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The sunspot number, an indicator of solar activity, is vital for forecasting
variations in solar activity and predicting disturbances of the geomagnetic field.
This study proposes a hybrid model that combines Long Short-Term Memory
(LSTM) with theWasserstein Generative Adversarial Network (WGAN) for sunspot
number prediction. The LSTM-WGAN model performs better than the LSTM
model in forecasting long-term sunspot numbers using single-step forecasting
methods. To further evaluate its effectiveness, we performed a comparative
analysis, by comparing predictions of LSTM-WGAN with those provided by
the European Space Agency (ESA). This analysis confirmed the accuracy and
reliability of LSTM-WGANmodel in predicting the sunspot numbers. In particular,
our model successfully predicted that the peak of sunspot numbers during the
25th Solar Cycle is slightly higher than that during the 24th Solar Cycle, which is
consistent with current observations.
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1 Introduction

The sunspot numbers reflects the intensity of solar activity (Hathaway, 2015) and
predictions of sunspot numbers are essential for understanding and forecasting solar storms
and their potential effects on communication, navigation, and satellite operations (Schwenn,
2006). It provides crucial information for space weather forecasting and helps mitigate risks
from intense solar activity (Hathaway and Wilson, 2004), while it also serves as an input
variable for forecasting models (Shen et al., 2021; Kuznetsov et al., 2017; Nymmik et al.,
1992). Researchers commonly rely on two approaches for predicting sunspot numbers:
traditional time series models and machine learning methods. Traditional time series
models use historical data and statistical methods to make predictions, while machine
learning methods apply advanced algorithms to identify patterns in data and predict based
on those patterns. Numerous researchers have progressed in forecasting sunspot numbers
by applying traditional time series models. For instance, Xu et al. (2008) utilized Empirical
Mode Decomposition (EMD) in conjunction with Auto-Regressive (AR) models to forecast
sunspot numbers over the long term, offering forecasts for the entirety of the 24th solar
activity cycle. Wu and Qin (2021) proposed a statistical model called TMLP, which relies on
the observation of sunspot numbers at the beginning of a solar cycle to forecast the sunspot
numbers for the entire cycle. Abdel-Rahman and Marzouk (2018) used the ARIMA model
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to analyze sunspot data from 1991 to 2017 and predict the
sunspot numbers at the end of the second phase of the 24th solar
activity cycle.

Although traditional time series models have shown satisfactory
predictive performance, they face challenges such as heavy reliance
on observed data and difficulties in capturing the dynamic and
nonlinear characteristics of sunspot numbers. In contrast, machine
learning methods and neural network models require less data
for forecasting, such as when predicting sunspot numbers over an
entire solar cycle, where initial period observations are unnecessary.
Furthermore, their inherent nonlinear characteristics facilitate the
capture of long-term trends within the data.

There is a growing trend among researchers to utilize neural
network methods for predicting sunspot numbers. Lee (2020)
applied the EMDmethod to decompose the sunspot number series,
followed by LSTM-based predictions, and the results demonstrated
that combining an empirical model with a neural network method
improved forecasting performance over using an empirical method
only. Benson et al. (2020) combinedWaveNet and LSTM to forecast
sunspot numbers, demonstrating that their deep neural network-
based approach outperformed traditional methods in predictive
accuracy. Pala and Atici (2019) implemented LSTM and NNAR for
sunspot forecasting, confirming the superiority of neural network-
based models over traditional time series models in accuracy and
reliability. Recent research on time series forecasting has highlighted
the advantages of neural networks over traditional models in
handling nonlinear time series problems (Siami-Namini et al., 2018;
Han et al., 2019; Torres et al., 2021).

This study proposes a network structure based on Generative
Adversarial Networks (GANs) (Goodfellow et al., 2014) for time
series forecasting. GANs consist of two networks, the Generator and
the Discriminator, which are trained simultaneously and engage in
a minimax algorithm to compete against each other. The network
structure consists of an LSTM generator and a two-dimensional
convolutional network (CNN) as discriminators. This design aims
to integrate the capabilities of LSTM and CNN to improve the
accuracy and reliability of time series predictions. Training GAN
models can be challenging due to the concurrent optimization of
parameters for the Generator and the Discriminator. Achieving a
balance in their competitive dynamics necessitates careful parameter
tuning. The Wasserstein GAN (WGAN) model (Arjovsky et al.,
2017) was introduced as an alternative to the traditional GANmodel
to improve the convergence success rate of the model.

The structure of this paper is as follows: Section 2 provides an
overview of the data sources and preprocessing methods. LSTM,
CNN, and WGAN concepts, along with the construction of hybrid
networks are introduced in Section 3. In Section 4 the model results
are presented, while Section 5 discusses the findings and provides a
concluding summary.

2 Data preprocessing

The data used in this study were obtained from the World Data
Center SILSO (https://www.sidc.be/silso/datafiles). Several factors
were considered when using the daily average sunspot number
dataset for forecasting an entire solar cycle, ensuring compatibility
with the design requirements of 2D CNN and LSTM networks.

Firstly, the daily average sunspot number dataset offers a number
of data points, rendering it highly suitable for utilization in 2D
CNN, which excels at capturing spatial correlations and patterns
through convolutional operations and feature extraction. Secondly,
due to the large number of data points, it is easier to segment the
time series, making it more manageable to adjust the parameters of
LSTM networks. Therefore, employing it for forecasting an entire
solar cycle aligns with the design requirements of both 2DCNN and
LSTM networks. A data-cleaning process was applied to mitigate
inherent noise in the raw data, thereby improving its reliability
and suitability for analysis. The Savitzky-Golay filter was utilized to
effectively remove and smooth out this noise, aiming to capture the
long-term trend of sunspot numbers. As shown in Equation 1, the
smoothing formula for the Savitzky-Golay filter is:

xk, smooth = xk =
+w

∑
i=−w

hi
H
xk+i (1)

The smooth factor, denoted as hi/H, is calculated using the least
squares method, while w represents the window size. The raw data
and results obtained after applying the smoothing technique are
presented in Figure 1.

The sunspot number constitutes a time series, and the process of
estimating future values based on historical observations is referred
to as time series forecasting. This forecasting task can be classified
into two primary methodologies: single-step and multi-step. In
single-step prediction, the time series is segmented into equal time
intervals to predict the value at the next time step. For example,
using the time series {Xt, t ∈ [0,n]} to forecast Xn+1. Multi-step
prediction forecasts values atmultiple future time steps. To illustrate,
after predicting Xn+1 using the time series {Xt, t ∈ [1,n]}, the next
task would be to forecast Xn+2 using Xn+1. This approach enables
predictions at any time step, with the step size corresponding to
the number of iterations. It is essential to recognize that prediction
errors accumulate in multi-step forecasting as the number of steps
increases. As a result, the accuracy of multi-step forecasts tends
to diminish progressively. In contrast, single-step forecasting does
not experience this accumulation of error. Researchers such as
Timoshenkova and Safiullin (2020) and Wang et al. (2021) have
highlighted that for medium-to long-term forecasts, single-step
predictions often yield greater accuracy compared to multi-step
forecasts.

This research constructed three datasets for single-step
forecasting of sunspot numbers over the next 12 years, each using a
different length of historical data: 48, 42, and 36 years. An additional
monthly average sunspot numbers dataset was constructed using
the same methodology during the model validation phase. Since
forecasting models primarily operate at a monthly temporal
resolution, we also evaluated our model using a monthly resolution
for consistency. We employed the same dataset as a benchmark
across all models to ensure a fair and unbiased comparison.

3 Network construction

A GAN framework comprises two adversarial neural networks:
a generator, responsible for producing new data samples, and
a discriminator, which assesses these samples to differentiate
between authentic and generated data. To address the challenge
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FIGURE 1
The sunspot numbers start in January 1818 and end in April 2021. The grey line is the raw daily average; the black curve is the result after smoothing
with the Savitzky-Golay filter; the X-axis is the time, and the Y-axis is the number of sunspots counted.

of non-convergence in training results within the original GAN
framework, Arjovsky et al. (2017) proposed a variation known as the
Wasserstein GAN (WGAN). WGAN replaces the Jensen-Shannon
divergence used in the original GAN with the Wasserstein distance,
modifying the objective function to improve training stability. This
adjustment effectively addresses common issues in GAN training,
such as mode collapse and vanishing gradients. In this study, the
generator is implemented as an LSTM to produce forecasted time
series data, while the discriminator is a 2D CNN that compares the
LSTM-generated time series with observed data for evaluation.

3.1 The structure of the generator and
discriminator

LSTM is an advanced form of Recurrent Neural Network (RNN)
specifically designed to address the challenges of gradient vanishing
and exploding, which frequently occur during the training of long
sequences. LSTM consists of multiple cell units, each containing
three gates: the input gate, the output gate, and the forget gate,
as shown in Figure 2. These gates regulate the flow of information,
enabling the cell to maintain and update relevant information while
mitigating the impact of irrelevant or redundant data.

• The forget gate, denoted as ft, determines whether the previous
cell state should be retained or forgotten.
• The input gate, denoted as it, controls which information
should be incorporated into the cell state.
• The output gate, denoted as ot, governs the information that
should be output based on the current cell state.

The cell state c⟨t⟩ is influenced by both the forget gate ft and the
input gate it. The current cell state c⟨t⟩ is determined by combining

the previous cell state c⟨t−1⟩ with a modified input ̃c⟨t⟩. The modified
input ̃c⟨t⟩ is calculated by applying the hyperbolic tangent function
(tanh) to a weighted sum of the previous hidden state and the current
input, along with a bias term.The output gate ot and the cell state c⟨t⟩

both contribute to the computation of the predicted value h⟨t⟩. This
predicted value is obtained by multiplying the output gate ot with the
hyperbolic tangent of the cell state c⟨t⟩. The gate structures within an
LSTMnetwork enable it to effectively retain relevant information from
time series data, helping to overcome the challenges of vanishing and
exploding gradients commonly faced by traditional RNN networks.
Themainparameters of theLSTMare shown inTable 1.The inputdata
length(timewin)is365∗48,with1feature.Thisdataisfirst transformed
into a time series with an input size of 365∗2 and a sequence length
(seq len) of 24,meaning it is converted from(365∗48, 1) to (24, 365∗2).
The hidden size of each LSTM unit is 365∗6, an empirical parameter
of similarmagnitude to the input size. Finally, the forecasted sequence
length (pre win) is 365∗12.

CNN are a class of deep learning algorithms characterized
by convolutional operations and hierarchical structures. In this
study, a two-dimensional convolution is used to construct the
discriminator network. The process starts by transforming the
time series data into a two-dimensional representation, allowing
a convolutional kernel to process the data across the entire
“image.”This transformation facilitates the effective handling of one-
dimensional time series data within the CNN framework. Figure 3
illustrates the process of concatenating the observed data with the
predicted data and then transforming it into a two-dimensional
array. As shown in Figure 4, the kernel(K), which matches the
dimensions of the two-dimensional representation, moves through
the data, generating a one-dimensional array. This array is then
passed through a fully connected layer that evaluates the time
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FIGURE 2
The structure of each cell of the LSTM. The symbol “⊗” in the picture stands for the gate structure in the mathematical sense, indicating that the
corresponding elements in the matrix are multiplied together. From left to right, the three gate structures are the forget gate, the input gate, and the
output gate. The symbol “⊕” indicates that the corresponding elements of the matrix are added together. “σ” and “tanh” represent the activation
functions.

TABLE 1 The essential hyperparameters of the LSTM network.

Epoch Batch Num layers Time len Input size Hidden size Seq len Pre win lr

50 16 3 365∗48 365∗2 365∗6 24 365∗12 1e-4

FIGURE 3
Schematic: The LSTM generates prediction data of length 3 (365∗12) based on observation data of length 9 (365∗48). These are then concatenated and
transformed into a two-dimensional array with length 3 (365) and width 4 (48 + 12). The convolutional kernel has a length of 3 (365) and a width of 2
(with various kernel specifications ranging from 2 to 18). (The numbers in parentheses correspond to using 48 years of observation data to forecast 12
years of future data.)
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FIGURE 4
Schematic diagram of a two-dimensional CNN. The convolutional kernel “K” has the same length as the 2D data “I” and is available in various widths.
The figure shows a convolutional kernel of width 3. Kernel “K” sweeps through “I” from top to bottom and does the convolution operation to obtain a
one-dimensional array “I∗K”.

FIGURE 5
Network Architecture: LSTM is the generator, and CNN is the discriminator. The observed data is labeled as “real,” while the generated data is labeled as
“fake”, both are presented to the discriminator to distinguish between the real and fake samples.

series data and classifies it as “True” or “Fake.” The discriminator,
essentially a two-dimensional CNN, operates as a binary classifier.

3.2 The training of GAN networks

The training procedure involves two primary stages, with
the initial stage focusing on training the discriminator network.
In this phase, observed data are labeled as “real,” while data
generated by the generator are labeled as “fake”. These data are then
presented to the discriminator, enabling it to refine its ability to
differentiate between them. This process is depicted in Figure 5.
In the second stage, data produced by the generator is labeled as
“real” and subsequently fed into the discriminator network. This
stage challenges the generator to produce data capable of deceiving
the discriminator. As the training progresses, the discriminator’s
ability to distinguish between real and generated data and the
generator’s ability to create accurate data are continuously improved.
This iterative process establishes a competitive dynamic between the
discriminator and the generator, ultimately driving them toward a
Nash equilibrium.

This approach, known as adversarial training, utilizes the
interaction between the discriminator and generator networks to
enhance the model’s overall performance. During this iterative
training process, the discriminator becomes more effective at
distinguishing between real and generated data. At the same time,
the generator improves its ability to produce data that is close to
real data. This adversarial training framework enhances generative
models, generating more accurate and realistic data. It is essential
to recognize that in the context of WGAN if one of the networks
is significantly stronger than the other, it can hinder the effective
updating of parameters in the weaker network. This imbalance in
the capabilities of the two networks can disrupt the equilibrium and
negatively affect the learning dynamics between the discriminator
and the generator. As a result, the weaker network may not receive
the necessary updates for optimal training. To address this challenge,
it is crucial to carefully balance both networks’ strengths and
capacities during the WGAN training. In this work, two methods
are used to address the imbalance between the generator and
discriminator in the WGAN model. First, the RMSprop optimizer
improves stability by adapting the learning rate and smoothing
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FIGURE 6
The upper panel of the figure, the black curve depicts the smoothed sunspot numbers, while the gray curve shows the unsmoothed sunspot numbers.
The red curve illustrates the forecasted results from the LSTM-WGAN model, and the curves of other colors represent the forecasted results from
various models (see Table 1). In the bottom panel of the figure, the x-axis indicates the Mean Absolute Error (MAE) between the model results and the
observed results; the y-axis displays the Gaussian kernel density.

TABLE 2 The errors between the predictions of multiple models and the
monthly average sunspot numbers were calculated. The error analysis
was performed using data from September 2016 to March 2023. The
table primarily presents the Mean MAE, Root Mean Square Error (RMSE),
and coefficient of determination (R2). SC stands for the Standard Curves
method, CM stands for the Combined method, KFSC stands for the
Standard Curves method with adaptive Kalman filter, KFCM stands for
the Combined method with adaptive Kalman filter, and KFML stands for
the McNish and Lincoln method with adaptive Kalman filter.

Model MAE RMSE R2

SC_SIDC 9.842 21.031 0.703

CM_SIDC 21.049 25.884 0.411

KFSC_SIDC 9.695 19.368 0.732

KFCM_SIDC 14.478 22.158 0.391

KFML_SIDC 8.159 11.187 0.836

LSTM-WGAN 3.879 5.020 0.977

gradients. Second, weighting the loss terms ensures a balanced
contribution from both networks, making training more stable and
preventing large performance differences.

Additionally, the accuracy of single-step predictions in LSTM
networks is higher than that of multi-step predictions. This
difference can be attributed to the accumulation of errors and noise
during multi-step predictions, resulting in less accurate outcomes.
Therefore, in this study, we opted for a single-step prediction
approach, which allowed us to forecast sunspot numbers for the next
12 years using only one prediction step.

4 Simulation results

In this section, the model forecasting performance was first
evaluated by predicting the monthly average sunspot numbers.
Subsequently, the forecast results from our model were objectively
comparedwith those generated by other well-established forecasting
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FIGURE 7
The solid red curve in the graph depicts the forecasted sunspot numbers for the 24th solar cycle, generated by the LSTM-WGAN model trained on a
48-year dataset. The red dashed curve represents the forecast for the 25th solar cycle. In addition, the blue and green curves show the results obtained
from using 42-year and 36-year datasets, respectively.

models. For comparison, we used forecast results available on the
European Space Agency (ESA) website (https://swe.ssa.esa.int/gen_
for). These results, updated monthly, covered the period starting
1 September 2016, and provided predictions for the following
12 months. It is important to clarify two aspects regarding these
forecast results. Firstly, new forecast results for the next 12 months
are releasedmonthly. Secondly, we consider the forecasted values for
a specific month at their initial release as the model’s forecast value.

To ensure a fair and unbiased comparison of forecast results
across different models, we imposed certain constraints on the
outcomes generated by our LSTM-WGAN model. Firstly, we
employed the LSTM-WGAN network to forecast the monthly
average sunspot numbers for 12 months. Secondly, we applied the
same data extraction process to the forecasted results obtained
from the LSTM-WGAN model. Lastly, we selected the period from
“2016–09″ to “2023–03″ for the comparison, encompassing all the
forecast results provided by ESA. The MAE between each model
and the observation data is calculated for each month, followed
by an analysis of these errors using Kernel Density Estimation
(KDE). It is a statisticalmethod that estimates the probability density
distribution of data through a smoothing kernel function, providing
an intuitive visualization of the central tendency and distribution
shape of the errors. As shown in Equation 2, ̂f(x) represents the
estimated probability density function, where n denotes the number
of data points, h signifies the bandwidth controlling the degree of
smoothing, and K(⋅) is the kernel function used for data smoothing.

̂f (x) = 1
nh

n

∑
i=1

K(
x− xi
h
) (2)

As shown in Figure 6, the forecast results from LSTM-WGAN
exhibit improved stability, with less fluctuations, and are closer to
the smoothed observed data. On the other hand, theMAE of LSTM-
WGAN are closer to zero and relatively concentrated. The error

values of these models are presented in Table 2. Considering these
aspects, the LSTM-WGAN model performs better than the other
forecast models mentioned in this study.

Following the validation of the forecasting performance, we
trained the LSTM-WGAN network using a daily average sunspot
dataset to predict sunspot numbers for the 25th solar cycle.
The daily average dataset offers more data than the monthly
average dataset, enabling the LSTM-WGAN model to leverage its
strengths more effectively.The LSTM-WGANwas tested in the 24th
solar cycle. Figure 7 demonstrates that the predictions generally
higher the smoothed values of the sunspot number. The results
indicate better performance in the declining phase than in the
ascending phase. During the peak region, the predicted values tend
to exceed the smoothed values.

We compared the MAE errors between various models and
observational data during the ascending phase of Solar Cycle
25. The data range spans from January 2021 to October 2023.
We resampled the LSTM-WGAN forecast results to monthly
averages, then compared them with other models. The errors
for each month were calculated and a box plot was generated.
As shown in Figure 8, the accuracy of the LSTM-WGAN forecast
results is significantly higher than that of the other models, with
more concentrated errors, indicating that the forecast results are
more stable.

The larger prediction bias with 48 years of historical data may
come from the complexities and periodic changes in long-term data.
Although 48 years provide more reference, longer history can add
noise, especially when solar activity trends are complex. In contrast,
42 and 36 years of data may focus better on the current solar cycle,
improving accuracy. In theory, longer historical data should reduce
prediction errors, but in practice, some uncertainties can still affect
the results.

Frontiers in Astronomy and Space Sciences 07 frontiersin.org

https://doi.org/10.3389/fspas.2025.1541299
https://swe.ssa.esa.int/gen_for).These
https://swe.ssa.esa.int/gen_for).These
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org


Yang et al. 10.3389/fspas.2025.1541299

FIGURE 8
The error distribution from models, with the median (green) representing the central error value, while the size of the box shows the interquartile range
(IQR), and the whiskers indicate the range of errors.

FIGURE 9
The red indicates the error between the LSTM-WGAN model and the smoothed sunspot number, while the blue represents the error between the LSTM
model and the smoothed sunspot number. The left side of the figure displays the RMSE, and the right side shows the coefficient of determination R2.

The results for RMSE and R2 between the predicted and
observed data for the 24th solar cycle, based on the smoothed
daily average data, are illustrated in Figure 9 (since the maximum
and minimum errors of MAE differ by three orders of magnitude,
RMSE is amore appropriate metric for evaluating overall error).The
formula for calculating R2 is shown in Equation 3, where yi is the
observed value (actual value), ŷi is the predicted value, ̄y is the mean
of the observed values, and n is the number of data points.

R2 = 1−
∑n

i=1
(yi − ŷi)

2

∑n
i=1
(yi − ̄y)

2
(3)

As historical data input decreases, the difference between the
predicted and observed results tends to increase. Furthermore,
the LSTM-WGAN model exhibits enhanced forecasting accuracy
relative to the LSTMmodel.

Comparing this result to other studies presents challenges.
Firstly, this work employs a dataset of daily average sunspot
numbers, which differs slightly from the monthly average sunspot
numbers predominantly used in other research. Furthermore, this
paper forecasts sunspot numbers for the next 12 years in a single
step, differentiating it from different studies. In a study byDang et al.
(2022), deep learning models were compared with traditional non-
deep learning models. The SARIMA model achieved an MAE
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of 45.51 and an RMSE of 54.11. The LSTM model achieved an
MAE of 39.44 and an RMSE of 46.14, while the Informer model
demonstrated the lowest errors with anMAE of 22.35 and an RMSE
of 29.90. NASA’s forecasts yielded anMAE of 38.45 and an RMSE of
48.38. Similarly, in a study by Pala and Atici (2019), the RMSE for
the ARIMAmodel was 42.41, whereas the LSTMmodel achieved an
RMSE of 35.9. The studies by Arfianti et al. (2021) and Prasad et al.
(2022) achieved better results. However, they did not compare their
results with those, as they encountered difficulties achieving long-
term forecasts. Their multi-step forecasts were mainly based on
current observations. In general, it has been observed that as the
prediction timeframe extends, the difference between the forecasted
values and the actual values tends to increase.

5 Summary

This study utilized a WGAN-based neural network to forecast
sunspot numbers for the 25th solar cycle. The discriminator in
this network is a 2D CNN that assesses the difference between
the predicted data and observations. Its primary function is to
optimize the generator, which is themain component responsible for
predicting sunspot numbers. The LSTM is utilized as the generator
in this study due to its ability to effectively extract features from
time series data for prediction purposes. Furthermore, the accuracy
of single-step predictions using LSTM surpasses that of multi-step
predictions. Considering these factors, the network generates a 12-
year time series of sunspot numbers by constructing the dataset and
tuning the parameters of both the generator and discriminator. The
LSTM-WGAN model has demonstrated superior performance and
higher forecasting accuracy when compared directly with the results
provided by ESA. Our training involved using daily average sunspot
number datasets to predict sunspot numbers for the entire solar
cycle.We found that as the amount of historical input data decreases,
the accuracy of the forecasts also diminishes. Additionally, the
LSTM-WGAN model outperforms the standard LSTM model in
accuracy. Furthermore, the predicted peak sunspot number for the
25th solar cycle is expected to be slightly higher than that for the
24th solar cycle.
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