Akita mice (Lee et al., 2020). In the
WT mice, the expression of Na+/K+-ATPase α1 was detected
in type II and IV fibrocytes and the SV in the middle to basal
turns. However, in the Akita mice, the expression in type II and IV
fibrocytes and the SV in the middle to basal turns was decreased.
Additionally, the expression of Na+/K+-ATPase α1 was marked in
the SGNs of the WT mice but was significantly decreased in Akita
mice. Additionally, the expression of Na+/K+-ATPase α1 was
marked in the spiral ganglion neurons (SGNs) of the WT group
but significantly decreased in the Akita group.

The caspase pathway plays a crucial role in the orchestration
of apoptosis in the cochlea and can be initiated by extrinsic and
intrinsic pathways. The caspase-dependent cell death pathway has
been widely implicated in the programmed cell death of OHCs
and IHCs (Tadros et al., 2008). In the Akita mouse study, higher
expression of cleaved caspase-3 was observed in the SV and type
I, II, and IV fibrocytes of Akita mice compared to the WT group
(Lee et al., 2020). Cleaved caspase-3 was strongly expressed in
the basal turn of the OC and nerve fibers. These results are
consistent with the thinning of the SV, the loss of type I, II,
and IV fibrocytes and SGNs, and the reduction in Na+/K+-
ATPase α1, all exhibited in the Akita mouse model. However, no
electrophysiological studies were performed to precisely determine
the electrolyte influx changes and corresponding deterioration
in SV. In summary, the expression level of Na+/K+-ATPase
α1 and cleaved caspase-3 in the cochlea of Akita mice suggests
their involvement in the observed structural changes, impairment
of cellular function, and loss of cells. Nevertheless, further
electrophysiological investigations are needed to gain a more
comprehensive understanding of the electrolyte influx alterations
in the stria vascularis and their implications.

Conclusions and future directions

T1D has been associated with SNHL, and numerous studies
have shown pathological changes in cochlear structures including
OHCs, IHCs, and SGNs (Figure 1). While significant progress has

been made in linking T1D to SNHL, there are still knowledge gaps
that warrant further investigations. Although certain concordant
results have been observed between preclinical and clinical studies,
contradictory findings emphasize the need of refining animal
models to better replicate the human clinical conditions of T1D.
There have been numerous animal models of various species aimed
at accurately depicting T1D and its microvascular complications,
the most successful of which being rodents and zebrafish for
diabetic neuropathy and retinopathy, respectively (Singh et al.,
2022; Yagihashi, 2023). A list of T1D rodent models to date has been
summarized in Supplementary Table 1 (Lukens, 1948; Craighead
et al., 1974; Goto et al., 1976; Like and Rossini, 1976; Nakhooda
et al., 1977; Makino et al., 1980; Kawano et al., 1991; Yoshioka et al.,
1997; Komeda et al., 1998; Lenzen et al., 2001; Zheng et al., 2004;
Lee et al., 2020). Although these models were able to appropriately
replicate diabetic neuropathy and retinopathy, hearing was not
explicitly tested in these studies. As SNHL in T1D may have
a similar pathogenesis to that of other diabetic microvascular
complications, further preclinical research using rodents as animal
models is warranted to explore this possibility.

Studies have implicated pathological changes in the stria
vascularis (SV) as contributors to T1D-induced SNHL. However,
to precisely determine the extent of damage, electrophysiological
studies are needed. Additionally, time-dependent studies in animal
models are essential to identify when cochlear pathological
changes begin, leading to deterioration in hearing thresholds. The
information available from these studies will enable us to determine
the optimal therapeutic window for future novel interventions.

Genetics plays a crucial role in the pathophysiology of T1D and
several T1D-associated genes have been identified in the affected
individuals (Supplementary Table 2) (Eiberg et al., 2006; Todd et al.,
2007; Barrett et al., 2009; Cooper et al., 2009; McKinnon et al., 2009;
Bradfield et al., 2011; Evangelou et al., 2014; Onengut-Gumuscu
et al., 2015; Törn et al., 2015; Duarte et al., 2017; Rigoli et al.,
2018; Klak et al., 2020). Nevertheless, these studies did not explore
a connection between these loci and SNHL. However, a missense
mutation E864K in theWFS1 gene on chromosome 4p16 has been
linked to Wolfram Syndrome 1, a condition characterized by non-
autoimmune T1D and SNHL, among other deficits (Eiberg et al.,
2006; Rigoli et al., 2018). This highlights the possibility that some
T1D-associated variants may directly compromise the function
of the inner ear, which warrants exploration in future studies.
Furthermore, there is a need to determine the expression T1D-
associated genes in the inner ear that has not been characterized
so far in the current available studies.

Recent studies have shown the utility of gene and stem cell
gene therapy in developing therapeutic strategies for SNHL (Mittal
et al., 2017; Scheper et al., 2019; Eshraghi et al., 2020; Bergman
et al., 2021; Zhang et al., 2022; Chou and Hsu, 2023). As technology
develops further and novel interventions like these continue to
arise, SNHL and deafness may become increasingly treatable
conditions especially in individuals with T1D. A better knowledge
about the pathological mechanisms of T1D-induced SNHL will
lead to the development of early interventions for T1D-induced
SNHL, resulting in better clinical outcomes and improved quality
of life of affected individuals who are already having a debilitating
metabolic disorder.
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