
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Astron. Space Sci.
Sec. Space Physics
Volume 12 - 2025 | doi: 10.3389/fspas.2025.1563653
This article is part of the Research Topic Magnetosheaths View all 9 articles
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
The Earth's magnetosheath is a vital source region of soft X-ray emissions generated by the solar wind charge exchange (SWCX) mechanism in geospace. Soft X-ray imaging provides valuable insights into the overall morphology of the magnetosheath. Nevertheless, the dynamic variations in X-ray images during extreme space weather have not been comprehensively studied. Using a global magnetohydrodynamic code, we simulated the temporal variations of the magnetosphere on 10-11 May 2024, during the most intense geomagnetic storm of Solar Cycle 25. The X-ray images of the magnetosphere during the entire event are presented to assess the response of the magnetosphere to the impact of the coronal mass ejection (CME), with a particular focus on the periods of sudden solar wind number density increase, the southward turning of the interplanetary magnetic field (IMF), and an extreme solar wind condition. With the advent of the Solar Wind-Magnetosphere-Ionosphere Link Explorer (SMILE), a joint mission between ESA and CAS, investigations into the large-scale structure and dynamic evolution of magnetopause will be enabled via global X-ray imaging.
Keywords: magnetosheath, Soft X-ray imaging, Geomagnetic Storm, MHD, smile
Received: 20 Jan 2025; Accepted: 20 Feb 2025.
Copyright: © 2025 Gong, Sun, Tang, Guo, Sembay and Wang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Tianran Sun, National Space Science Center, Chinese Academy of Sciences (CAS), Beijing, China
Binbin Tang, National Space Science Center, Chinese Academy of Sciences (CAS), Beijing, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.