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The term “Medium-Scale Traveling Ionospheric Disturbances” is used to
describe a number of different propagating phenomena in ionospheric plasma
density with a scale size of hundreds of km. This includes multiple generation
mechanisms, including ion-neutral collisions, plasma instabilities, and
electromagnetic forcing. Observational limitations can impede characterization
and identification of MSTID generationmechanisms. We discuss inconsistencies
in the current terminology used to describe these and provide a set of
recommendations for description and discussion.

KEYWORDS

ionosphere, thermosphere, geospace, traveling ionospheric disturbances, space
weather, plasma density, MSTID generation mechanisms

Frontiers in Astronomy and Space Sciences 01 frontiersin.org

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#editorial-board
https://doi.org/10.3389/fspas.2025.1539821
https://crossmark.crossref.org/dialog/?doi=10.3389/fspas.2025.1539821&domain=pdf&date_stamp=2025-02-07
mailto:jeff.klenzing@nasa.gov
mailto:jeff.klenzing@nasa.gov
https://doi.org/10.3389/fspas.2025.1539821
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fspas.2025.1539821/full
https://www.frontiersin.org/articles/10.3389/fspas.2025.1539821/full
https://www.frontiersin.org/articles/10.3389/fspas.2025.1539821/full
https://www.frontiersin.org/articles/10.3389/fspas.2025.1539821/full
https://www.frontiersin.org/articles/10.3389/fspas.2025.1539821/full
https://www.frontiersin.org/articles/10.3389/fspas.2025.1539821/full
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org


Klenzing et al. 10.3389/fspas.2025.1539821

1 Introduction

Medium Scale Traveling Ionospheric Disturbances (MSTIDs)
have been observed in ionospheric measurements since the 1950s
(Munro, 1950). In the simplest observational terms, MSTIDs
are exactly as described–propagating disturbances in ionospheric
plasma density and have a characteristic scale size (single- or multi-
peaked wavefronts) on the order of hundreds of km. MSTIDs are
important because they can have a large impact on communication
and navigation signals. Several operational communication systems
are influenced by the ionosphere, particularly High Frequency
(HF) systems, which reflect off the ionosphere like a mirror. Large
temporal and spatial gradients in the F-region plasma density
can negatively impact operational radio systems (e.g., Goodman,
2005). As the number of observations has rapidly increased in
the literature over the years, our understanding of MSTIDs has
improved and it is now believed that this term describes phenomena
with varying generation mechanisms, propagation tendencies and
electromagnetic properties. Thus, while the term “MSTID” may be
a useful description of the observations, it can be used to describe
a wide range of actual physical processes that are not all necessarily
connected. The goal of this paper is to discuss the varying aspects of
MSTIDs and present classification recommendations to improve the
communication amongst the research community.

Throughout the literature there is significant variation in the
basic observed properties of MSTIDs, which may be partially due
to constraints in current observational techniques. For example, the
actual definition of what “medium-scale” is varies among different
authors. Generally, papers discussing MSTIDs include a range of
horizontal wavelengths on the order of hundreds of kilometers (e.g.,
Hunsucker, 1982), with the upper limit set anywhere from 300km
(Cheng et al., 2021) to thousands of km (Figueiredo et al., 2018).
Some authors have considered only waves on the order of about
100 km to be MSTIDs (Kil and Paxton, 2017). It is worth noting
that observations capturing only a one-dimensional slice of the wave
may set a larger upper limit, since the slice is not guaranteed to
be aligned with the direction of propagation or the wave vector.
In this case, a longer wavelength is observed, which is projection
of the original wavelength along the observation direction and is
sometimes referred to as a virtual wavelength. For the purposes of
this paper, we will be focused on periodic ionospheric perturbations
with wavelengths of 100–1,000 km and periods of 15–60 min. We
should note that this classification simply divides small, medium,
and large scale TIDs based on scale with small in the 10s of km,
medium in the 100s of km and large in the 1000s of kms. It does
not reveal anything about the generation or nature of these TIDs.
This definition may need to be reconsidered in the future as there
can be an overlap between driving mechanisms across scale sizes.

Another area where observational limitations may contribute
to MSTID classification is in the definition of “nighttime” MSTIDs
also often described as “Electrified MSTIDs.” It is often assumed
that “nighttime” MSTIDs are associated with large polarization
electric fields and generated by the Perkins instability combined
with E/F region coupling. However, a number of observations have
demonstrated the existence of nighttime MSTIDs generated by
other sources such as Atmospheric Gravity Waves (AGWs) from
Tropospheric weather and the solar terminator (e.g., Azeem et al.,
2015; Galushko et al., 1998). To confuse matters even more,

some MSTIDs that are associated with Atmospheric Gravity
Waves (AGWs) have been shown in theory and observations
to have an electric field component (e.g., Huba et al., 2015;
Jonah et al., 2018). Other observations have shown a combination
of dynamics and electromagnetics at play during large geomagnetic
storms (Chimonas, 1974; Habarulema et al., 2022). As different
types of MSTIDs may have electric field components, the term
“Electrified MSTID” is not particularly useful for categorizing this
type of MSTID.

The community has made substantial progress in better
understanding MSTIDs in the past few decades. While significant
work is still being done, a number of the remaining major problems
in understanding MSTIDs rely on better communication within the
research community. Specifically, classification recommendations
could assist in clarifying communication between the researchers
to more quickly make progress on investigating the nature and
dynamics of MSTIDs. For example, observational scientists may
not always be able to distinguish the generation mechanism of an
MSTID from observations alone, but in some cases a mechanism
is assumed. This leads to confusion in better understanding the
physical processes responsible for MSTID generation. The following
sections of this paper outline some of the outstanding problems in
understanding MSTIDs; an overview of some current issues with
MSTID classification and finally a series of recommendations for
classifying MSTIDs.

2 Outstanding problems

Many questions remain about the generation, propagation, and
effects ofMSTIDs. A recent paper describesmany of the outstanding
problems for TIDs driven by Atmospheric Gravity Waves (AGWs)
(Zawdie et al., 2022). While the Zawdie et al. (2022) paper describes
questions related to AGW driven TIDs, there are also remaining
questions about other types of TIDs. One major issue in TID studies
is that it is difficult to obtain a full 3D picture of the perturbation in
the ionosphere due to measurement limitations. One way this may
be mitigated is by combining disparate observations. For example,
GPS TEC measurements obtain a 2D latitude/longitude picture of
the TID, but adding ionosonde or ISR measurements in this region
can provide some information on the vertical structure of the TID.
The following list includes oustanding questions not discussed in
Zawdie et al. (2022).

• What is the relationship between neutral atmospheric waves
and MSTIDs? While MSTIDs are often attributed to be the
manifestation of atmospheric waves (including gravity waves,
acoustic waves, infrasound), the exact relation between MSTID
and the neutral atmosphere has not been well studied, in part
due to lack of neutral atmosphericmeasurements. Observations
from DE2 show a phase lag between the ion and neutral waves
below 300 km altitude (Earle et al., 2008).

• Under what conditions do instability processes generate an
MSTID? While instability mechanisms may be enhanced
by electromagnetic coupling between the E and F-region
ionospheres in both hemispheres, the full range of conditions
and requirements for MSTID generation are not understood.
Yokoyama (2014) and Narayanan et al. (2018) have shown
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both theoretically and experimentally that sporadic E is more
essential than favorable winds for the formation of instability-
driven MSTIDs. This is further supported by observations
over Northern Germany by Sivakandan et al. (2022) and
over Japan by Fu et al. (2022).

• How effectively do the electric fields generated by instability-
driven MSTIDs map to the conjugate hemisphere relative
to MSTIDs generated by other mechanisms? There is
some evidence that AGW driven MSTIDs generate electric
fields and conjugate effects (e.g., Huba et al., 2015;
Chou et al., 2022; Shinbori et al., 2023). We might expect these
fields will be different in magnitude or mapping efficiency
with the instability type having a larger magnitude based
on preliminary simulation work, but this has not been
rigorously examined.

• Are there observational measurements that would enable
us to determine the generation mechanism of an MSTID?
We believe that there are multiple generation mechanisms
for MSTIDs, but it is currently unknown whether these
create fundamental differences in the MSTID that could be
measured. For instance, if the electric fields generated by
AGWs and InstabiltyMSTIDs are different, thenmeasurements
may be able to distinguish between them. The relative
lag between perpendicular and parallel ion flow relative to
geomagnetic fields may also produce different signatures (e.g.,
Klenzing et al., 2011; Miller et al., 2014).

• How well does the Hooke model reproduce the shape of
MSTIDs in the ionosphere? Hooke (1968) derived an analytical
representation of a MSTID perturbation in the ionosphere
using a simplified description of an atmospheric gravity wave
as a driving mechanism. Due to a lack of 3D measurements in
the ionosphere the accuracy of this representation is not known.

• Are there daytime MSTIDs with a large electric field
component? General consensus is that the daytime E-region
ionosphere has a larger conductivity that would suppress any
electric fields arising out of instabilities. However, there are
some observations of possible co-occurrence of MSTIDs in
conjugate regions during the daytime, implying mapping of
electric between hemispheres (Jonah et al., 2017).

• How can multiple potential generation mechanisms be
separated if simultaneously present? MSTIDs are believed to
have sources originating both in the lower atmosphere (below)
and the sun (above), but in some cases these sources are present
simultaneously (e.g., Earle et al., 2010). Given sufficient spatially
separatedmeasurements, these different energy paths have been
separated previously (e.g., Verhulst et al., 2022).

3 Observations and limitations

MSTIDs are observed with many types of instruments that can
be roughly separated into three categories:

1. Point observations from a location forming time series from
a single height or a vertical profile like those of iso-electron
density contours from ionosondes, VHF radar and incoherent
scatter radar echo profiles, airglow photometer measurements,
GNSS TEC time series from a single location, radio telescope

observations (e.g., Jonah et al., 2017;Negale et al., 2018;Mangla
and Datta, 2023). Such measurements typically provide the
periods and amplitudes of MSTIDs. Sometimes, multiple
points can be observed, for example, with a beam steering
radar. Multiple spatially separated observations can help
determine horizontal propagation direction.

2. Observations over an area made by airglow imaging, GNSS
TEC maps, SuperDARN radar scans, space based imaging
observations (e.g., Tsugawa et al., 2007; Frissell et al.,
2014; Rajesh et al., 2016; Narayanan et al., 2018). These
measurements do not provide physical parameters like
temperature or wind perturbations in general.

3. In-situ ionospheric measurements made by sounding rockets
and satellites like CHAMP and SWARM that are intermittent
both in space and time (e.g., Shiokawa et al., 2003; Park et al.,
2009). Because of their intermittent nature, these are suitable
for statistical studies or need to be combined with other
measurements to make meaningful observations about
MSTIDs. However, they provide direct measurement of
required physical parameters.

Note that none of these techniques alone provide all the
necessary physical parameters to deduce the origins of the MSTIDS
or their three-dimensional structure.

Compared to the abundance of ion measurements, we lack
routine measurements of neutral parameters in the thermosphere.
This complicates the identification of the true nature of MSTIDs
and their causative forcing. When such measurements are available,
it is possible to identify those MSTIDs generated by co-existing
thermospheric gravity waves. In the absence of such measurements,
it is difficult to separate MSTIDs that are driven by electrodynamic
instabilities vs. neutral atmospheric forcing. For example, MSTIDS
in the midlatitude night time region may be driven by polarization
electric field driven through the E-F region electrodynamical
coupling (Cosgrove and Tsunoda, 2004) or by co-existing
thermospheric gravity waves (Earle et al., 2008). Therefore, merely
describing a particular MSTID event as resulting from a specific
generation mechanism without multi-parameter observations and
investigation is somewhat arbitrary. A new generation of coincident
thermospheric and ionosphericmeasurements are needed to resolve
these problems. Missions on the NASA and ESA roadmap that
could help constrain these questions are the Geospace Dynamics
Constellation (Jaynes et al., 2019) and EN-LoTIS (ESA/NASA,
2024). Additionally, new geographically disperse ground based
measurements such as TechTIDE (Belehaki et al., 2020) and the
Chinese Meridian Project (Wang et al., 2024) are being constructed
and expanded, offering new possibilities.

4 Classification suggestions

One of the difficulties in achieving closure on many of the
above questions is that MSTIDs are not a single thing, but they
actually have many different potential generation mechanisms and
propagation characteristics. Quantifying the difference between
these different types of MSTIDs is essential to answer many of
these remaining scientific questions. Moving forward, it is essential
to refine and standardize the terminology used to refer to these
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characteristics to improve communication between researchers
using different data sets and methodologies. Clear communication
is a prerequisite for resolving open questions.

In order to address these challenges, a multi-faceted approach
is suggested. It is important to distinguish between the driving
mechanisms and the characteristics. We encourage authors to
include a paragraph on MSTID classification in their research
articles and letters nominally based on the following considerations.

4.1 Observables

• Include key observables such as wavelength, propagation, etc.
• Be clear on theobservedphysical parameters (density, fields, etc.).
• Limitation of observational techniques should be discussed

when possible.
• Seasonal and local time conditions.
• Solar and geomagnetic activity.
• Caution should be used with the term “Electrified.” We note

that electrodynamic structure is an observational property
potentially resulting from multiple driving mechanisms.
If electric field information is available, this is valuable
information.

• For conjugate MSTIDs, there is both a primary MSTID and an
image MSTID in the conjugate hemisphere. Depending on the
available observations, it can be difficult to distinguish between
the primary and the image.

• The presence of nearby larger scale TIDs should be noted as
well, since these may provide clues to generation mechanisms.

4.2 Potential driving mechanisms

• Collisionally driven–primarily driven by mechanical forcing
through ion-neutral coupling. This includes acoustic wave and
AGW driven MSTIDs. When able to identify a specific source
(e.g., Tropospheric weather, geomagnetic storm, volcanic
eruptions), include this.

• Instability driven–primarily driven through electrodynamic
forcing in the E-region or F-region. Subsets include Perkins
instability, electric field coupling between the E− and F-regions,
potentially aided by sporadic-E, coupling. Note that a conjugate
image MSTID may be electrodynamically driven by the electric
fields imposed from the conjugate hemisphere, but the primary
MSTID may be driven through collisions (e.g., Chou et al.,
2022) or electrodynamics (e.g., Otsuka et al., 2004).

• Solar radiation driven–includes enhanced ionization in regions
of enhanced neutral density as in Hooke (1968), as well as due
to increased radiation from solar flares (e.g., Pawlowski and
Ridley, 2008; Zhang et al., 2019).

• Note that multiple mechanisms may also act independently.
For example, observations over Europe after the Hunga-
Tonga volcanic eruption noted multiple types of TIDs
propagating, including those that occur from concurrent
geomagnetic storms (Verhulst et al., 2022).

• If the driving mechanism is unknown, it is worth stating up
front. This can help identify and organize future studies and
campaigns.

5 Summary and conclusion

There is understandable desire in the community to separate
and categorize MSTIDs into different types. The primary example
is the ‘EMSTID’, which is often used to describe mid-latitude
MSTIDs with a preferred propagation direction and orientation.
As discussed in this work, however, ‘Electrified’ may not be
unique to this type of MSTID, so is not the best term for
classification. We suggest that current MSTID categories are
insufficient. Instead, we recommend that papers onMSTIDs address
their physical properties and potential generation mechanisms
as a section in the paper. This will provide clarity about the
research conclusions, reduce confusion about open questions,
and ensure appropriate use of the results and observations in
future work.
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