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The Gaussian sum cubature Kalman filter (GSCKF) based on Gaussian mixture
model (GMM) is a critical nonlinear non-Gaussian filter for data fusion of global
navigation satellite system/strapdown inertial navigation systems (GNSS/SINS)
tightly coupled integrated navigation system. However, the stochastic model of
non-Gaussian noise in practical operating environments is not static, but rather
time-varying. So if the GMM of GSCKF cannot be adjusted adaptively, it will
lead to a decrease in estimation accuracy. To address this issue, we propose a
novel adaptive GSCKF (AGSCKF) based on the dynamic adjustment of GMM. By
analyzing the impact of GMM displacement parameter on the fitting accuracy
of non-Gaussian noise, a novel algorithm for GMM displacement parameter
adaptive adjustment is proposed using a cost function. Then this novel algorithm
is applied to overcome the limitations of GSCKF under time-varying non-
Gaussian noise environment, thereby improving the filtering performance. The
simulation and experimental results indicate that the proposed AGSCKF exhibits
significant advantage in changeable environments affected by time-varying
non-Gaussian noise, which is applied to GNSS/SINS tightly coupled integrated
navigation system data fusion can improve estimation accuracy and adaptability
without sacrificing significant computational complexity.

KEYWORDS

GNSS/SINS tightly coupled integrated navigation system, adaptive filter (ADF), cubature
Kalman filter (CKF), Gaussian mixture model (GMM), non-Gaussian noise, time-varying
noise

1 Introduction

The global navigation satellite system and strapdown inertial navigation system
(GNSS/SINS) tightly coupled integrated navigation system data fusion is one of the key
technologies in many fields, including unmanned aerial vehicles (UAVs), which enables
precise navigation, guidance, and control capabilities (Grewal et al., 2020; Gyagenda et al.,
2022; Boguspayev et al., 2023). The mathematical model for GNSS/SINS tightly coupled
integrated navigation system data fusion is inherently nonlinear, and despite advances
in navigation technology, its nonlinear characteristics cannot be eliminated. Therefore,
the nonlinear filter remains a crucial technique in the field of GNSS/SINS tightly
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coupled integrated navigation system data fusion for UAVs (Groves,
2008; Li and Chen, 2022; Xiao et al., 2024).

1.1 Nonlinear filter

Extended Kalman filter (EKF) is a widely used nonlinear filter for
GNSS/SINS tightly coupled integrated navigation systemsdata fusion,
but its engineering application is limited by linearization errors and
complex updating processes of Jacobian matrix (Wang et al., 2018).
Thus, Unscented Kalman filter (UKF) is proposed to approximate the
state estimation and its covariance through a set of sampling points
by unscented transforms (UT). Compared to EKF, UKF does not
require updating Jacobian matrix, and its accuracy can reach second-
orderTaylor series expansionor evenhigher.However, the parameters
of UKF do not have deterministic values, and the computation
increases dramatically with the increase of the dimension of state
estimation (Rhudy et al., 2011; Hu et al., 2020). Quadrature Kalman
filter (QKF) using Gaussian Hermitian quadrature rule can achieve
high estimation accuracy. But as the number of state parameters
increases, the required quadrature points will exponentially increase,
resulting in that the computational complexity of QKF is higher
than that of EKF and UKF (Monfort et al., 2015). To address the
dimensionality curse in QKF, researchers have devised cubature
Kalman Filter (CKF). Within the CKF framework, the utilization of
the third-order spherical cubature rule not only possesses a more
rigorous mathematical foundation compared to the UT employed in
UKF, but also demonstrates a reduction in computational resources
and an increase in computational efficiency during state estimation
under comparable conditions, as compared to both UKF and QKF.
Additionally, by integrating a square-root filtering approach, CKF
exhibits superior numerical stability when confronted with nonlinear
challenges, incontrast totheUKF.Currently,CKFhasbeenwidelyused
in fields such as navigation positioning, target tracking, and guidance
and control system due to its advantages of superior estimation
accuracy, remarkable numerical stability, andminimal computational
requirements (Arasaratnam and Haykin, 2009; Sindhuja et al., 2023).
And yet CKF assumes that the random model in the filter is white
Gaussian noise. In practical application, it is common for the random
model to deviate from the assumption of white Gaussian noise, which
inevitably affects the accuracy of filtering estimation (Sun et al., 2022;
Tang et al., 2023; Wang et al., 2023). Therefore, mitigating the impact
of non-Gaussian noise on the estimation accuracy of CKF has been
a prominent research topic in the field of GNSS/SINS tightly coupled
integrated navigation data fusion.

1.2 Mproved cubature Kalman filter

In recent years, various optimized algorithms for CKF have
been proposed to address the issue of non-Gaussian noise in
states estimation. A strong tracking CKF with multiple sub-
optimal fading factor is introduced to tackle the discrepancy
between theoretical and practical models of measurement noise
in GNSS/SINS tightly coupled integrated navigation systems,
which significantly enhances the accuracy of navigation estimation

(Huang et al., 2016). Furthermore, a robust CKF based on M-
estimation is presented, which can reduce the impact of non-
Gaussian measurement noise interference. This filter redefines the
innovation sequence using the M-estimate of Huber’s equivalent
weight function, enhancing the robustness of the GNSS/SINS tightly
coupled integrated navigation system data fusion (Wang et al.,
2020). Additionally, an adaptive CKF based on Mahalanobis
distance is designed to address the unknown noise statistics. By
employing the Mahalanobis distance of innovations to determine
the random model of filter, this filter improves the positioning
accuracy of GNSS/SINS tightly coupled integrated navigation
systems (Zhang et al., 2021). However, these above optimized
algorithms for CKF approximate the true distribution of non-
Gaussian through the Gaussian distribution approximation method
with a larger variance, which may result in inaccurate estimated
variance for state estimation (Legin et al., 2023; Dong et al., 2023).

Lately, the Gaussian mixture model (GMM) derived from the
multimodal approximation method has emerged as a promising
approach to solve non-Gaussian noise problems. Compared to the
Gaussian distribution approximation method with a larger variance,
the GMM offers higher accuracy in this regard (Alspach and
Sorenson, 1972; George et al., 2022). By decomposing the probability
density function (PDF) of non-Gaussian noise intomultiple Gaussian
components using GMM, Gauss-Hermite sum filter can be derived.
Combining GMMwith CKF yields the Gaussian sumCKF (GSCKF),
which has been applied to GNSS/SINS tightly coupled integrated
navigation data fusion, thereby contributing to improved navigation
positioningaccuracy(Baietal., 2022).Since2023,numerous improved
algorithms forGSCKFhave emerged in rapid succession, finding their
applications within the domain of non-Gaussian nonlinear systems.
These refined algorithms encompass: CredibleGSCKF,Observability-
Based GSCKF, quaternion constrained GSCKF, and so on (Ge et al.,
2024; Jiang et al., 2024; Dai et al., 2024; Li et al., 2020). However,
due to the non-stationary nature of practical operation environments
of GNSS/SINS tightly coupled integrated navigation systems, the
statistical characteristics of non-Gaussian noise also change over time
(Zhou et al., 2024; Lin et al., 2023; Chen et al., 2023). Although the
above researchhas to someextent improved theestimationaccuracyof
GNSS/SINS tightly coupled integrated navigation systems data fusion
using GSCKF affected by non-Gaussian noises, the GMM modeling
parameters inGSCKFcannotchangewith thestatistical characteristics
of non-Gaussian noise, and this limitation will lead to a decrease in
estimation accuracy, which may seriously cause divergence.

1.3 Motivation and contributions

The motivation for this study stems from the intricate and
dynamic nature of practical operating environments in GNSS/SINS
tightly coupled integrated navigation system. These environments
introduce time-varying non-Gaussian noise characteristics that
exhibit stochastic behavior. Consequently, the inability of the
GMM employed within GSCKF to adapt dynamically results in
a degradation of estimation accuracy. Addressing the challenges
posed by such time-varying non-Gaussian noise is crucial for
maintaining the performance of GSCKF. Therefore, inspired by
the research in reference (George et al., 2022; Dai et al., 2024;
Lin et al., 2023; Panda et al., 2024a; Panda et al., 2024b), we
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propose a novel Adaptive GSCKF(AGSCKF), specifically designed
to mitigate the adverse effects of time-varying non-Gaussian noise,
thereby enhancing the performance of GNSS/SINS tightly coupled
integrated navigation system.

The contributions of this work are concisely summarized
as follows.

1) A novel AGSCKF is proposed, building upon the framework of
GSCKF. This filter specifically targets the statistical properties
of time-varying non-Gaussian noise, mitigating the adverse
effects on the estimation accuracy of GSCKF.

2) The innovation of AGSCKF lies in its integration of a
cost function-based adaptation algorithm. This algorithm
dynamically optimizes the displacement parameter of GMM
in real-time, ensuring precise tracking of the statistical
characteristics of time-varying non-Gaussian noise.

3) Simulation and experimental analyses have been conducted to
demonstrate the superior performance of AGSCKF, particularly
in enhancing the estimation accuracy and adaptability of the
GNSS/SINStightlycoupledintegratednavigationsystemintime-
varying non-Gaussian noise scenarios.

Collectively, these contributions highlight the superior
performance of AGSCKF compared to CKF and GSCKF in
addressing data fusion for GNSS/SINS tightly coupled integrated
navigation systems in challenging environments.

2 Background and problem
formulation

2.1 Mathematical models for GNSS/SINS
tightly coupled integrated navigation
system

The GNSS/SINS tightly coupled integrated navigation
system exhibits excellent navigation accuracy and robustness
against interference. Nevertheless, in the presence of high
maneuvering, conventional linearized models tend to compromise
the accuracy of estimation, necessitating the nonlinear
mathematical model (Groves, 2008). The nonlinear mathematical
model for GNSS/SINS tightly coupled integrated navigation system
includes the state-space model and the measurement model.

The state estimation xk−1|k−1 at epoch k-1 encompasses attitude,
velocity, position, gyroscope drift, accelerometer drift, GNSS
clock bias, and GNSS clock drift. The state-space model can be
mathematically expressed by Equation 1.

xk|k−1 = f(xk−1|k−1 ) + gkwk (1)

where f(⋅) is a nonlinear function, gk is the noise coefficient matrix,
wk is the process noise, Assuming that wk is characterized as white
Gaussian noise, it can be representedmathematically aswk ∼ (0,Qk).

The measurement model is expressed by Equation 2.

zk = h(xk|k−1 ) + vk (2)

where zk is the measurement composed of pseud-orange and
pseud-orange rate corrected by satellite clock bias, ionospheric
delay, and tropospheric delay. h(⋅) is a nonlinear function. vk

is the measurement noise caused by GNSS receiver, multipath
effects, and orbit prediction residuals. Since vk does not conform
to white Gaussian noise, it is classified as non-Gaussian noise.
Its distribution can be closely approximated by two Gaussian
components (Bai et al., 2022).

P(vk) = (1− ε)N(vAk ;μ
A
k ,R

A
k ) + εN(v

B
k ;μ

B
k ,R

B
k) (3)

where N(vAk ;μ
A
k ,R

A
k ) is the Gaussian component of mean μAk

and variance RA
k at epoch k, N(vBk ;μ

B
k ,R

B
k) denotes the Gaussian

component of mean μBk and variance RB
k , and ε represents a factor

with unmeasurable and time-varying characteristics, setting ε ∈ [0,1].

2.2 Cubature Kalman filter

CKF is a Gaussian filter that enables the approximation of the
PDF of nonlinear functions through a set of cubature points. This
approach avoids the need for linearization of the nonlinear function,
thereby enhancing the accuracy and reliability of states estimation.
By utilizing this method, the CKF offers significant advantages over
traditional linearized filters in terms of its ability to handle non-
linear systems with high dimensional states estimation. The specific
implementation steps of CKF are as follows.

Step 1: Initialization.

Set x0|0 ∼N(x0|0 ,P0|0 ), x0|0 = E(x0|0 ) and S0|0 = chol(P0|0 ),
where E(⋅) is the expected value, chol(⋅) represents the Cholesky
decomposition, and P0|0 = S0|0 S

T
0|0 .

Step 2: Calculate the sampling points.

Let state estimation at epoch k− 1 expressed as xk−1|k−1 , and its
covariance is computed as

Pk−1|k−1 = Sk−1|k−1 S
T
k−1|k−1 (4)

The third-order spherical phase diameter cubature rule is
employed to generate a set of cubature points ξc

ξc = √
m
2
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(

1

⋮

0

),⋯,(

0

⋮

1

),(

−1

⋮

0

),⋯,(

0

⋮

−1

)
}}}}
}}}}
}c

(5)

In Equation 5, xc,k−1|k−1 denotes the total number of cubature
points, c = 1,2,⋯m, m = 2n. xc,k−1|k−1 is the dimension of the state
estimation. In other words, the total number of cubature points is
twice the dimension xc,k−1|k−1 of the state estimation.

Step 3: Prediction.

The estimation of cubature points χc,k−1|k−1 and propagation
cubature points x

∗
c,k−1|k−1 are calculated separately.

χc,k−1|k−1 = Sk−1|k−1 ξc + xk−1|k−1 (6)

x∗c,k|k−1 = f(χc,k−1|k−1 ) (7)

Calculate the state prediction xk|k −1 and its covariance Pk|k−1

xk|k −1 =
1
m

m

∑
c=1

x∗c,k|k−1 (8)
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Pk|k−1 =
1
m

m

∑
c=1
(x∗c,k|k−1 − χc,k−1|k−1 )(x

∗
c,k|k−1 − χc,k−1|k−1 )

T
+Qk−1

(9)

where Qk−1 is the covariance of process noise.

Step 4: Update.

Calculate measurement prediction zk|k−1 , its corresponding
covariance Pzz,k|k−1 , and cross-covariance Pxz,k|k−1 , respectively.

zk|k−1 =
1
m

m

∑
c=1

z∗c,k|k−1 (10)

Pzz,k|k−1 =
1
m

m

∑
c=1
(z∗c,k|k−1 − zk|k−1 )(z

∗
c,k|k−1 − zk|k−1 )

T
+Rk (11)

Pxz,k|k−1 =
1
m

m

∑
c=1
(x∗c,k|k−1 − χc,k−1|k−1 )(z

∗
c,k|k−1 − zk|k−1 )

T
(12)

where z
∗
c,k|k−1 = h(xc,k|k−1 ), xc,k|k−1 = Sk|k−1 χc + xk|k−1 , Pk|k−1 =

Sk|k−1 S
T
k|k−1 .

Update the filter gainKk, state estimation xk|k , and its covariance
Pk|k separately.

Kk = Pxz,k|k−1P
−1
zz,k|k−1 (13)

xk|k = xk|k−1 +Kk(zk − zk|k−1 ) (14)

Pk|k = Pk|k−1 −KkPzz,k|k−1K
T
k (15)

2.3 Gaussian sum cubature Kalman filter

CKF is a nonlinear filter that assumes the random model is
white Gaussian noise. However, in practical operating environments,
the measurement noise encountered in GNSS/SINS tightly coupled
integrated navigation systems exhibits non-Gaussian characteristics.
Consequently, it becomes imperative to combine CKF with GMM to
develop states estimation of the GSCKF. The GSCKF enables CKF
to effectively address the challenges posed by non-Gaussian noise,
thereby enhancing the accuracy and reliability of state estimation for
GNSS/SINS tightly coupled integratednavigationsystemsdata fusion.

The distribution of measurement noise is depicted as non-
Gaussian noise in Equation 3. However, due to the unmeasurable
and time-varying characteristics of the factor ε, P(vk) is often
decomposed into two Gaussian distributions with equidistant
distributions as illustrated below:

P(vk) ≈ 0.5N(v
1
k;μ

1
k,R

1
k) + 0.5N(v

2
k;μ

2
k,R

2
k) (16)

where N(v1k;μ
1
k,R

1
k) represents a Gaussian component characterized

by its mean μ1k and variance R1
k. Similarly, N(v2k;μ

2
k,R

2
k) denotes

another Gaussian component defined by its mean μ2k and variance
R2
k.

{{{{
{{{{
{

μ1k = μk + d√λu

μ2k = μk − d√λu

R1
k = R

2
k = Rk − d2λuuT

(17)

FIGURE 1
The decomposition process of GMM.

where λ and u correspond to the maximum eigenvalue and
the corresponding eigenvector of Rk, respectively. d is the GMM
displacement parameter that influences the mean distance between
the two Gaussian components, d ∈ [0,1]. In practical computations,
d is typically set to 0.5 (Sun et al., 2020; Yu et al., 2023).
As depicted in Figure 1, the decomposition process of GMM
is illustrated as below.

In Figure 1, the blue solid line p represents the PDF of non-
Gaussian noise, while the brown solid lines p(1) and brown
dotted lines p(2) represent the two Gaussian components obtained
through GMM decomposition respectively, with displacement
parameter d = 0.5. It can be seen that the probability density
distribution after decomposition by GMM is close to the non-
Gaussian noise in Equation 3. Therefore, GSCKF has better filtering
performance than CKF owing to its accuracy random model under
non-Gaussian noises scenarios.

The general implementation procedures of GSCKF can be
described as follows. Firstly, based on GMM, the decomposition of
non-Gaussian noise is performed using Equations 16, 17.Then, CKF
is performed by employing Equations 4–15, and the state estimation
of two components at the next epoch can be gotten separately.
Finally, based on the weights of different components, a weighted
combination is carried out to obtain the final state estimation and
its covariance as outputs.

2.4 Flaws and shortcomings

The Allan variance analysis reveals that the measurement
noise of GNSS/SINS tightly coupled integrated navigation systems
is non-Gaussian in nature, rather than white Gaussian noise.
Additionally, the mathematical statistical characteristics of non-
Gaussian noise exhibit time-varying behavior due to changes in
the practical operation environment over time (Tang et al., 2023;
Zhang et al., 2020; Elmezayen and El-Rabbany, 2021; Taghizadeh
and Safabakhsh, 2023). Although non-Gaussian noise can be
approximated by Equation 17, the dynamic nature of the practical
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operation environment of GNSS/SINS tightly coupled integrated
navigation systems introduces uncertainties in the factor, which
makes the time-varying characteristics of P(v). Therefore, it limits
the optimality of the GMM displacement parameter when setting,
as shown in Equation 17. In other words, if the GSCKF based on
GMMwith a fixed GMMdisplacement parameter is directly applied
to GNSS/SINS tightly coupled integrated navigation systems data
fusion, it may not effectively cope with time-varying non-Gaussian
noise, resulting in random model mismatches, reduced estimation
accuracy, and even divergence in severe cases.

3 Gaussian sum cubature Kalman filter
with time-varying Non-Gaussian noise

To address the challenge of deteriorating estimation accuracy
of GSCKF, where in the measurement noise is time-varying non-
Gaussian noise, this section proposes a novel adaptive GSCKF
(AGSCKF) based on the adaptively adjustment of the GMM
displacement parameter. According to the impact analysis of GMM
displacement parameter on the accuracy of GMM modeling, the
AGSCKF employs an adaptive algorithm to select the optimal GMM
displacement parameter between twoGaussian components to track
changes in the statistical characteristics of non-Gaussian noise. As a
result, the derivation of the AGSCKF for GNSS/SINS tightly coupled
navigation system data fusion is achieved when measurement noise
becomes time-varying non-Gaussian noise.

3.1 Analysis of the GMM displacement
parameter on the accuracy of GMM
modeling

The GSCKF decomposes non-Gaussian noise through GMM
to obtain an approximate model by Equation 17, which makes
the decomposed mixed model close to the non-Gaussian noise
model in Equation 3. However, the time-varying ε in Equation 3
also introduces uncertainty for P(vk) in Equation 17. And in the
decomposition process of GMM, Equation 17 typically determines
the GMM displacement parameter as d = 0.5, which is not optimal.
If d > 0.5, the effect of εN(vBk ;μ

B
k ,R

B
k) is stronger than that of

(1− ε)N(vAk ;μ
A
k ,R

A
k ); while d > 0.5, the effect of εN(vBk ;μ

B
k ,R

B
k) is

smaller than that of (1− ε)N(vAk ;μ
A
k ,R

A
k ). So, it is required that when

non-Gaussian noise varies, the GMM displacement parameter can
be adjusted adaptively.

In Figure 2, p represents non-Gaussian noise in Equation 3,
while p(A) and p(B) represent the two components in Equation 3.
As shown in Figure 2A, when d < 0.5, the GMM modeling result
of Equation 17 is represented by the area enclosed by p(1), p(2)
and the x-axis. The overlap between this area and the area
enclosed by p(A), p(B) and the x-axis is the actual estimation
result, denoted as M. The higher the overlap, the higher the
estimation accuracy. On the other hand, when d > 0.5, the actual
estimation result, denoted as N in Figure 2A. Comparing M
and N, it can be observed that the degree of overlap of M is
lower than that of N, indicating that the estimation result shown
in Figure 3D is better than that shown in Figure 3A.

Further, as the effect of εN(vB;μB,ΣB) weakens (ε changes from
0.20 to 0.10), the mean centers of p(A) and p(B) shift towards
each other. The estimation result repressed as M′ when d < 0.5 in
Figure 3C, and the estimation result repressed as N′ when d > 0.5 in
Figure 3F. It is observed that the overlap degree of M′ is higher than
that of N′, indicating that the estimation accuracy in Figure 3C is
superior to that in Figure 3F when d < 0.5.

This demonstrates that when non-Gaussian noise varies,
adaptive adjustments in the GMM displacement parameter d can
effectively track the time-varying nature of non-Gaussian noise,
resulting in a more reasonable GMM decomposition process and
a closer fit to the actual non-Gaussian noise. By incorporating this
approach into the GSCKF, more accurate stochastic models can be
obtained, thereby enhancing the accuracy of GSCKF estimation.

3.2 Adaptive algorithm for the GMM
displacement parameter

An adaptive algorithm is devised to address the real-time
estimation challenge of the GMM displacement parameter under
time-varying non-Gaussian noise condition. This algorithm
employs the maximum value of the cost function as the optimal
criterion and adaptively selects the optimal parameter within a
specified range. The cost function is defined as follows:

p(zk|zk−1,d ) =
1
√2πσ2

exp(−1
2
(
zk − zk|k−1

σ
)
2
) (18)

Subsequently, the corresponding value of the GMM
displacement parameter d within its range of variation [dmin,dmax]
can be calculated. The GMM displacement parameter that
corresponds to the maximum value p(zk|zk−1,d ) is identified as
the optimal parameter value ̂d by Equation 19.

̂d = arg max   ̂p(zk|zk−1,d ) (19)

where d ∈ [dmin,dmax].

3.3 The process of AGSCKF

The proposed AGSCKF is derived by incorporating the adaptive
algorithm for the GMM displacement into GSCKF. The specific
implementation steps of the AGSCKF are as follows.

Step 1: Set the step size of displacement parameter’s changes
sl = 0.1 and displacement parameter’s range of variation
[dmin,dmax].

The choice of step size has a significant impact on the accuracy
of proposed AGSCKF. A smaller step size generally leads to higher
accuracy, albeit at the cost of increased computational complexity.

Step 2: Let d = dmin, and the maximum likelihood function is given
by max LH = 0.

Step 3: The state prediction xk|k−1,d , measurement prediction
zk|k−1,d , and its corresponding covariance Pk|k−1,d ,
cross-covariance Pzz,k|k−1,d are computed utilizing
Equations 4–12.
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FIGURE 2
Relationship between the GMM displacement parameter and GMM modeling. (A) ε = 0.20 (B) ε = 0.15 (C) ε = 0.10. (D) ε = 0.20 (E) ε = 0.15 (F) ε = 0.10.

Step 4: To determine whether GMM decomposition is necessary,
the nonlinearity η is calculated by Equation 20.

η = 1
2n

2n

∑
c=1

ηc (20)

where ηc =
1
2
‖z
∗
c,k|k−1 − h(xk|k−1 )‖

2
. Set γ is threshold. If ηc >

γ, it is hypothesized that the high nonlinearity is exhibited
in the presence of non-Gaussian noise, necessitating GMM
decomposition. Consequently, the algorithm proceeds to the
iteration of step 5. In contrast, if ηc < γ, GMM decomposition is
not performed, the state estimation xk|k and its corresponding
covariance Pk|k at the subsequent epoch can be obtained using
Equations 13–15.

Step 5: The following iteration (sub-step 1 to sub-step 5) is executed
until d > dmax.

Sub-step 1: The state prediction x1k|k−1,d , the measurement
prediction z1k|k−1,d , and its corresponding
covariance P1

k|k−1,d and P1
zz,k|k−1,d are calculated

by Equations 4–15.
Sub-step 2: The state prediction x2k|k−1,d , the measurement

prediction z2k|k−1,d , and its corresponding
covariance P2

k|k−1,d and P2
zz,k|k−1,d are obtained

by Equations 4–15.
Sub-step 3: In the presence of two Gaussian components,

the cost function in Equation 18 is modified by
Equation 21.

pg(zk|zk−1,d ) = w
1 1

√2πσ21
exp(−1

2
(
zk − ̂z

1
k|k−1

σ1
)

2

)

+w2 1

√2πσ22
exp(−1

2
(
zk − ̂z2k|k−1

σ2
)

2

) (21)

where w is the weight of components, and σ is the covariance of
measurement noise, superscript represent different components.

Sub-step 4: If pg(zk|zk−1,d ) ≥max LH, reset max LH =
pg(zk|zk−1,d ), and ̂d = d.

Sub-step 5: Update the GMM displacement parameter d by
Equation 22.

d = d+ ST (22)

Step 6: Based on the weights of components, calculate the state
estimation xk|k and its covariance Pk|k by Equations 23–26.

xk|k = xk|k, ̂d =
2

∑
g=1

wg, ̂d
k xgk|k (23)

Pk|k = Pk|k, ̂d =
2

∑
g=1

wg, ̂d
k [P

g
k|k + (x

g
k|k − xk|k )(x

g
k|k − xk|k )

T
]

(24)

ωi
k = ω

i
k−1β

i
k/

2

∑
i=1

ωi
k−1β

i
k (25)
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FIGURE 3
The flowchart of the proposed AGSCKF.

βik ≈N(Lk −AkXk,AkΣXk
AT
k +Σ

i
k) (26)

Through the aforementioned calculation procedures, it becomes
evident that the GMM displacement parameter can be adaptively
adjusted, thereby bringing the non-Gaussian noise model shown
in Equation 17 closer to that shown in Equation 3. This approach
effectively addresses the limitations of GMM modeling inherent in
the GSCKF. Consequently, the AGSCKF proposed in this section
is theoretically expected to exhibit superior estimation accuracy
compared to the GSCKF. The flowchart for the proposed AGSCKF
is illustrated in Figure 3.

4 Performance evaluation and
discussions

The proposed AGSCKF has been thoroughly assessed through
simulations and experiments for GNSS/SINS tightly coupled
integrated navigation system data fusion. In this section, the
comparison and analysis of the proposed AGSCKF with CKF and
GSCKF are discussed.

4.1 Simulations and analysis

The proposed AGSCKF is assessed for the data fusion of an
UAV utilizing a GNSS/SINS tightly coupled integrated navigation
system. The simulate trajectory of UAV flight, which includes
various maneuvering states such as climbing, level flight, turning,
and descending, is depicted in Figure 4. The initial attitude of UAV
is all 0° in pitch, row and yaw respectively; the initial velocities
are set as 0 m/s, 120 m/s and 0 m/s in the east, north and up
respectively; the initial position is set as 110.20°, 34.00° and 2,000 m
in longitude, latitude and altitude respectively. The simulated
sensor’s parameters for the GNSS/SINS tightly coupled integrated
navigation system are listed in Table 1. The GNSS measurement
utilized in the simulation was derived from satellite constellations
and epoch information obtained on 28 July 2023. Simulation
duration is 1,000 s. Computer utilized in simulations encompasses
an Intel Core i7-12700 CPU, 128 GB DDR4 memory, and Matlab
R2020b software.

The initial parameters for three different algorithms (CKF,
GSCKF and AGSCKF) are given in Table 2. The measurement non-
Gaussian noise is generated by Equation 27.

p(vk) ≈ 0.9N(0,ΣA) + 0.1N(0.5,ΣB) (27)
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FIGURE 4
UAV flight trajectory.

TABLE 1 Sensor’s parameters.

Parameter Value

Gyroscope
Constant drift 0.1∘  /h

Random walk coefficient 0.01∘  /h

Accelerometers

Zero bias 0.001 g

Random walk coefficient 0.001 g · √s

Sampling frequency 50 Hz

GNSS receiver
Pseudo range observation error 15 m

Sampling frequency 1 Hz

where ΣA = 3ΣB = diag(0.32⋯0.32). In order to evaluate the
performance of three different algorithms in terms of time-varying
non-Gaussian noise, two different changes were implemented to the
measurement non-Gaussian noise, respectively. During the epoch
period from 401 s to 500 s and the epoch period from 601 s to 800 s,
the measurement non-Gaussian noise is generated by Equation 28.

p(vk) ≈ 0.7N(0,ΣA) + 0.3N(0.5,ΣB) (28)

where ΣA = 3ΣB = diag(0.52⋯0.52).
The attitude error curves and positioning error curves of various

algorithms (CKF, GSCKF, and AGSCKF) are illustrated in Figure 5.
As can be observed from it, prior to the occurrence of changes for
non-Gaussian noise statistical properties (0 s–400 s), the estimation
error of CKF is highest of the three, while the estimation accuracies
of GSCKF and AGSCKF are nearly equal and superior to that of
CKF. This phenomenon can be attributed to the fact that GSCKF
and AGSCKF employ GMM to model non-Gaussian noise, thereby
mitigating its impact on estimation accuracy and ensuring enhanced
attitude and positioning accuracy of GNSS/SINS tightly coupled
integrated navigation systems operating in non-Gaussian noise
environments.

However, upon the occurrence of changes for non-
Gaussian noise statistical properties (401 s–500 s, and 601 s–

TABLE 2 Initial parameters for the algorithms.

Parameter Value

Attitude error

Yaw 1.5′

Pitch 1′

Roll 1′

Velocity error

East 0.5 m/s

North 0.5 m/s

Up 0.5 m/s

Position error

Longitude 10 m

Latitude 10 m

Altitude 15 m

FIGURE 5
Estimation errors by the CKF, GSCKF and proposed AGSCKF for
simulations. (A) Attitude (B) Position.
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TABLE 3 (a): RMSEs of attitude errors (′). (b) RMSEs of position errors (′).

Algorithm Attitude 0 s–400 s 401 s–500 s 601 s–800 s 801 s–1,000 s

CKF

Roll 0.292 0.318 0.313 0.297

Pitch 0.288 0.294 0.304 0.286

Yaw 0.365 0.388 0.389 0.365

GSCKF

Roll 0.223 0.258 0.253 0.222

Pitch 0.218 0.244 0.244 0.212

Yaw 0.317 0.343 0.342 0.311

AGSCKF

Roll 0.218 0.235 0.238 0.213

Pitch 0.213 0.228 0.224 0.200

Yaw 0.298 0.308 0.308 0.298

Algorithm Position 0 s–400 s 401 s–500 s 601 s–800 s 801 s–1,000 s

CKF

Longitude 5.589 5.787 5.782 5.585

Latitude 5.591 5.634 5.739 5.593

Altitude 7.998 8.102 8.103 7.993

GSCKF

Longitude 4.521 4.872 4.875 4.522

Latitude 4.519 4.611 4.612 4.514

Altitude 5.654 6.361 6.366 5.658

AGSCKF

Longitude 4.327 4.623 4.625 4.326

Latitude 4.340 4.467 4.467 4.337

Altitude 5.537 5.793 5.866 5.493

TABLE 4 The average time spent per epoch (ms).

Algorithm 0 s–400 s 401 s–500 s 601 s–800 s 801 s–1,000 s

CKF 5.79 5.65 5.84 5.92

GSCKF 8.28 8.32 7.92 8.52

AGSCKF 13.73 16.73 16.61 13.68

800 s), a significant increase in estimation error is observed
for GSCKF as compared to AGSCKF. The discrepancy
is caused by the change of non-Gaussian noise and the
inability of the GMM displacement parameter of GSCKF to
adapt accordingly, which leads to deterioration of estimation
accuracy due to inaccurate GMM modeling for GSCKF. In
contrast, the AGSCKF employs adaptive corrected GMM
displacement parameter to achieve real-time tracking of time-
varying non-Gaussian noise, thereby achieving more stable
estimation performance than GSCKF.

In order to exemplify the impartiality of algorithm comparison,
the root mean square error (RMSE) with 100 Monte-Carlo
simulations is used to quantify the estimation accuracy of all the
algorithms, which is defined by Equation 29.

RMSE = √ 1
N

I

∑
i=1
(X i −X i)

2 (29)

where N is the total number of Monte Carlo simulations; X i is the
reference; X i is the state estimation. And the time consumption
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FIGURE 6
Relative computational complexity of the three different algorithms.

TABLE 5 Parameters of GNSS/SINS tightly coupled navigation system.

Sensors Parameter Value

SINS

Gyroscope constant drift 10∘  /h

Gyroscope random walk coefficient 0.6∘  /√h

Accelerometer zero bias 40 μg

Accelerometer random walk coefficient 80 μg ⋅ √h

Sampling rate 100/Hz

GNSS
Positioning errors 15/m

Sampling rate 10/Hz

TABLE 6 Statistical characteristics analysis of G22 pseudo-range noise.

Epoch
periods

Pseudo-range noise

Mean/(m) Covariance/(m) Kurtosis

[201 s, 300 s] 0.997 0.881 0.90

[801 s, 900 s] 0.156 0.225 3.06

[1,101 s, 1,200 s] 0.178 0.264 2.89

[1,301 s, 1,400 s] 0.823 0.732 1.34

per epoch is calculated for the quantitative comparison of the
computational complexity of various algorithms.

As shown in Table 3, the yaw is taken as an example. Prior to the
occurrence of changes for non-Gaussian noise statistical properties
(0 s–400 s), the estimation accuracy of GSCKF and AGSCKF are
relatively close (0.317′ and 0.298′), both of which are higher than
that of CKF (0.365′). When the first occurrence of changes for
non-Gaussian noise statistical properties (401 s–500 s), AGSCKF
achieves higher estimation accuracy due to real-time correction of
GMM displacement parameter by AGSCKF. Compared to GSCKF

and CKF, it has increased by 0.035′ and 0.080′, respectively. When
the second occurrence of changes (601 s–800 s), the accuracy
advantage of AGSCKF estimation is significant, with AGSCKF
improving 0.034′ and 0.081′ compared to GSCKF and CKF,
respectively.

As depicted in Table 4 and Figure 6, it reveals that the changes
of computation time for all three algorithms are relatively similar
in all different epoch periods. Take epochs 601 s–800 s as example,
the analysis of the average time spent per epoch reveals that CKF has
the shortest computational time (5.84 ms) among all the algorithms.
In contrast, the computational time of GSEKF is significantly larger
than that of CKF by at least 135.66% times (7.92 ms). This is
due to the complex computational process of GSCKF involved in
distributed filtering and global point estimation at each epoch.
Furthermore, the computational time of AGSCKF is at least 284.42%
longer (16.61 ms) than that of CKF because AGSCKF needs to
update the GMM displacement parameter by iteration.

4.2 Experiments and analysis

This section presents the analysis and verification of the
performance of the proposed AGSCKF through experiments. The
experimental data was collected from a GNSS/SINS tightly coupled
integrated navigation system mounted on UAVs. The experiment
was conducted on 18 Oct 2023, at Zhengzhou, China. Table 5
shows the parameters of the SINS device and GNSS receiver in the
GNSS/SINS tightly coupled integrated navigation system.

The initial position of the UAVwas at latitude 34.654°, longitude
109.193°, and altitude 3,783 m, with initial velocities of 180 m/s,
60 m/s, and 40 m/s in the east, north, and up directions, respectively.
The other initial parameters were consistent with those utilized in
the simulations. A continuous data collection was conducted for
a duration of 3,000 s, encompassing various maneuvering states
such as climbing, level flight, turning, and descending. To ensure
accurate results, a GNSS reference station was placed on the ground
within a maximum distance of 20 km from the UAV.The differential
data calculation result between the GNSS receiver on the UAV
and the GNSS reference station served as the reference value.
Subsequent post-processing yielded a differential positioning result
with an accuracy better than 0.1 m. Three different algorithms
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FIGURE 7
Position errors by CKF, GSCKF and proposed AGSCKF for experiment case.

TABLE 7 Comparison of estimation results with different datasets.

Algorithms 1,500 sets data 3,000 sets data The average
time spent
per epoch
(ms)

Longitude
(m)

Latitude (m) Altitude (m) Longitude
(m)

Latitude (m) Altitude (m)

CKF 3.835 3.945 7.043 4.067 4.186 7.557 8.7

GSCKF 3.245 3.294 4.154 3.384 3.433 4.366 13.4

AGSCKF 2.854 2.975 3.583 2.953 3.076 3.735 16.9

same with simulation were employed for data fusion (CKF, GSCKF,
and AGSCKF).

To assess the non-Gaussian and time-varying nature of GNSS
measurement noise in experimental data, the statistical analysis
was conducted on the pseudo-range noise of GNSS. The non-
Gaussian nature of noise was measured using kurtosis. When
K = 3, the noise follows a Gaussian distribution; otherwise, it
can be concluded that the noise does not follow a Gaussian
distribution. When K > 3, the noise obeys a super-Gaussian
distribution or a thick-tailed distribution; when K < 3, the noise
obeys a sub-Gaussian distribution (Celikoglu and Tirnakli, 2018;
Hatem et al., 2022). Table 6 presents the statistical characteristics
of pseudo-range noise for the G22 satellite during different
epoch periods.

As depicted in Table 6, the kurtosis of the pseudo-range noise
generated by the G22 satellite is noticeably less than 3 within the
epoch intervals of [201,300] (s) and [1,301, 1,400] (s), indicating

a negative kurtosis. This suggests that the G22 pseudo-range
noise exhibits significant non-Gaussian characteristics. Conversely,
the kurtosis of satellite’s pseudo-range noise within the epoch
intervals of [801, 900] (s) and [1,101, 1,200] (s) are close to 3.
As such, the G22 pseudo-range noise exhibits relatively weak non-
Gaussian characteristics. This observation highlights the temporal
variation in the statistical characteristics of non-Gaussian noise
from measurement, which can be characterized as time-varying
non-Gaussian noise.

The positioning error curves of different algorithms (CKF,
GSCKF, and AGSCKF) during the epoch period of [0, 1,500] (s) are
depicted in Figure 7. As observed from it, the range of changes for
the CKF positioning error curve is significantly higher than that of
GSCKF and AGSCKF. This can be attributed to the fact that CKF
is unable to effectively counteract the influence of non-Gaussian
noise, resulting in a larger positioning error. However, due to the
use of GMM in GSCKF to accurately process the random model,
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the impact of non-Gaussian noise is mitigated. Consequently, the
positioning accuracy of GSCKF has been enhanced. Furthermore,
the maximum value of the positioning error curve variation range
of AGSCKF is smaller than that of GSCKF. The main reason is
that AGSCKF takes into account the time-varying non-Gaussian
noise and employs the adaptive algorithm of GMM displacement
parameter to improve the accuracy of GMM modeling, thereby
minimizing the positioning error of AGSCKF.

To further validate the performance of the proposed AGSCKF,
Table 7 presents a quantitative comparison of the RMSEs of different
algorithms (CKF, GSCKF, and AGSCKF) for both 1,500 sets
data and 3,000 sets data. As observed from it, an increase in
navigation duration leads to a decrease in estimation accuracy for
all algorithms. Specifically, when considering longitude positioning
error as an example, CKF exhibits a reduction from 3.835 m
to 4.067 m (about 5.70%), GSCKF shows a reduction from
3.245 m to 3.384 m (about 4.10%), and AGSCKF experiences a
reduction from 2.854 m to 2.953 m (about 3.35%). It is evident
that the estimation accuracy of AGSCKF consistently surpasses
that of CKF and GSCKF. This highlights that AGSCKF not only
possesses robust processing capabilities for time-varying non-
Gaussian noise but also significantly enhances the GNSS/SINS
tightly coupled integrated navigation positioning accuracy of UAVs
in challenge environments. Furthermore, it maintains excellent
stability of GNSS/SINS tightly coupled integrated positioning in
long-sailing missions.

The computational complexity of AGSCKF is analyzed. It
is observed that AGSCKF slightly increases the computation
time per epoch, but does not result in a significant decrease
in computational efficiency. This can be attributed to the fact
that although AGSCKF requires iterative calculation of the GMM
displacement parameter, relatively high-accuracy estimation can
reduce the initial sensitivity of GMMand accelerate the convergence
speed of GMM displacement parameter estimation.

In conclusion, the experiment confirms the same conclusion
as the simulations, namely, that AGSCKF outperforms the other
two algorithms (CKF and GSCKF) in terms of estimation accuracy
and adaptability ofGNSS/SINS tightly coupled integrated navigation
data fusion.

5 Conclusion

The limitations of the GSCKF in the context of time-varying
non-Gaussian noise of GNSS/SINS tightly coupled integrated
navigation systems is analyzed theoretically. It is revealed that the
GMM displacement parameter between Gaussian components
significantly impact the accuracy of GMM fitting. To address
this issue, a novel adaptive adjustment method for GMM
displacement parameter is presented, which dynamically modifies
this parameter through the cost function, thereby enhancing the
rationality of the GMM decomposition process. This approach
is incorporated into GSCKF to improve filtering accuracy, and
effectively addresses the challenges posed by time-varying non-
Gaussian noise, providing a viable solution to achieve high-accuracy
estimation for GNSS/SINS tightly coupled integrated navigation
systems operating in maneuvering states within challenging
environments. Simulations and experiments demonstrate that

the proposed AGSCKF enhances the estimation accuracy and
adaptability of GSCKF in non-Gaussian noise condition, and
exhibites superior stability in long-sailing missions. The research
findings have significant implications for both nonlinear non-
Gaussian filtering theory and GNSS/SINS tightly coupled integrated
navigation systems data fusion algorithms for engineering
applications.

While the proposed AGSCKF proves to be effective in modeling
time-varying non-Gaussian noise in GNSS/SINS tightly coupled
integrated navigation systems, it disregards the undefined noise
scenarios, rendering the random model unable to adapt to the
statistical characteristics of undefined noise. This limitation impairs
the ability of AGSCKF proposed in this paper to effectively address
undefined noise, potentially leading to a decline in estimation
accuracy under severe conditions. So, the real-time dynamic GMM
modeling techniques for undefined noise are very meaningful
research points in the future.
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