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1 Introduction

The knowledge of the Martian climate is the key to facilitate human exploration and
determine whether Mars could be a habitable planet for humans in the future. Analyses
of ground-based and satellite observations from the missions developed in more than
50 years have led to a robust knowledge of this climate, which is regulated by the CO2,
dust, and H2O cycles, coupled to radiative and dynamical processes. On a planetary scale,
the Martian atmospheric circulation is strongly affected by the seasonal sublimation and
deposition of CO2 at the polar caps because CO2 is the principal component of the Martian
atmosphere (95.3% CO2, 2.7% N2, 1.6% argon (Ar), and 0.4% other gases; Belton et al.,
2024); it condenses during the autumn and winter seasons (and precipitates as frosted CO2)
and sublimes during the spring and summer seasons due to solar radiation. The northern
seasonal frosted CO2 dissipates completely during spring and summer seasons, but the
South Pole retains a thin permanent cover of frosted CO2. In this paper, the total mass
involved in the cycle of CO2 (exchanged between the Martian atmosphere and surface)
is determined from the pressure data, provided by the Interior Exploration using Seismic
Investigations, Geodesy and Heat Transport (InSight) mission. This mass is compared with
that determined by Kelly et al. (2006) from gamma ray and neutron data (measured by
components of the gamma ray spectrometer instrument suite on 2001 Mars Odyssey) and
that predicted by the general circulation models (GCMs): the NASA Ames Research Center
(NARC) and Mars Climate Database V6.1 (MCD).

2 Data, methodology, and results

The pressure data used in this study have been extracted from the pressure sensor
of InSight. This sensor is designed to produce a valid output between pressures of
approximately 560 Pa and 1,000 Pa, which are expected to be the extreme pressures that
are experienced at the InSight landing site. The sensor is specifically designed to minimize
noise, with a typical root mean square (RMS) of approximately 10 mPa on any particular
reading (Banfield et al., 2019). However, according to the recent study performed by
Lange et al. (2022) about the recalibration of InSight pressure data, the root mean square
(RMS) is found to be approximately 1.5 Pa. They provided the correction on this dataset,
which has been considered in the pressure data used in this study. Supplementary Figure S1
shows the pressure data corresponding to the sols 500–510 (sol is a Martian day, i.e.,
88,775.244 s or 24.66 h; Hansen et al., 2024). From all pressure data available from InSight,
the daily maximum and minimum values are picked (Supplementary Figure S1) to build
the curves shown in Supplementary Figure S2A, i.e., the curves of daily maximum and
minimum pressures. These curves given versus time in sol are converted to curves with
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FIGURE 1
Total mass (Matm) of the atmosphere (a, black dot line) and total mass (Mfrost) of the frosted CO2 in the polar caps (b, black dot line), determined by
Equation 1 from the mean atmospheric pressure (patm) curve (Supplementary Figure S2B, green dots). The values of Mfrost calculated by Kelly et al.
(2006) are plotted in Figure 1B in black circles and rectangles (vertical bars denote the errors). The values of Matm and Mfrost predicted by the GCMs are
also plotted for comparison (dashed lines): the NARC (black) and MCD (gray). The solar longitude is denoted by Ls, and the northern seasons are also
indicated.

time given in the solar longitude (Supplementary Figure S2B; the
solar longitude of Mars in its orbit, Ls, Martínez et al., 2017;
Hansen et al., 2024), and then, the curve of mean pressure
(Supplementary Figure S2B, green dots) is determined from the
mean of the abovementioned curves of maximum and minimum
pressures. This curve is also interpolated to fill small gaps present
in data. This curve can be considered the daily mean atmospheric
pressure at the InSight landing site, and it follows an annual
repeatable cycle, as observed in previous other datasets (e.g., the
Viking and Curiosity datasets; Martínez et al., 2017). This cycle
shows two pressure dips (Supplementary Figure S2B): the first dip
is the minimum of this cycle reached during southern winter
(northern summer), and the second dip is a more minor dip
reached during northern winter. The minimum of the cycle is
reached during southern winter because it is longer and colder
than northern winter, i.e., the deepest minimum of this pressure
cycle is associated with the more extensive coverage by seasonal
frosted CO2 in the South Pole (Martínez et al., 2017; Hansen et al.,
2024). Supplementary Figure S2B shows that variations in the
bulk atmospheric mass due to the condensation and sublimation
of CO2 in the seasonal polar caps cause the observed large
pressure variations. This total atmospheric mass (Matm) can be
calculated by scaling the mean atmospheric pressure (patm) curve
(Supplementary Figure S2B, green dots) using the formula

Matm =m0 + a(patm − p0), (1)

where a is a constant and (m0, p0) are the mean values of the
atmospheric mass and pressure in a Martian year (0º−360° of Ls),
respectively. The total mass (Mfrost) of frosted CO2 in the polar caps
can be determined from Matm, assuming that Matm + Mfrost = 27
× 1015 kg (Kelly et al., 2006). The value of p0 is determined from
the pressure data shown in Supplementary Figure S2B (green dots)
as 717.73 Pa. The values of a and m0 are calculated numerically by
Equation 1 as the values that yield the best fit of the total mass of
frosted CO2 in the polar caps calculated by Kelly et al. (2006). These
values are a = 0.03 × 1015 kg/Pa and m0 = 23.5 × 1015 kg. Figure 1
shows the values of Matm andMfrost determined in the present study
as a function of Ls, as well as the values of Mfrost calculated by
Kelly et al. (2006). The values of Matm and Mfrost predicted by the
GCMs are also shown in Figure 1, for comparison.

3 Discussion and conclusion

Figure 1B shows the good fit existing between the values
determined in this study forMfrost and those calculated byKelly et al.
(2006). It shows that the pressure data (e.g., provided by InSight) can
be used as a valid method to determine the total mass exchanged
between the Martian atmosphere and surface (i.e., the total mass
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involved in the cycle of CO2). Furthermore, a good fit is shown
in Figure 1B between the Mfrost value calculated here and that
predicted by the GCMs. However, it is observed that the NARC
model slightly overestimates the Mfrost values from 40° to 190° Ls,
and the MCD model clearly underestimates Mfrost from 240° to
340° Ls. This misfit of the GCMs may be due to the dust storms
occurring on Mars because they have important effects on the
meteorology and climatology of Mars. It is observed that the error
bars in Figure 1B are, in general, very small (for some measures,
the error is smaller than the symbol used to plot this measure),
i.e., the uncertainties in Figure 1B show that the misfit is due to
the dust (which is not represented correctly in GCMs), and it is
not simply an uncertainty of results. Dust, once lifted into the
atmosphere, remains suspended for a long period, absorbing and
scattering solar radiation, thereby heating the atmosphere (Martín-
Rubio et al., 2024).This feature of dust storms affects the sublimation
and condensation processes of CO2 in the polar regions (He et al.,
2024). Unfortunately, themechanisms of the large storm growth and
development already remain poorly understood (Wang et al., 2023).
A better understanding of dust storms is needed to understand the
Martian meteorology and climatology (Guha et al., 2024). Modeling
efforts have been performed in recent decades, incorporating these
effects into GCMs, such as the NARC and MCD models. However,
more work is already needed tomodel the dust storms precisely with
a GCM. Probably, this task could be feasible when more data will be
available provided by future missions.
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