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Using auditory texture statistics
for domain-neutral removal of
background sounds

Artoghrul Alishbayli‡, Noah J. Schlegel†‡ and Bernhard Englitz*

Computational Neuroscience Lab, Donders Institute, Radboud University, Nijmegen, Netherlands

Introduction: Human communication often occurs under adverse acoustical

conditions, where speech signals mix with interfering background noise. A

substantial fraction of interfering noise can be characterized by a limited set

of statistics and has been referred to as auditory textures. Recent research in

neuroscience has demonstrated that humans and animals utilize these statistics

for recognizing, classifying, and suppressing textural sounds.

Methods: Here, we propose a fast, domain-free noise suppression method

exploiting the stationarity and spectral similarity of sound sources that make up

sound textures, termed Statistical Sound Filtering (SSF). SSF represents a library of

spectrotemporal features of the background noise and then compares this against

instants in speech-noise-mixtures to subtract contributions that are statistically

consistent with the interfering noise.

Results: Weevaluated the performance of SSF usingmultiple qualitymeasures and

human listeners on the standard TIMIT corpus of speech utterances. SSF improved

the sound quality across all performance metrics, capturing di�erent aspects of

the sound. Additionally, human participants reported reduced background noise

levels as a result of filtering, without any significant damage to speech quality. SSF

executes rapidly (∼100× real-time) and can be retrained rapidly and continuously

in changing acoustic contexts.

Discussion: SSF is able to exploit unique aspects of textural noise and therefore,

can be integrated into hearing aids where power-e�cient, fast, and adaptive

training and execution are critical.

KEYWORDS

sound textures, noise reduction, speech enhancement, hearing aids, statistical learning

Highlights

- Acoustic textures are defined by time-independent statistics and occur frequently.

- Learning a library of spectrotemporal features rapidly filters out acoustic textures.

- Filtering suppresses background noises across different auditory textures.

- Human and automatic performance evaluation demonstrate suppression.

- Filtering is fast and can thus be integrated into mobile devices and hearing aids.

Introduction

Auditory signals rarely arrive at the ear in pure and unambiguous form but are usually

mixed with other competing sounds. Masking of relevant information by irrelevant noise

is not unique to the auditory system: occlusion of surfaces in a complex visual scene

poses an analogous signal processing problem that requires disambiguation and segregation

of sources (Handel, 2006; Minaee et al., 2022). However, unlike in the visual domain,

in the auditory domain, the noise is superimposed onto the signal which creates an
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ill-posed source separation problem for the auditory system

(McDermott, 2009). During the course of evolution, the auditory

system evolved an impressive ability to extract relevant information

from complex scenes with multiple interfering sources, an effect

known as the cocktail party effect (Middlebrooks et al., 2017).

Although the specific neural mechanisms responsible for this ability

remain poorly understood, extensive research has documented

the processes through which the auditory system of an organism

responds to the noise in complex auditory scenes. These processes

include segregation by fundamental frequency, dip listening, better-

ear listening, binaural unmasking, etc. (see Culling and Stone, 2017

for an overview).

However, what is achieved seamlessly by a normally

functioning system, becomes a challenge with hearing loss

(Koole et al., 2016). To address the issue, various noise reduction

approaches have been developed over the past few decades (Loizou,

2013b; Henry et al., 2021). They vary in multiple dimensions: some

of the methods use real-time data (Braun et al., 2021) collected

using a single channel microphone (Huang and Benesty, 2012; Lee

and Theunissen, 2015), while others are used in post-processing

and utilize multiple recording channels (Tzirakis et al., 2021),

which can provide extra spatial cues that can aid in solving

the problem. While noise reduction approaches typically do

not improve speech intelligibility itself, the subjective listening

experience does improve with indications of less cognitive load

for normal hearing persons (Sarampalis et al., 2009) and reduced

listening effort for less distorted speech in people with hearing

loss (Fiedler et al., 2021). Classically, noise reduction algorithms

use signal processing methods, but recent developments in the

field have led to increased use of machine learning techniques that

allow more flexibility in terms of target selection and enhancement

in more complex, non-stationary background noise conditions

because they make fewer assumptions about the nature of noise.

Sounds with relatively constant statistical features over time

have been categorized as acoustic textures, for example, the sound

of rain, fire, or flocks of birds (McDermott and Simoncelli,

2011). Most auditory textures are physically generated by the

superposition of a limited range of constituent sounds, which occur

independently or with limited statistical dependencies between

the constituent sounds. Previous research has shown that humans

can recognize and differentiate acoustic textures on the basis

of their statistics (McDermott and Simoncelli, 2011; McDermott

et al., 2013). However, previous approaches in noise reduction

have not made use of this inherent structure of acoustic textures,

despite their frequent role as background sounds during every-

day audition.

In this study, we propose a noise reduction method that utilizes

these inherent statistical regularities to attenuate background

sounds and thus improve the signal-to-noise ratio of embedded

speech sounds. Specifically, we represent the ensemble of

constituent sounds using samples of background sounds, identified

around or between speech samples. Assuming an additive mixture,

we then clean the speech-in-noise sample by identifying exemplars

that provide the best match to the instantaneous spectrogram. This

approach extends previous approaches of spectral noise subtraction

(Boll, 1979) by relating it to the statistics of natural background

sounds. Importantly, we do not create an explicit statistical model

of the background noise, as (i) this usually requires more data to

be well-constrained and (ii) the internal, statistical predictability

would be too limited to remove specific instantaneous sounds

randomly occurring inside the auditory textures (see Discussion

for details).

Applied to the TIMIT database in the context of artificial

and natural acoustic textures, the filtered result exhibited an

improved representation of the speech as measured by a standard

deep neural network (DNN) based speech recognition system,

spectrogram correlations, and automated estimation of speech

quality. Similarly, online psychoacoustic experiments on human

participants also indicated an improvement in the quality of the

sounds. In comparison with other machine learning approaches,

our system does not require extensive training but rapidly adapts

to the recent history of background noise, and runs faster-than-

real-time on computational resources currently available in mobile

phones. If translated to specialized processors in hearing aids, it

may be feasible to run on preprocessors for hearing aids and

cochlear implants.

Methods

Sound material

Generation of artificial textures
Auditory textures used as background noise were generated

using a slight modification of the “Sound Texture Synthesis

Toolbox” developed by McDermott and Simoncelli (2011). The

changes allowed the mixing of statistical features from different

sound sources while sampling the statistical space of natural

sounds in a controlled fashion. In total, we generated six different

textures with different combinations of marginal (mean, variance)

and correlation statistics taken from real textures (Table 1). The

algorithm calculates marginal moments and/or correlations from

the example sound which are then taken as target statistics

for synthesis. The synthesis starts from a Gaussian white noise

which is then iteratively shaped to match predetermined target

statistics using the conjugate gradient method. Those statistics were

transformed per frequency bin, which makes the resulting sound

rather similar to the original if that sound is well-defined by the

used statistics. In the case of sound textures, it has been shown

that this procedure is able to produce compelling sounds that are

indistinguishable from original sources in many cases (McDermott

and Simoncelli, 2011). Multiple 50 s texture files were generated for

each set of statistics, which was long enough for the combination

with a few speech samples while still ensuring convergence of the

synthesis. Figure 1A shows spectrograms of generated textures.

Source of real texture
To also test the process with a real texture, we needed a natural

texture example with constant statistics and a duration of at least

90min (the test part of TIMIT is roughly 87min long). We chose

a 3-h continuous rain recording (The Relaxed Guy, 2014) with

subjectively little change over time. The first 30 s of the file were

discarded to reduce the potential statistical effects of fading in, it

was then downsampled to 16 kHz and saved as a WAV file.
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Speech samples
Human speech samples used in this study were obtained

from the TIMIT corpus (Garofolo et al., 1993), which contains

broadband recordings of 630 speakers of eight major dialects of

American English, each reading ten phonetically rich sentences.

For objective testing of the algorithm, the entire test set of TIMIT

was used, comprising 1,680 files. For human evaluation of the

algorithm, due to overall time limitation (1h), we selected a subset

TABLE 1 Source sounds for artificial texture generation.

TextureID Envelope
mean

Envelope
variance

Correlation

Base1 ρ ↑ Bee swarm Pile driver Fast running river

Base1 ρ ↓ Bee swarm Pile driver Jogging on gravel

Base2 ρ ↑ Bubbling

water

Drumroll Fast running river

Base2 ρ ↓ Bubbling

water

Drumroll Jogging on gravel

Base3 ρ ↑ Shaking coins Crowd noise Fast running river

Base3 ρ ↓ Shaking coins Crowd noise Jogging on gravel

of 36 unique speech files where variables such as gender (n = 2),

dialect (n = 8), speaker ID (n = 33) and sentence type (n = 3)

were made as diverse as possible (see below for other details on the

human experiment).

Mixing of speech and noise
For each texture type, a speech-texture mix was created with

the TIMIT test set. Every speech file was mixed with an individual

texture sequence after both signals were normalized to a standard

deviation of 1. For testing of the algorithm, a constant SNR of 0

dB was set for the mixture, except when SNR was varied during

parameter exploration. After combining, the signal was normalized

to a fixed standard deviation of 0.05 to avoid clipping in the WAV

files which occurs at absolute values above 1. Texture samples were

drawn uniquely and continuously without overlap from the created

or real texture files.

Filtering algorithm

Briefly, the filtering process was a matched subtraction on the

spectrogram level using a fast k-nearest neighbors (KNN) search

FIGURE 1

Speech and noise sources used and filtering principle architecture. (A) Spectrograms of artificial and natural textures used as background noise in

testing of the algorithm. (B) Filter training and evaluation on noisy data. The training data (top) is converted to a spectrogram, governed by the

window length, step size and window function. In the training step, short sections of the spectrogram are high-pass filtered and then embedded

(bottom, black) in high-dimensional vector space (dimension: NFFT × NWindowSteps) to represent the short-term spectrotemporal statistics. (C)

Samples of speech with added noise are transformed to spectrograms (top) and embedded into the same space as the training data (bottom, red).

(D) Filtering of the noisy speech sample is performed by selecting a number of nearest neighbors inside the embedding for each time-instant,

averaging them and subtracting them from the noisy data. A playback-capable sound pressure representation of the filtered spectrogram is then

generated via spectrogram inversion using the original phases from the noisy speech sample (top).
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over the training data as an estimator of the texture contribution to

the sound (subtrahend), with appropriate transformations between

sound pressure and spectrogram representations.

Training of the filter
The internal representation of the filter was spectrotemporal

snippets from the training data represented as vectors. For this

purpose, the training data was first transformed from sound

pressure to a spectrogram using the short-term Fourier transform,

represented as ST
(

t, f
)

below, where T indicates the training

data. As usual, this transformation is parameterized by the

window size and the step size. Typical values were 16 and 2ms,

respectively, but we explore the effect of these and other parameters

in Figures 2E–K. The spectrogram was high-pass filtered, by

subtracting the local context, i.e., the temporal average over a

bidirectional window of length TMultistep = 50ms per frequency

bin, which deemphasizes speech contributions to the instantaneous

spectrum. The training data was then represented as points

in a high-dimensional space, by linearizing short segments of

dimension NFFT × NWindowSteps, where NWindowSteps is number of

subsequent time-steps embedded, i.e.,

E
(

ST
(

t, f
))

→ R
NFFTxNWindowSteps (t ) .

The resulting representation discretely approximates the

distribution of the texture in the coordinates of the spectrotemporal

snippets by sampling it. This representation captures the joint

occurrence of different frequencies over adjacent time points in the

texture. We also tried directly representing products of frequency

channels, which, however, did not improve performance, while

strongly increasing the runtime.

The training data was provided in two different ways: either,

a single textural sound of length LTrain was provided (which we

refer to as “supervised”); or a speech-in-noise sample with a total

amount of texture LTrain was provided (which we refer to as

“unsupervised”). In the first case, the algorithm knew the training

data, in the second case, we used an unsupervised method of

training data extraction based on voice activity detection (VAD),

similar to an earlier study (Xu et al., 2020). In this approach,

we used a method called robust voice activity detection (rVAD),

described in detail elsewhere (Tan et al., 2020), to detect speech-free

regions of noised sound clips and use the extracted sound fragments

to train the filter as described above.

Application of filter
After the filter had been trained, it was applied continuously

to speech-in-texture mixtures. The latter were short-term Fourier-

transformed using the same parameters as the training data,

including the referencing to the local temporal average over the

window TMultistep. For each time step, the distance of all training

data samples to the current, brief spectrogram was then computed

(Matlab function: KDTreeSearcher). The average of the NNeighbor

closest training points was then computed as an approximation

to the current noise. The resulting texture spectrogram was then

subtracted from the sound mixture in the dB scale, after which

the sound was reverted back to a linear scale. More specifically,

the spectrogram of the current noisy speech sample SN
(

t, f
)

was embedded:

E
(

SN
(

t, f
))

→ R
NFFTxNWindowSteps (t ) .

then for each time point t find

SNeighbors = {τi} = minτ

∣

∣E
(

SN
(

t, f
))

− E
(

ST
(

τ , f
)) ∣

∣ .

In the latter, the set of closest points of size NNeighbor was

chosen, and then subtracted from the current spectrogram, i.e.,

E
(

SF
(

t, f
))

= E
(

SN
(

t, f
))

−
〈

E
(

ST
(

τ , f
)) 〉

{τi}
.

After subtraction, the linear magnitude was transformed back

into a sound pressure wave using the original phases for all

frequencies (using the idgtreal function, Pruša et al., 2014). Further

exploiting the stationarity, the estimated texture was limited to the

95th percentile of the marginal amplitudes of the training data.

This approach reflects the temporally invariant composition of

auditory textures by estimating the noise component using the

known “repertoire” of sounds. Naturally, longer training data will

improve this estimate, however, a near-plateau was already reached

after only a few seconds of training data (see Figure 2J).

Performance evaluation

Pointwise correlation
This metric is computed as the correlation of the spectrograms

of the filtered or noised sounds with that of the clean speech sound:

the higher the correlation to the clean speech, the better the filtering

at the spectrogram level. The improvement as a result of filtering is

reported as a percent increase in correlation with the clean speech

[i.e., (ρfiltered – ρnoised)/ρnoised].

DNN label error rate
Another test for speech intelligibility is the performance

of automatic speech recognition software. Since this is also a

potential field of usage for the filtering method, this kind of

performance measurement was a sensible choice. We employed a

bi-directional LSTM (Graves et al., 2006) as a speech recognition

neural network, which was trained on the TIMIT dataset (see

Supplementary material for details). For each timestep in the

spectrotemporal domain of the sound, a phoneme probability result

was calculated with 62 softmax values for the 62 possible phoneme

labels (including one empty/repeat label). Using the phoneme

prediction logits (input of the softmax function) of a sound file’s

time steps, the phoneme label was predicted using a beam-search

decoder. This predicted label was used to compute the LER as its

mean edit distance to the true label. Improvement in DNN label

error rate was computed as a percent decrease of LER in filtered

sound in comparison to the LER under noisy conditions.

Perceptual evaluation of speech quality
PESQ is a standard method for objectively measuring

listening quality based on the comparison between clean reference
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FIGURE 2

Performance of statistical filtering on speech in noise. (A) Sample spectrograms of original speech, speech within noise and filtered speech within

noise. (B) Improvement via statistical filtering was first evaluated using pointwise correlation of the spectrograms (for Base 2 ρ↑; each dot

corresponds to a sound clip; n = 1,680). In this case an average improvement of 13.9% (SD = 3.9%) was achieved, with generally positive, but varying

improvements for the seven di�erent textures used (bottom). (C) Improvement in phoneme recognition error rate using an LSTM Deep Neural

Network (DNN) trained on the TIMIT corpus. Improvement here corresponds to dots below the diagonal. Absolute values of improvement were

similar in magnitude as for correlation (bottom), with larger variation across the di�erent texture types (µ = 10.1%; SD = 15.2%). (D) Improvement in

mean opinion score—listening quality objective (MOS-LQO) estimated with the PESQ algorithm (µ = 6.2%; SD = 4.1). (E–K) Dependence of the

improvement in speech quality on di�erent parameters of the sounds [(E) signal-to-noise ratio and filtering algorithm, (F) number of neighbors, (G)

window size for spectrogram creation, (H) step-size for moving the window, (I) local averaging duration in filtering the noisy speech signal, (J) training

duration, (K) scaling of the estimated noise contribution, given as a fraction]. Overall, all measures improved across the range of tested parameters.

We chose a value for each parameter as the default for the other parameters (black dot in each plot), which was also used in the subsequent figures.

sound and the given sound (Rix et al., 2001). In our case,

comparisons to clean speech were made separately for noised

speech and for filtered output of the noise reduction algorithm.

The difference between the two scores obtained this way is

interpreted as an objective estimate of the improvement in speech

quality. In this study, we used a MATLAB wrapper function

pesq_mex_vec.m provided with Sound Zone Tools (Donley, 2022),

and a wideband version of the algorithm which maps raw

PESQ score to MOS-LQO score for wideband sounds (ITU-T,

2007).

Comparison with Ephraim-Malah algorithm
To compare our method with an existing method we used

the EM algorithm also commonly referred to as Minimum Mean

Square Error-Short-Time Spectral Amplitude (MMSE-STSA)

method which is a standard algorithm for single microphone

noise reduction (Ephraim and Malah, 1985). It operates on

short overlapping frames of the input signal in the frequency

domain. By estimating the statistical properties of speech and

noise, the algorithm computes a gain function that minimizes

the mean square error between the estimated clean speech and

the observed noisy signal. The gain function is determined

based on the estimated speech presence probability in each

frequency bin. The “ssubmmse.m” MATLAB routine from the

VOICEBOX package (Brookes, 2002) was employed as the

implementation of this algorithm. The default values were

used for all user-specific parameters of the EM algorithm. See

Table 2 for the full list of external software packages used in

this study.
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TABLE 2 External software.

Name Version Source References

System: Ubuntu Linux 18.04.1 https://old-releases.ubuntu.com/releases/18.04.1

MATLAB

• System identification

• Signal processing

• Statistics and machine learning

R2019a/R2022b https://nl.mathworks.com/products/matlab.html MATLAB, 2022

Large time-frequency analysis toolbox 2.0 https://github.com/ltfat/ltfat Pruša et al., 2014

Sound texture synthesis toolbox 1.7 https://mcdermottlab.mit.edu/

Sound_Texture_Synthesis_Toolbox_v1.7.zip

McDermott and Simoncelli,

2011

NeurAudio statistical filtering toolbox https://data.donders.ru.nl/collections/di/dcn/

DSC_626840_0011_433

(This article)

Robust voice activity detection (rVAD) 2.0 https://github.com/zhenghuatan/rVAD Tan et al., 2020

Sound zone tools 1.0.0 https://github.com/jdonley/SoundZone_Tools Donley, 2022

Packages in the conda environment

Python 3.7.7 https://www.python.org/downloads/release/

python-377

van Rossum and Drake, 2009

Numpy 1.18.1 https://pypi.org/project/numpy/1.18.1 Harris et al., 2020

Scipy 1.4.1 https://docs.scipy.org/doc/scipy-1.4.1/reference/

index.html

Virtanen et al., 2020

Scikit-learn 0.23.1 https://scikit-learn.org/0.23 Pedregosa et al., 2011

Tensorflow-gpu 1.14 https://www.tensorflow.org/install/pip Abadi et al., 2016

Tensorpack 0.10.1 https://pypi.org/project/tensorpack Wu, 2016

Cudatoolkit 10.0.130 https://anaconda.org/anaconda/cudatoolkit/files?

version=10.0.130

n/a

cuDNN 7.6.5 https://developer.nvidia.com/rdp/cudnn-archive Chetlur et al., 2014

Bob.ap 2.1.10 https://www.idiap.ch/software/bob/docs/bob/bob.

ap/v2.1.10

Anjos et al., 2012

Editdistance 0.5.3 https://pypi.org/project/editdistance/0.5.3 Tanaka, 2019

Matplotlib 3.1.3 https://matplotlib.org/3.1.3/contents.html Hunter, 2007

VOICEBOX http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/

voicebox.html

Brookes, 2002

Computational complexity
In order to evaluate the speed at which the algorithm can be

run, we used a Desktop PC (AMD Threadripper 2920X, 12 cores)

running the algorithm on 100 speech samples randomly selected

from TIMIT dataset mixed with all seven texture types. To quantify

the speed, the average time spent on running the processing of a

single frame was divided by the step size (default value = 2ms)

to obtain a real-time factor. The average time spent on a single

frame is estimated by estimating the time it takes to filter a given

speech sample divided by the number of frames in the spectrogram,

which is determined by the window (16ms) and step size (2ms)

parameters. Real-time factors <1 indicate that the algorithm can

run faster than real-time on our setup (see Figure 6).

Human experiments
To evaluate the human-perceivable change in sound quality, we

performed an online experiment where we asked participants to

rate speech and background components of the delivered sound.

The experiment lasted on average about 1 h and 10 participants

(six male, four female, average age: 33.6 y, SD = 7.6 y) took

part in the study. Participants were recruited through Prolific

(www.prolific.co), where we chose to recruit individuals with no

hearing difficulties, hearing aids or cochlear implants, and those

who spoke English as their first language. Experimental code was

generated using PsychoPy3 Builder (Peirce et al., 2019) and hosted

on Pavlovia (pavlovia.org). All participants gave written informed

consent to take part in the experiment, which was approved by

the Ethics Committee of the Faculty of Social Sciences at Radboud

University Nijmegen.

To ensure that the participants using a variety of different

hardware could hear the sounds in a comparable manner, and to

check that they were using headphones as instructed, we started

the session with a headphone screening test described in detail

elsewhere (Woods et al., 2017). In this section, participants were

asked to report which of the three pure tones was quietest,
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FIGURE 3

Comparison of individual and combined performances of SSF and EM. Combination of SSF and EM outperforms the separate filtering runs for

correlation (A), DNN label error rate (B), and MOS-LQO score (C) for all textures and speech samples used in this study (n = 7 textures; n = 1,680

speech samples). Bar plots represent the mean performance for each filtering condition across all textures and speech samples (n = 11,760) and all

di�erences between these means were highly significant (p < ǫ), except for the DNN label error rate di�erence between SSF and EM (p < 0.01). Error

bars here represent the SD, as SEMs are visually indistinguishable from 0 (due to the high number of speech samples).

with one of the tones presented 180◦ out of phase across the

stereo channels. The task is trivial with headphones but gets

harder to perform without headphones due to phase cancellation.

Nine out of 10 participants were able to perform this task with

100% accuracy (n trials = 12). The outlier was included in the

analysis due to the similarity of the behavioral results to other

participants, suggesting that this individual was still engaged

in the task. Participants were financially compensated for their

time once the experiment had finished; no additional motivation

was provided.

Experimental trials started with the presentation of a sound

clip. After the sound played, a new screen with continuous

vertical scales for speech and background ratings was shown

(see Figure 3A). Speech rating scale ran from 1 (distorted) to 5

(clear), while the background rating scale ran in an analogous

fashion from 1 (very quiet) to 5 (very loud). The participant could

report their evaluation by clicking and adjusting the indicator

point on the scale with a mouse. We tested a total of 518

sound clips which included filtered and noised versions of the

same speech fragments mixed with different types of background

noise. The order of sound delivery was randomized to avoid

direct comparison of filtered and unfiltered versions of the same

speech sample.

Results

We designed and implemented a fast noise-filtering algorithm

(Statistical Sound Filter) SSF focussed on textural stimuli,

characterized by time-independent statistics, and evaluated its

performance on the TIMIT speech dataset corrupted by a set of

semi-natural and natural background noises (Figure 1). Evaluation

included both automated and human assessments of speech quality

as well as an evaluation of SSF’s run-time as a function of its

various parameters.

Approach to filtering statistically governed
sounds

A large fraction of naturally occurring background sounds can

be characterized as acoustic textures, i.e., they are a composite

of basic sounds whose temporal occurrence is only constrained

statistically, with the additional limitation that these statistics

are stationary/time-invariant (Figure 1A). Examples of auditory

textures include the sounds of wind, waves, rain, fire, insect swarms,

flocks of birds, and essentially all sounds where many similar

entities produce similar sounds. We developed a noise filter that

specifically approaches the removal of these auditory textures from

target/foreground sounds, termed Statistical Sounds Filter (SSF).

SSF is first trained on a section of acoustic texture (see Figure 4 for

training on mixed speech-texture sounds), by assembling a library

of spectrotemporal sounds from the training data. This includes

both individual and composite occurrences of the constituent

sounds (Figure 1B, top and bottom). SSF is then applied to

speech embedded on a different realization/sample of the texture

(Figure 1C), which would occur after the training data in real life.

SSF then matches the feature library against a preprocessed version

of the speech-in-noise sample for all time points, subtracts out the

best match, and then recreates the filtered sound using the original

phases (Figure 1D). The resulting sounds exhibit substantially and

significantly reduced background noises and thus separation of the

target sound, e.g., speech in the present testing.

Filtering performance as a function of
algorithm parameters

To evaluate the performance of SSF we generated an array of

artificial textures based on real-world sound textures (Figure 1A).

These textures provided the benefit of being based on real sounds

while at the same time allowing us to manipulate the background
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FIGURE 4

Human evaluation of filtering performance. (A) Experimental setup of the human experiment. At every trial, participants were asked to rate the speech

and background components after the sound clip was delivered through headphones. The speech was rated on a scale from 1 (distorted) to 5 (clear),

while the background was rated on a scale from 1 (very quiet) to 5 (very loud). (B) Evaluation of speech (blue) and background (orange) components

of the presented sounds across di�erent background noise conditions. Black dots represent mean ratings for noised sounds, while red dots stand for

mean ratings for filtered sounds. Each line connecting the dots corresponds to an individual participant (n = 10). While speech ratings do not show

any systematic change as a result of filtering, background ratings decrease, indicating consistent removal of background noise. (C) Background

ratings provided for filtered and noised versions of the same sound clips, pooled across participants. Each dot represents two ratings provided in two

separate, non-consecutive trials (n = 2,010 pairs). (D–F) Comparison of filtering-related change in human evaluation with the change in objective

measures—correlation (D), DNN label error rate (E), and MOS (F)—reveals a very small correlation between objective and subjective evaluation

metrics, suggesting that human evaluation used in this study reflects features that are not captured by these objective measures.

sound statistics parametrically to evaluate the influence on SSF’s

performance. The generated textures varied in their marginal and

across-frequency correlation statistics and covered a large range

of values in the respective parameter spaces, both spectrally and

temporally (see Methods for details). We also included a natural

texture (sound of rain) to exclude that the SSF’s performance is

limited to the peculiarities of artificially synthesized textures.

Initial testing was carried out on a set of parameters that

allowed relatively fast and effective filtering of the background noise

(Figure 2A). For this example run, SNR= 0 dB was used for mixing

speech and noise. The performance was then quantified using three

measures, (i) the spectrogram correlation, (ii) the label error rate of

a DNN, and (iii) the MOS-LQO score.

The correlation coefficient was computed by taking a pointwise

correlation between the spectrogram of the original (clean) sound

clip and that of filtered (or noised) versions of the same speech

fragment (Figure 2B). Across all speech and noise combinations,

SSF achieved an average of 13.9% (SD= 3.9%, p< 0.001, Wilcoxon

rank sum test) improvement in correlation metric. Statistical

comparisons were carried out across the different texture types (N

= 7) between speech-in-noise and filtered averages. Within texture

type, almost all showed highly significant improvements (Table 3),

which is unsurprising given the large number of samples tested (N

= 11,760 total samples).

To evaluate the change in speech intelligibility automatically,

we utilized a DNN-based phoneme recognition system trained

on the TIMIT dataset (see Methods) and quantified the relative

labeling error rate before and after filtering (Figure 2C, µ = 10.1%;

SD= 15.2%, p= 0.011).

Lastly, we used a commonly used wideband PESQ algorithm to

evaluate the speech quality and reported the results by transforming

the raw PESQ score to mean opinion score—listening quality, as

described in ITU-T P.862.1 (ITU-T, 2003) (Figure 2D, µ = 6.2%;

SD= 4.1%, p= 0.007).

Next, we varied the main parameters of the algorithm to

understand how each affects the performance, as measured by

the above metrics. While for most parameters the performance

changed in a comparable manner across different metrics
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TABLE 3 Summary of improvement in objective evaluation metrics per texture for default parameters.

TextureID Correlation DNN LER MOS-LQO

µ Σ p µ σ p µ σ p

Base1 ρ ↑ 10.154 2.357 < ǫ∗ 6.626 12.324 < ǫ 1.277 1.591 < ǫ

Base1 ρ ↓ 11.536 2.062 < ǫ 16.481 12.146 < ǫ 3.881 2.343 < ǫ

Base2 ρ ↑ 13.758 2.995 < ǫ 17.943 12.629 < ǫ 8.012 3.224 < ǫ

Base2 ρ ↓ 14.932 2.814 < ǫ 21.643 11.865 < ǫ 10.331 3.615 < ǫ

Base3 ρ ↑ 18.340 1.160 < ǫ 0.256 13.433 0.037 8.345 3.484 < ǫ

Base3 ρ ↓ 18.493 1.218 < ǫ 7.974 13.814 < ǫ 6.645 3.179 < ǫ

Rain 10.277 1.756 < ǫ −0.159 14.316 0.286 4.953 2.238 < ǫ

∗ǫ here is 10−15 .

(Figures 2F–K), varying the signal-to-noise ratio (SNR) affected

our metrics in a clearly divergent manner (Figure 2E). At very low

SNRs, our algorithm does not significantly improve the objective

listening quality, but it is able to effectively improve the spectral

representation of the speech as measured by pointwise correlations.

Such divergent effects of SNR on the present performance metrics

highlight the need for evaluation using multiple metrics that

quantify separate aspects of the sound.

To determine if our method leverages a unique statistical aspect

of the background noise, we compared its performance with an

established method that uses the mean-square error short-time

spectral amplitude (MMSE-STSA) estimator for enhancing noisy

speech (Ephraim and Malah, 1985). The MMSE-STSA method

uses a statistical model of the speech and noise spectra, and

computes the gain function that minimizes the mean-square error

between the estimated and true spectral amplitudes. Although

the EM outperforms SSF when used alone at the SNR used

in this filtering run (0 dB), combining it with our method

(SSF → EM) significantly enhances performance across all

metrics (Figures 3A–C). Since SSF has a fast processing time (as

shown below), our results suggest that our method can effectively

complement other standard methods to further reduce noise

without adding excessive computational overhead.

Human listeners indicate consistent
suppression of background noise

To get a more explicit evaluation of human-perceivable

improvement as a result of our filtering algorithm we ran an

online experiment with human participants (n = 10). Given the

time limitation that comes with human experiments, we selected

a representative subset of speech fragments from the TIMIT corpus

with balanced features such as speaker gender, identity, dialect, and

sentence type (Garofolo et al., 1993), and mixed the selected speech

fragments with the aforementioned texture types (see Methods). At

each trial, the participant was asked to rate speech and background

components of the sound using separate linear scales running from

1 to 5 (Figure 4A). For the speech component, participants rated

the quality of sound clips on a continuous scale from distorted (1)

to clear (5). For background evaluation, participants reported their

judgments on a scale from very quiet (1) to very loud (5).

Comparing individual ratings divided across texture types, we

observed no significant change in speech ratings as a result of our

filtering procedure (µ =−6.02%, SD= 7.35%, p= 0.32, Wilcoxon

rank sum test, n = 7 filtered/noised pairs; Figure 4B). The ratings

were also not significantly different for most texture types when

the ratings were analyzed separately for each texture (Table 4).

However, participants perceived the background component as

consistently less loud after filtering (µ = −15.8%, SD = 3.47%,

p < 0.001, Wilcoxon rank sum test, n = 7 filtered/noised pairs;

Figure 4B).

To better visualize the variability in background ratings, we

compared the matched ratings of sound clips with the same

speech and noise components (Figure 4C). An additional source of

variability here likely arises from the fact that the order of trials (and

hence sound clips) in our experiment was completely randomized,

preventing the participants from directly comparing filtered and

noised versions of the same sound clip. This was done to avoid

peculiarities of a given speech sample from affecting the evaluation

and to encourage independent judgment of each sound sample.

Next, we compared the human evaluation to objective metrics

described in the earlier section. To do this, we tallied the percent

improvement in the human judgment of the background level

to those computed by pointwise correlation, DNN label error

rate, and MOS-LQO (Figure 4D). Even though our algorithm on

average improves all four metrics, correlation coefficients across

these measures of performance were very low, confirming that they

capture different features of the sound than those evaluated by the

human listeners.

Within-sample training achieved
comparable performance to dedicated
training data

Above, we trained the algorithm on a single, defined section of

textural sound to standardize the algorithms library across samples.

However, in real-life situations, such training data is not necessarily

available. To improve the range of use cases for our method, we

utilized an alternative, unsupervised training method that relies on

voice activity detection (VAD). Briefly, VAD detects sections of the

sound where human-voiced sounds are present. Focussing on the
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TABLE 4 Summary of human evaluation results for each texture type.

TextureID Speech [1 (distorted) → 5 (clear)] Background [1 (very quiet) → 5 (very loud)]

µ

(noised)
σ

(noised)
µ

(filtered)
σ

(filtered)
p µ

(noised)
σ

(noised)
µ

(filtered)
σ

(filtered)
p

Base1 ρ ↑ 3.197 0.867 3.079 0.903 0.053 3.979 0.569 3.623 0.631 < ǫ

Base1 ρ ↓ 3.229 0.941 3.232 0.864 0.892 3.920 0.555 3.546 0.632 < ǫ

Base2 ρ ↑ 3.507 0.827 3.460 0.865 0.436 3.684 0.679 3.128 0.815 < ǫ

Base2 ρ ↓ 3.309 0.896 3.500 0.851 0.003 3.827 0.591 3.069 0.755 < ǫ

Base3 ρ ↑ 3.497 0.864 3.457 0.899 0.522 3.765 0.666 3.156 0.772 < ǫ

Base3 ρ ↓ 3.455 0.863 3.502 0.861 0.451 3.796 0.652 3.322 0.715 < ǫ

Rain 2.961 0.897 2.945 0.882 0.793 4.121 0.623 3.521 0.701 < ǫ

complement, i.e., sections that likely do not contain human voice,

we create a within the sample training set, which we use to train SSF

(Figure 5A). Considering the fact that the effect of training duration

on the performance of our algorithm plateaus very fast (Figure 2J),

we hypothesized that existing VAD methods should be able to

extract sufficient amounts of training data from the gaps between

bouts of speech in our sound clips. Consistently, we found that

even though the performance of the algorithm was slightly reduced

in comparison to the supervised training, the overall pattern of

the results remained similar. Correlation with the clean speech

improved on average by 14.8% (SD= 4%, p< 0.001,Wilcoxon rank

sum test; Figure 5B), DNN label error rate was reduced by 13.7%

(SD = 13.6%, p < 0.01, Wilcoxon rank sum test; Figure 5C), while

MOS-LQO had an average of 7.66% improvement (SD = 4.48%, p

< 0.01, Wilcoxon rank sum test; Figure 5D). Because VAD-based

training is agnostic to the source of noise, we expect it to be better

utilized in settings where noise is not stationary and cannot be

obtained separately, such as cases where live filtering is required.

Another option in a real scenario would be that the user selects

certain time periods for rapidly (re)training SSF, instead of using

an automatic selection.

Statistical filtering performs much faster
than real-time

The speed with which an algorithm can be run is another

factor determining the range of its use cases. We quantified the

speed of execution on a desktop computer (AMD Threadripper

2920X, 12-core). As with other performance metrics, we varied the

core parameters of the algorithm to get a detailed overview of the

runtime of our algorithm (Figure 6). Runtime was quantified as the

time it takes to process one frame of the sound spectrogram divided

by the actual duration of that frame, referred to as the real-time

factor, with values <1 indicating faster than real-time processing.

With the default set of parameters, where each frame was 16ms

and the step size was 2ms long, we obtained a real-time factor

of µ = 0.0154 (STD = 0.0011), i.e., ∼65× faster than real-time.

The variables that had the strongest influence on processing speed

were window and step sizes, as well as training duration. Given

that the effect of these variables on performance metrics reported

above plateaus very fast, the parameters can be tuned to run the

algorithm extremely fast and effectively without compromising the

filtering accuracy.

Discussion

We developed a dedicated method for noise reduction in

the context of acoustic textures, exploiting their statistically

stable composition from a limited set of constituent sounds. The

algorithm represents the set of spectrotemporal features of the

background texture and subtracts a pseudo-optimal match from

the speech-in-noise mixture. Testing the algorithm on a set of

semi-natural and natural textures, we found that the algorithm can

effectively remove textural noise in a fast, efficient manner that

leads to a perceptual improvement in human listeners.

Instantaneous statistics vs. a full statistical
model

Given the statistically stable composition of textures, the most

obvious choice for a filtering approach appears to be training a

suitably designed statistical model of the texture, e.g., based on

McDermott et al. (2013). We have experimented with both this

model and Gaussian processes, however, we concluded that this

approach was unsuitable for filtering for two main reasons: (1)

Training and synthesis in these models are computationally intense

and require a lot of data to constrain the models. These two

aspects make them currently incompatible with the requirement

of live processing, ideally on hearing aids. (2) If one wants to

exploit the additive nature of the background noise and the

target sound, a natural approach would be to synthesize future

samples of the background noise, and subtract these from the

composite sound. However, while these samples are individually

statistically consistent with the background noise, they are not

related to the current realization of it. Choosing a best match

would thus require sampling a large variety of future samples

and then subtracting the best match from the current sample, or

projecting the latter onto the statistical model to separate noise and

target sound. In our hands, neither of these approaches was fast

enough to improve the quality of the target sound relative to the
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FIGURE 5

Training on automatically detected noise segments. (A) Sample spectrogram of original noisy speech and training data extracted using rVAD. The

evaluation of the unsupervised version of the algorithm using correlation (B), DNN label error rate (C) and MOS-LQO scores (D) exhibits an

improvement pattern similar to the supervised version shown in Figure 2.

FIGURE 6

Statistical filtering can run in super-real-time on a current mobile phone. The default parameters for the present comparison were chosen on the

basis of the filtering performance on speech in noise (see Figure 2). Filtering was run on a Threadripper 2920X processor, which is comparable in

speed to a modern mobile processor (e.g., Apple M1, comparison based on Geekbench 5 performance). Performance is given in multiples of

real-time (Real-time factor), i.e., smaller numbers indicating faster processing. Varying the parameters indicated that WindowSize (C), Step-Size (D),

and training duration (F) have the largest influence on run-time. At the default parameters (black dots), the real-time factor is on average 0.0154 (S.D.

= 0.0011). The current code is running non-compiled, hence, there remains room for optimization that would likely lead to substantial acceleration.

noise in a timely manner, however, see Liutkus et al. (2011) for a

potential approach.

Conversely, the present approach is directly based on the

expressed noise occurrences and utilizes them as a lexicon

to compare against. While this approach is less general, it

has the advantage of computational and data efficiency. In

the future, we would like to combine a low-dimensional

Gaussian process (GP) approach with SSF, since we think

this might in combination remain computationally feasible

and augment the performance of SSF by the inclusion

of slower or marginal features that are potentially missed

by SSF.
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Relation of SSF filtering to human textural
filtering

The interest in sound textures arises from the observation

that they constitute a sizable fraction of naturally occurring

sounds (Liu et al., 2022) and that humans can recognize

and distinguish sounds based on their textural statistics alone

(McDermott et al., 2013). This is reflected by the fact that

sound textures can be represented and synthesized very effectively

using a restricted number of summary statistics (McDermott and

Simoncelli, 2011). The existence of such a compact representation

raises an interesting possibility that the auditory system itself

may utilize analogous compact representations and predictively

suppress textural noise (Rabinowitz and King, 2011). The

evidence from a perceptual discrimination task suggests that

the human auditory system increasingly converges on time-

averaged statistics of textures, instead of representing the temporal

details of the individual acoustic events (McDermott et al.,

2013).

As we mentioned in the previous section, even though time-

averaged statistics carry sufficient information to resynthesize

sound texture samples, an effective reduction of noise requires

precisely matching the noise on a moment-by-moment basis.

The statistical filtering that appears to be realized in the

auditory cortex (Mesgarani et al., 2009; Khalighinejad et al.,

2019) may achieve this by suitably transforming the sound,

potentially using a cascade similar to the one proposed by

McDermott et al. (2013). and then adapting on every level,

as an extension to the principle used in Boubenec et al.

(2017). The downside of this transformation is that it is not

(easily) invertible and thus cannot be used to synthesize a

sound from the filtered representation, which is essential in

applications such as hearing aids. On the other hand, it might be

sufficient for processing in speech recognition systems. The present

method of matching samples of the sounds against a library of

known spectrotemporal features of the texture is thus likely not

reflective of neural processes but may be productively combined

with them.

Generalizability of SSF to other classes of
noises

One of the core issues facing any noise reduction algorithm

is the generalization to other sounds. To assess how well SSF

generalizes across different types of textures, we parametrically

controlled the statistical features of the background noises on

which the performance of the algorithm was tested, in addition to

the inclusion of a natural texture. Among the tested background

sounds we observed variability in algorithm performance, but

an improvement was observed for all textures with different

marginal and correlation statistics. These results suggest that

SSF can generalize across a wide range of sound textures,

though further studies utilizing the full set of statistics in the

synthesis of sound textures can improve the granularity of

the sampling.

Beyond this, an additional challenge can be that the definition

of noise can be context-dependent (Liu et al., 2022): what may

act as noise in one condition may carry information in another

context. For instance, speech sounds, which are typically enhanced

and considered as signals, are notoriously difficult to reduce when

mixed together in a cocktail party situation (Middlebrooks et al.,

2017). To address this issue, noise (or features thereof) can be

defined in a supervised, user-driven manner or deduced using cues

such as head direction, lip movements, etc. (Michelsanti et al.,

2021). Babble noise associated with cocktail party situations was

not included in our dataset due to our approach to sampling

the noise space by texture synthesis, which is not conducive to

synthesizing highly modulated speech sounds. Future applications

of SSF would therefore require further testing of the algorithm with

babble noise which can become more texture-like with a growing

number of talkers.

In addition, the variability arising from dynamic changes

in the background noise condition of the given scene poses

another major challenge for noise reduction algorithms. More

specifically, methods meant to be used in real-time situations

should be able to adaptively reduce noise from sources that

enter or leave the acoustic scene. VAD-based noise extraction

can in principle address this problem by allowing continuous

training data extraction-training-filtering cycles. The performance

of the algorithm was found to plateau quickly (∼2–5 s, see

Figure 2) as a function of adding longer training data sets,

suggesting that the algorithm can plausibly be used in a

real-time setting for continuous training. However, the time

course of background noises varies greatly from continuous

textures to impulse noise that happens very fast and poses a

challenge to SSF which assumes some level of stationarity in the

background conditions.

Comparison with other filtering techniques

By design, SSF is agnostic to the type of target sounds

embedded in the noise. While this property imparts SSF its

domain-neutrality, and a broader range of applicability, it also

limits the improvement to the speech intelligibility, when such

a use-case is desired. This is a common problem with noise

reduction algorithms that aim to model the features of noise

and subtractively remove them from the sound mixture. Previous

studies showed that while such algorithms can decrease the

listening effort, they do not necessarily improve speech quality

or intelligibility at the same time (Sarampalis et al., 2009; Fiedler

et al., 2021). In this study, speech quality rather than intelligibility

was quantified in human experiments, and the metric that

most closely approximated speech intelligibility was the DNN

label error rate. We observed that the quality of speech was

not degraded and the DNN label error rate decreased as a

result of filtering. However, further experiments are needed to

quantify the effect that SSF may have on speech intelligibility for

human listeners.

Recent years have seen a lot of development of speech-

denoising techniques based on machine learning methods,

primarily artificial neural networks, in particular deep neural
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networks (DNNs) (Michelsanti et al., 2021; Ochieng, 2022). These

methods have been demonstrated to be highly effective in tackling

speech-in-noise problems, partly because they can be trained to

have a highly complex representation of speech which may enable

them to selectively enhance speech. The present approach is more

simplistic in nature, targeting the specific properties of sound

textures. We think it has three concrete advantages over complex

DNN systems:

(i) Rapid, targeted training: DNN systems require a substantial

amount of time and resources to be trained. From the

perspective of a hearing aid user, it might often be preferable

to have an algorithm (such as SSF) available that can be

quickly retrained to adapt to the current background sound,

and thus specifically reduce disturbances from this source.

Training using SSF requires only a few seconds of training

data, and training completes closely after all training data

has been processed (∼60ms for 2 s of training data). As we

have shown, supervised (Figure 2) and unsupervised training

methods (Figure 4) can achieve similar levels of performance.

(ii) Domain-neutral: DNN systems are typically trained on a large

set of speech sounds in the context of a certain set of noise

sounds. This enables these systems tomake use of the inherent

predictability of speech in addition to the structures in the

noise. In SSF, the regularities inside the target sound are not

utilized in the filtering. While this likely limits the quality

of filtering on the training set, it may generalize better to

other target sounds, e.g., music or other sounds that are not

consistent with the textural statistics.

(iii) Fast execution: SSF runs much faster (probably 10–100×)

than real-time on the type of processors found in current

mobile devices (e.g., multicore performance of the present

desktop processor is only a factor 2 greater than an Apple

A16 processor; Geekbench, 2022). It, hence, does not require

a powerful GPU to run efficiently. This enables usage cases,

where either the hearing aid processor in the hearing aid

or a connected mobile phone runs the filtering in near

real-time. While SSF is thus computationally lighter than

DNN approaches, running it directly on a hearing aid may

require the design of a specialized processor to stay within

typical power limits and runtimes (Dr. Harzcos, audifon,

personal communication).

Methodological limitations

The low computational complexity of spectral subtraction

methods comes at a price of distortions that may arise from

inaccuracies in noise estimation. Such distortions affect the speech

as well as the noise components, creating a phenomenon known

as musical noise (Loizou, 2013a), which is characterized by small,

isolated peaks in the spectrum occurring randomly in the frequency

bands at each time frame. A number of methods have been

proposed in order to directly address musical noise (Goh et al.,

1998; Lu and Loizou, 2008; Miyazaki et al., 2012). Although

spectrally flooring negative values generated by subtraction to

minimum values in adjacent frames (as was done in Boll, 1979)

led to a small improvement in the MOS-LQO score, it significantly

reduced the performance in other performance metrics. While our

approach does not directly address the problem of musical noise,

it indirectly reduces the overall likelihood of its occurrence by

modeling the noise source specifically.

While the chosen DNN architecture for assessing the

improvement of speech intelligibility was well-motivated,

alternative approaches could have some additional value. Since

real-world applications in speech recognition would choose more

recent architectures (see Li, 2022 for a review), using such a

system might provide estimates that are more in line with the

human perceived evaluations and also translate better to current

applications in speech recognition.

Lastly, our human experiments show that the participants do

not perceive a reduction in speech quality as a result of filtering,

suggesting that the speech component is not substantially distorted

as a result of subtraction. However, since our test did not directly

ask the participants to indicate the perceived background quality

(only the level was asked), we cannot rule out the possibility of

residual musical noise. The development of automatic methods for

quantifying the amount of musical noise can therefore improve the

evaluation of spectral-subtractive methods in the future.

Conclusions and future steps

We presented an efficient and dedicated spectral subtraction-

based method for noise reduction in sound textures. The way

of representing and estimating background noises was inspired

by the fundamental feature of sound textures which are made

up of spectrally similar sound events that tend to persist in the

acoustic scene. We show that spectral subtraction performed based

on the KNN search can effectively reduce this kind of noise,

without causing significant distortion to the speech. Additionally,

the algorithm runs much faster than real-time on conventional

computing machines, suggesting that it can be integrated into

devices that have limited computational power such as hearing aids.

The speed of the algorithm also allows it to be potentially used

in conjunction with other methods that can enhance the speech

component and reduce the residualmusical noise. Given that sound

textures constitute a substantial subset of what is considered noise

in human hearing, we believe closer attention to this class of

sounds in development and testing may aid other noise reduction

algorithms in the future in terms of generalizability.
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