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Active galactic nuclei (AGN) are powerful sources of panchromatic radiation.
All AGN emit in X-rays, contributing around 5%–10% of the AGN bolometric
luminosity. The X-ray emitting region, popularly known as the corona, is
geometrically and radiatively compact with a size typically ≲10 RG (gravitational
radii). The rapid and extreme variability in X-rays also suggest that the corona
must be a dynamic structure. Decades of X-ray studies have shed much light
on the topic, but the nature and origin of AGN corona are still not clearly
understood. This is mostly due to the complexities involved in several physical
processes at play in the high-gravity, high-density and high-temperature region
in the vicinity of the supermassive black hole (SMBH). It is still not clear how
exactly the corona is energetically and physically sustained near a SMBH. The
ubiquity of coronal emission in AGN points to their fundamental role in black
hole accretion processes. In this review we discuss the X-ray observational
properties of corona in radio quiet AGN.
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1 Introduction

Some of the most energetic emission in an active galactic nucleus (AGN) hosting an
accreting supermassive black hole (SMBH) is produced in the X-rays. The AGN corona
which is responsible for most of the X-ray emission, is an extremely hot (T ∼ 109K) plasma
residing very close to the SMBH. The coronal X-ray spectrum is a power-law in the energy
range ∼0.3− 100 keV (Vaiana and Rosner, 1978; Haardt and Maraschi, 1993; Merloni et al.,
2003), and contributes to around 5− 10% of AGN bolometric luminosity (Elvis et al.,
1994; Marconi et al., 2004; Vasudevan and Fabian, 2007; Fabian et al., 2017). Over the
past 40–50 years of X-ray observations, important discoveries have been made in AGN
coronal physics, which have opened up new fundamental questions, such as: 1) What is
the structure and extent of the corona, and how is it sustained in the high gravity regime?
2) What determines the fraction of thermal and non-thermal electron components in the

Frontiers in Astronomy and Space Sciences 01 frontiersin.org

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#editorial-board
https://doi.org/10.3389/fspas.2024.1530392
https://crossmark.crossref.org/dialog/?doi=10.3389/fspas.2024.1530392&domain=pdf&date_stamp=2025-03-01
mailto:sib.laha@gmail.com
mailto:sib.laha@gmail.com
mailto:sibasish.laha@nasa.gov
mailto:sibasish.laha@nasa.gov
https://doi.org/10.3389/fspas.2024.1530392
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fspas.2024.1530392/full
https://www.frontiersin.org/articles/10.3389/fspas.2024.1530392/full
https://www.frontiersin.org/articles/10.3389/fspas.2024.1530392/full
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org


Laha et al. 10.3389/fspas.2024.1530392

FIGURE 1
AGN coronal typical parameters and spectra. Left Panel: A cartoon of an AGN central engine with the SMBH (black), accretion disk (brown), the X-ray
emitting corona (diffuse cyan), the larger scale outflows (blue) and typical electron orbits around the magnetic fields (helical strips). RG refers to the
gravitational radius of the SMBH. The magnetic field lines are shown in white. Top left and right: dominant heating and cooling mechanisms (see for,
e.g., Done and Fabian, 1989; Balbus and Hawley, 1998; Di Matteo, 1998; Miller and Stone, 2000; Fabian et al., 2015, and references therein). Lower left:
the typical ranges in the spectral parameters: X-ray power law slope (Γ), power law cut-off energy (Ecut) and 2− 10 keV luminosity (L2−10 keV). Lower right:
typical ranges in the coronal physical parameters: Distance from the SMBH, electron temperature (kTe), Magnetic field in Gauss, and X-ray optical depth
(τ). See for, e.g., Ricci et al. (2017), Ricci et al. (2018); Kamraj et al. (2022). The typical spectral and physical parameter ranges quoted here represent the
bulk of the Radio-Quiet AGN population, though values beyond these ranges are also detected in some AGN. We also note that the lower limit on AGN
X-ray luminosity quoted here corresponds to the detection threshold of current generation instruments and not an intrinsic AGN limit. Right panel: The
shape of the power law continuum for different coronal electron temperatures (for a full discussion see Ricci et al., 2018). We used the COMPPS
model in XSPEC (Arnaud, 1996) to simulate Comptonization spectra in X-ray corona. We assumed the following: (a) A spherical geometry of the
corona, (b) the plasma optical depth τ = 0.8, (c) the disk (UV) seed photons having a temperature of 10eV. We normalized the three spectra at 0.1 keV.
The resulting slope of the power law spectra are reported. We note that with increasing electron temperature the spectral slope becomes harder.

corona? 3) How is energy pumped and dissipated in the corona? Is
the corona in radiative equilibrium?

The central engine of AGN (see Figure 1 left panel) is thought
to consist of an accretion disk surrounding the SMBH. The loss of
gravitational energy of the accretingmaterial is expected to be one of
the main sources of the energy in AGN, part of which is manifested
in the optical andUVbands (Shakura and Sunyaev, 1973).The rate at
which the system is accreting is often parametrized as the Eddington
ratio (λEdd)1.

In this review we will focus on the coronal X-ray emission from
radio quiet AGN (RQ-AGN), which represent the largest population
of accreting SMBHs. We do not discuss radio loud AGN (RL-AGN)
in this review because the jets may contribute to the X-rays adding
extra complexities and contaminate X-ray emission from the corona.
We note that in a short review of a mature field such as AGN coronal
emission, it is not possible to cover all topics related to the subject,
and some subjectivity may unintentionally introduce bias.

This manuscript is arranged as follows: In Section 1.1 we discuss
some of the most important physical processes in AGN coronae.
In Section 2 we list the phenomenology of the coronal emission
discussing the most relevant discoveries and the empirical relations
betweenX-ray coronal emission and the other observable quantities.
In Section 3 we briefly address some of the open questions in the
field, and in Section 4 we discuss future perspectives.

1 λEdd = Lbol/LEdd, where Lbol is the bolometric luminosity and LEdd is the

Eddington luminosity.

1.1 The primary physical processes in AGN
corona

The coronal X-ray emission can be simply characterized by a
power law with a photon index (Γ) and cut-off energy (EC), such
that the flux F(E) ∝ E−Γe−E/EC . Some of the main observables of
X-ray coronae that can be inferred from X-ray spectroscopy are:
(1) the spectral slope Γ, which is related to the temperature of
the Comptonizing electrons (kTe) and the optical depth (τ) of
the X-ray emitting plasma (Rybicki and Lightman, 1979), (2) the
high energy cut-off EC and (3) the X-ray luminosity L0.3−100 keV.
We briefly discuss some of the most important physical processes
that are expected to take place in AGN coronae, and we refer the
readers to Rybicki and Lightman (1979) for a detailed exposition.

1.1.1 Inverse compton scattering
Inverse Compton (IC) scattering is thought to be the dominant

process responsible for X-ray emission in AGN. When UV seed
photons from the accretion disk, with energies hν, pass through
the coronal plasma, energy gets transferred from the hot (109

K) electrons to the photon field by repeated IC scattering. This
happens if hν < 4kTe, where h is the Planck constant, ν is the photon
frequency, k is the Boltzmann constant and Te is the temperature of
the electrons.

For a plasma of non-relativistic electrons in thermal equilibrium
with energy kTe≪mec

2, having an optical depth τes, one can define
the Compton y parameter: y =max(τes,τ2

es)(4kTe/mec
2), where me

is the electron mass and c is the speed of light. For y≫ 1, the
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FIGURE 2
Pair production acting as a thermostat for coronal plasmas. Left: Compactness parameter (l) and temperature (Θ) phase space plotted for AGN that
have measured cut-off energies in the X-ray band (Fabian et al., 2015; 2017). The black, dashed and dotted lines are theoretical curves denoting the
limits for the pair production process for a slab, hemisphere and spherical geometries, respectively. Right: Same as left, but now the different colored
curves denote varying contributions from thermal and non-thermal plasmas, with the non-thermal fraction increasing from right (purple curve) to left
(red curve). Figure reproduced by permission of Oxford University Press on behalf of the Royal Astronomical Society.

average photon energy reaches the thermal energy of the electrons
and is called ‘saturated inverse Compton scattering’. The case for
unsaturated Comptonization (y > 1) is however of most interest in
black hole systems, and in such a case, the output spectrum in the
X-ray is a power law with a high energy cut-off EC determined
by the electron temperature, which is typically approximated to be
EC ∼ 2− 3kTe (Petrucci et al., 2001; Fabian et al., 2015).

1.1.2 Synchrotron emission
Thehigh densities of electrons around themagnetic field inAGN

corona makes it a significant synchrotron emitter predominantly
between 5− 200 GHz (Laor and Behar, 2008; Panessa et al., 2019;
Baldi et al., 2022; Kawamuro et al., 2022; Ricci et al., 2023).
The fact that we see 1) ubiquitous unresolved mm emission even
with high spatial resolution, 2) flat radio slopes, and 3) strong
correlation between the radio and X-rays in RQ-AGN are indicators
of radio emission from the corona through synchrotron processes
(Panessa et al., 2019). For example, recent results (Ricci et al.,
2023) point toward a tight correlation between 2− 10 keV and
100 GHz luminosity for a volume-limited sample of nearby hard X-
ray selected RQ-AGN. Similarly, the core radio flux at 5 GHz and
the 2− 10 keV luminosity for nearby radio quiet AGN have been
found to show an interesting correlation LR,5GHz/L2−10 keV ∼ 10−5.5

(Laor and Behar, 2008) which is similar to that found in coronally
active stars (such as the Sun) and is popularly known as the Gudel-
Benz relation (Guedel and Benz, 1993). As a caveat we note here that
the coronal magnetic field can be as high as B = 102 − 105 Gauss and
significant synchrotron self absorption (SSA) effects may limit our
detection at lower frequencies (below ∼40 GHz).

Direct measurement of magnetic fields in AGN corona has
not yet been possible, but we can estimate a typical range from
the analogy of RL-AGN. Large B0 values on event horizon
scales are feasible considering that measurements from AGN
jets have previously found magnetic field strengths of ∼0.1 G

on ∼1 pc scales from core frequency-shift methods (O’Sullivan
and Gabuzda, 2009) and ∼10 G on ∼0.1 pc scales from
Faraday rotation measurements (Martí-Vidal et al., 2015). Such
observational values are consistent with B0 ≳ 105 G at the base
of the jet with a 1/r decay of the magnetic field, and are thereby
consistent with theoretical and numerical predictions for launching
relativistic jets (Tchekhovskoy et al., 2011).

1.1.3 Electron-positron pair production
Sources which are physically compact and highly luminous, like

the AGN corona, are also radiatively compact. This means that the
photons and the particles in the plasma are in constant interaction
with each other. In such a plasma, photon–photon collisions can lead
to e− − e+ pair production, when the photons are energetic enough.
The resulting e− − e+ pair density is proportional to the luminosity
(L) and electron temperature (kTe or Θ = kTe/mec

2), and inversely
proportional to the source size (R) assuming a spherical source. This
is typically expressed by the compactness parameter l = LσT/(Rmec

3)
where σT is the Thomson cross-section. Thus, when the energy
content of corona increases, manifested by an increase in both l
and kTe, the extra energy goes into creating more pairs, rather than
increasing the temperature. Therefore, the process acts as a natural
thermostat for the corona (Done and Fabian, 1989; Fabian et al.,
2015; 2017). See Figure 2 left panel.

If magnetic reconnection is a dominant form of energy
production mechanism in the X-ray corona (Di Matteo, 1998),
then one would expect a fraction of non-thermal electrons (Done
and Fabian, 1989). The existence of non-thermal particles in the
corona would result in a distribution of photon energy that extends
into the MeV band. This small number of high energy particles
could be highly effective in seeding pair production. Moreover, the
cooled non-thermal pairs could share the total available energy, thus
reducing the mean energy per particle and therefore decreasing the
temperature of the thermal population. Such hybrid coronal plasma,
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consisting of thermal and non-thermal electron populations, might
have been found in a few nearby AGN (See Figure 2 right panel),
in which the Comptonizing plasma is found well below the pair
production line in the l− kTe plane (Fabian et al., 2015; 2017).

2 Phenomenological properties of the
corona

X-ray emission from AGN was detected and studied already by
the early X-ray observatories such as Ariel-V (1974–1980, Smith
and Courtier, 1976), HEAO-1 (1977–1983, Rothschild et al., 1979),
HEAO-2 or Einstein (1978–1981, Giacconi et al., 1979), EXOSAT
(1983–1986, Taylor et al., 1981), GINGA (1987–1991, Makino and
ASTRO-C Team, 1987). In the later period ASCA (1993–2001,
Tanaka et al., 1994) and RXTE (1995–2012, Swank, 1999) provided
seminal insights into the X-ray properties of the AGN corona. For
example, the ubiquity of X-ray emission from Seyfert-1 galaxies was
established (Elvis et al., 1978) by the first catalog from the Ariel-
V sky survey (Cooke et al., 1978). The first large spectral samples
of AGN observed by HEAO-1 revealed that the observed range
in photon spectral indices was tightly distributed around Γ ≈ 1.7
(Mushotzky et al., 1980; Rothschild et al., 1983; Mushotzky, 1984).
The Einstein and EXOSAT missions demonstrated that rapid, large
amplitude X-ray variability is a common feature in nearby AGN,
and that such variability is stochastic and it shows no characteristic
timescale (Lawrence et al., 1987; McHardy and Czerny, 1987).

These discoveries were followed by the era of the great X-ray
observatories, which started with the launch of Chandra (1999-,
Weisskopf et al., 1996) andXMM-Newton (1999-, Lumb et al., 2012),
and later with the advent of hard X-ray ( >10 keV) observatories
such as INTEGRAL (2002-, Winkler et al., 2003), Swift-BAT (2004-,
Barthelmy et al., 2005), Suzaku (2005–2015,Mitsuda et al., 2007) and
NuSTAR (2012-, Harrison et al., 2013). Our understanding of AGN
corona over the years has improved significantly, but much remains
to be understood. In this section, we will review some of the most
important observational characteristics of AGN coronal emission
obtained with the above mentioned observatories.

2.1 The coronal plasma spectral and
physical properties

2.1.1 Coronal X-ray power law slope and optical
depth

Figure 1 left panel highlights the primary spectral and physical
characteristics of X-ray coronae and their typical range of values.
The left panel of Figure 3 shows the photon index (Γ) distribution
for a large sample of AGN (both obscured and unobscured) studied
with broad-band X-ray observations (0.3–150 keV), with a median
value of 1.78 ± 0.1 (Ricci et al., 2017). Recent broad-band X-ray
studies also show that the spectral slope of the 14− 195 keV emission
is steeper than the 0.3− 10 keV band, suggesting the high energy
cut-off is ubiquitous in AGNs (Ricci et al., 2017).

The photon index is dependent on both the plasma
temperature and the optical depth, and it can be estimated
as Γ ∼ [ 9

4
+ mec

2

kTeτ(1+τ/3)
]
0.5
− 1

2
(Rybicki and Lightman, 1979). By

measuring both Γ and EC it is possible to estimate the optical

depth of the Comptonizing plasma, assuming a geometry (see,
for example, Brenneman et al., 2014). Recent studies of nearby
AGN estimate a median value of the optical depth of τ = 0.25±
0.06 (Ricci et al., 2017).

2.1.2 Coronal luminosity and bolometric
correction

The typical coronal luminosity can span a large range L2−10 keV ∼
1040−45ergs−1 (Piconcelli et al., 2005; She et al., 2017; Ricci et al.,
2017), with the lower limit being only loosely defined by
detector sensitivity and increasing contribution of non-AGN
process to the X-ray emission. On this low-luminosity end of
the distribution are the sources that are either accreting at
low Eddington ratios or host intermediate mass black holes
(log (MBH/M⊙) < 6, Dong et al., 2012). On the extreme high-
luminosity end, are the hyperluminous AGN with L2−10 keV ≥
1045ergs−1, typically found at z ∼ 2− 4 encompassing the cosmic
peak of quasar activity (Martocchia et al., 2017).

The contribution of the X-rays to the total AGN emission is
usually parametrized with the X-ray bolometric correction (κ2−10):
κ2−10 ∼ Lbol/L2−10 keV. Studies of nearby AGN have shown that more
luminous sources typically have weaker coronal X-ray emission
relative to their bolometric luminosity, with κ2−10 ≃ 15− 25 at λEdd <
0.1, and κ ∼ 40− 70 at λEdd > 0.1 (Vasudevan and Fabian, 2007).

2.1.3 The high energy cut-off (EC) and the
coronal temperature

Thehigh energy cut-off of the power law component is related to
the coronal temperature as EC ∼ 2kTe, for an optically thin plasma,
i.e., τ ≲ 1. On the other hand when the plasma is optically thick,
i.e., τ≫ 1 the relation is EC ∼ 3kTe, both approximated for a corona
of slab geometry (Petrucci et al., 2000; 2001). The right panel of
Figure 3 (Kamraj et al., 2022) shows the distribution of high-energy
cut-offs inferred from NuSTAR observations of a sample of nearby
AGN. The median value of the cut off energy obtained for the
sample is ∼84 ± 9 keV. A large study of a sample of nearby Swift-
BAT detected AGN finds a median cut-off energy in local AGN
that is significantly higher (EC ∼ 200 ± 29 keV; Ricci et al., 2017).
Indirect constraints on the cut-off energy have been obtained by
fitting the cosmic X-ray background (CXB), and have shown that
the mean cut-off energy is likely below 300 keV(Gilli et al., 2007;
Treister et al., 2009; Ueda et al., 2014), in agreement with the
observational studies reported above.

Analyzing a sample of ∼200 AGN, Ricci et al. (2018) found that,
while Ecut is not related to the mass of the black hole or the 14−
150 keV luminosity, it appears to be related to the Eddington ratio
(λEdd). Sources with λEdd > 0.1 were shown to display significantly
lower median cut-off energy (Ecut = 160 ± 41 keV) than those with
λEdd ≤ 0.1 (Ecut = 370 ± 51 keV). This supports the idea that more
radiatively compact coronae are cooler, because they tend to avoid
the region in the temperature-compactness parameter space where
runaway pair production would dominate (See Figure 2). In some
extreme cases, coronal temperatures as low as kT ∼ 10− 20 keV
have been measured in a few nearby AGN (Buisson et al., 2018).
Interestingly, and in agreement with the results of Ricci et al. (2018),
such cool corona are often detected in several high Eddington AGN
(Kara et al., 2017; Tortosa et al., 2022). These plasma are either not
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FIGURE 3
Distribution of the X-ray spectral parameters of AGN coronal emission: Left: The distribution of the photon-indices Γ for X-ray unobscured (top panel)
and X-ray obscured (lower panel) sources (Ricci et al., 2017). Right: Distribution of the cut-off energy as measured for a sample of AGN with NuSTAR
hard X-ray observations (Kamraj et al., 2022), when the spectra are modeled using a simple absorbed power law. The cyan and purple histograms
represent the lower bounds and the best-fit values, respectively. Both panels reproduced with permission © AAS.

pair-production dominated, or they are hybrid, as discussed in the
Introduction.

Sample studies of AGN in hard X-rays with NuSTAR detected
an anti-correlation between kTe and τ (Tortosa et al., 2018;
Kamraj et al., 2022; Serafinelli et al., 2024). On average, the lower
mass, highly accreting narrow line Seyfert 1 galaxies (NLSy1s)
exhibit a steeper photon index (Γ > 2), suggesting the corona might
be cooler or less optically thick compared to other AGN (e.g.,
Brandt et al., 1997; Gallo, 2018).

2.2 The coronal size, geometry and stability

Although corona is known to be compact (Ghisellini et al.,
2004; Fabian et al., 2015), it can sometimes be patchy (e.g., Haardt
and Maraschi, 1991; Stern et al., 1995; Petrucci et al., 2013;
Wilkins and Gallo, 2015c). Four (simplified) coronal geometries
that are commonly discussed in the literature: a point source,
a cylindrical slab, a spheroid/ellipsoid, and a conical geometry
(Gonzalez et al., 2017). Ray-tracing simulations suggest that some
of these geometries could be distinguished through X-ray spectral
modelling (e.g., Wilkins and Fabian, 2012; Dauser et al., 2013;
Gonzalez et al., 2017) and polarization studies (e.g., Schnittman and
Krolik, 2010; Zhang et al., 2019).

Although the geometry of the corona is extremely hard to
determine, the size of the corona can be inferred from several
indirect methods:

2.2.1 Spectral and spectral-timing techniques
2.2.1.1 Emissivity profile

The emissivity profile describes the amount of reprocessed
radiation emitted from the disc as a function of distance from the
illuminating source, and it is typically inferred from the properties
of the relativistically broadened emission lines (e.g., Fe Kα). The
emissivity profile is dependent on the morphology of the corona
and its height above the disc (e.g., Wilkins and Fabian, 2011; 2012;

Dauser et al., 2013; Gonzalez et al., 2017). Measurements of the
emissivity profile in a few well studied AGN suggest that the corona
is relatively compact (≲10RG, Wilkins et al., 2014; Wilkins and
Gallo, 2015a).

2.2.1.2 Reflection fraction
The detection of broad (and redshifted) FeKα emission lines

and its variability in some sources clearly indicates the presence
of general relativistic effects in producing the line shape, which
may arise out of reflection from the inner regions of an accretion
disc (Miniutti and Fabian, 2004). The ratio of the reflected flux
(primary flux reflecting off the disk) and the primary X-ray
flux can provide some constraints on the location and motion
of the corona (Wilkins and Gallo, 2015b; Dauser et al., 2016;
Gonzalez et al., 2017). For example, a detailed spectral analysis
of the low-flux state of Mrk 335 by NuSTAR revealed a spectra
with a high reflection fraction ( >8) indicating relativistically
blurred emission, from a X-ray point source (corona) collapsing
down to within ∼2RG of the SMBH event horizon. Later on with
increasing X-ray flux, the reflection fraction decreased, consistent
with a corona moving up to 10RG as the source brightened
(Parker et al., 2014).

2.2.1.3 X-ray variability
Coronal X-ray emission shows variability at different time

scales (δt), from a few 100 s to days (McHardy et al., 2005;
Middei et al., 2022; Reeves et al., 2021). The shortest variability
timescales put an upper limit to the size of the emitting region
R < cδt ≃ 1− 10RG. Variability in the coronal emission is echoed
in the emission reflected in the accretion disc, with some delay
that corresponds to the light travel time between the corona and
the disk (e.g., Fabian et al., 2009; Zoghbi et al., 2010; Uttley et al.,
2014). These reverberation lags can provide insights on the location
of the corona relative to the inner disc. For sources where
reverberation lags have been detected, indications are that the region
is compact and typically less than ∼10RG (De Marco et al., 2013;
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Kara et al., 2016; Wilkins and Fabian, 2013; Cackett et al., 2014;
Kara et al., 2013; Zoghbi et al., 2012).

2.2.2 X-ray polarization
Compton scattering induces polarization of the X-ray photons,

which is an important tool to study the geometry of the emitting
plasma. The polarization of the X-ray photons measured both in
degree and position angle, is energy- and geometry dependent. For
example, a polarization degree of 4% or higher can possibly rule
out spherical and lamp-post coronal models, because symmetry
reduces the polarization degree (Zhang et al., 2019; Ursini et al.,
2022a).The same is true for the orientation of the polarization angle,
that is model-specific (different models predict different values of
polarization angle).

Launched in December 2021, the Imaging X-ray Polarimetry
Explorer (IXPE), is the first X-ray spectro-imaging polarimeter
satellite sensitive in the 2–8 keV band (Weisskopf et al., 2022).
IXPE successfully measured a polarized signature in NGC 4151
(Gianolli et al., 2023) with a polarization degree of 4.9% ± 1.1%
at a position angle of 86° ± 7° east of north at 68% confidence
level. The amount of polarization associated with the corona is of
the order of 4%–8%, which directly excludes a spherical geometry
(Beheshtipour et al., 2017; Ursini et al., 2022b). The polarization
angle measured for this source, which is parallel to its radio jet,
suggests that the corona could be distributed along the accretion
disk or perhaps it’s a part of the inner accretion flow (as in a slab
geometry). On the other hand, upper limits (at 99% confidence
level) of 3.2% and 6.2% were obtained for the polarization degree
in MCG−5− 23−16 (Marinucci et al., 2022a; Tagliacozzo et al.,
2023) and IC 4329A (Ingram et al., 2023), respectively, implying
that, for those two objects, we cannot directly rule out a
spherical and/or lamppost corona. However, the orientation of
the polarization angle in those two AGN seems to be more
consistent with an extended corona (along the equatorial plane)
rather thanwith a polar or spherical corona, because their tentatively
measured polarization angle (at <3σ) are also parallel to the
detected radio structures and polar winds (Tagliacozzo et al., 2023;
Ingram et al., 2023).

Here we also mention an interesting result from an X-ray
binary, Cygnus X-1, for which the polarization degree could be
constrained exceptionally well, at (4.0 ± 0.2)% between 2−8 keV,
and a polarization angle parallel to the jet axis (Krawczynski et al.,
2022). This suggests that, similar to AGNs, the hot X-ray corona
is likely spatially extended in a plane perpendicular to the jet axis,
parallel to the inner accretion flow, and rules out the commonly used
lamp-post model.

2.2.3 Microlensing studies
Gravitational microlensing of quasar light by a foreground mass

(lens) can be used to probe the sizes related to the accretion
disc and corona (e.g., Chartas et al., 2009; Morgan et al., 2008;
Dai et al., 2010). Using such methods, the size of the X-ray emitting
region (the corona) is estimated to be very compact, around 5−
10RG (e.g., Dai et al., 2010).

2.2.4 X-ray eclipses
Capturing the transit of the X-ray source by an obscuring

cloud is fortuitous, but not rare (see for, e.g., Risaliti et al., 2007;

Turner et al., 2018; Gallo et al., 2021; Ricci and Trakhtenbrot, 2022).
Such events are important as they can be used to constrain the sizes
of the X-ray region based on the duration of the eclipse.Thismethod
assumes that the cloud is gravitationally bound to the central SMBH
in a Keplerian orbit and the eclipse occurs when the cloud moves
across our line of sight to the central engine. In the objects for
which eclipses could be used to measure the size of the corona (e.g.,
Risaliti et al., 2011;Gallo et al., 2021), the results have been consistent
with those obtained using other methods.

2.3 Coronal X-ray variability and flares

AGN coronal X-ray emission is variable at different timescales
and with different amplitudes (see for, e.g., McHardy and Czerny,
1987; Mushotzky et al., 1993; Papadakis, 2004; McHardy et al., 2004;
2006; Serafinelli et al., 2024, and references therein). Here we briefly
discuss three types of AGN X-ray coronal variability commonly
observed: (a) Stochastic variability, (b) quasi-periodic variability and
(c) Flares, and we note that a detailed discussion of timing and
spectral-timing studies of AGN corona is beyond the scope of this
short review.

2.3.1 Stochastic variability
One of the most common coronal variability pattern is the

chaotic total intensity variation, or stochastic variation. Early studies
using observations from Ariel-V and EXOSAT show that 40% of
AGN exhibit stochastic variability on a timescale less than 1 day,
and 97% of them showed variability on longer timescales (e.g.,
Grandi et al., 1992; McHardy and Czerny, 1987). More recently,
a linear relationship between the rms amplitude of short-term
variability and flux variations on longer timescales has been found
in AGN X-ray light curves (Gaskell, 2004; Uttley et al., 2005a;
Vaughan et al., 2011). This has been dubbed the “rms-flux” relation
(Uttley et al., 2005b). This is an important feature of the aperiodic
variability of accreting compact objects, including black hole X-ray
binaries (Gleissner et al., 2004; Heil et al., 2012).

It is still unclear how the X-ray coronal variability at different-
timescales is produced. Popular models predict that inward
propagation of random accretion rate fluctuations in the accretion
flow could create such stochastic variations in the coronal X-ray
emission (Lyubarskii, 1997; Kotov et al., 2001; King et al., 2004;
Kelly et al., 2011; Ingram and van der Klis, 2013; Cowperthwaite
and Reynolds, 2014). The longer term variability may be produced
by accretion rate changes (Mushotzky et al., 1993), but the origin
of the short timescale variations (a few ks or less) are still debated.
The magnetic field reconnection in accretion disk threading the
coronal plasma likely play a role (Di Matteo, 1998) as they do in the
solar corona.

An important measurement of the variability is the power
density spectrum (van der Klis, 1989; Vaughan et al., 2003a; b),
which describes the amount of power (the amplitude squared, i.e.,
the power of the signal) as a function of temporal frequency. When
the X-ray light curve can be described as random displacements
around a mean value, then the power density spectrum (PSD)
shows a constant value, that is, all frequencies have equal power.
This is known as a white noise spectrum. On the other hand, a red
noise spectrum is created when the points in the light curve have
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FIGURE 4
The short and long term X-ray flares in AGN corona. Left: The short term (≲ 100ks) X-ray flare in the type-1 AGN Mrk 335 captured by XMM-Newton
during the rise (Gallo et al., 2019). The flux increased by a factor of ∼5 in 20ks. The 2− 10 keV coronal spectral slope Γ show gradual softening during
the flare-rise (soft-when-bright behavior), estimated for the time bins A, B, C and D (Gallo et al., 2019). The black curve is the source + background
light curve, while the cyan curve is the background light curve. Right: The long term X-ray, UV and radio light curve of the changing-look AGN 1ES 1927
+ 654 spanning 4 years (2018–2022). From top to bottom are: (1) X-ray 2− 10 keV flux, (2) X-ray 0.3−2 keV flux, (3) The UVW2 flux, (4) The core radio
( < 1pc) flux at 5GHz. The top three panels are from Swift observatory, while the radio data are from VLBA. While both the soft and the hard X-rays first
vanished and then flared by a factor of ∼10 in 1 year, the UV showed a constant decline with a power law fall (∝ t−0.91) indicating no correlation
between the X-rays and the UV. The core radio flux was at its lowest when the X-rays were at its lowest state indicating a close connection between
these two bands (Laha et al., 2022; Ghosh et al., 2023). The vertical dotted line denotes the time when the X-rays revived. The horizontal lines in every
panel refer to the pre-changing-look values obtained in May 2011. Left panel reproduced by permission of Oxford University Press on behalf of the
Royal Astronomical Society.

a random displacement from its adjacent point rather than from
the mean. In such a case the variations at lower frequencies have
more power. Red noise is the characteristic of several astrophysical
systems including the Sun (Lu and Hamilton, 1991) and black hole
binaries (Belloni and Hasinger, 1990), and it is closely related to
the stochastic nature of such non-linear systems. In AGNs, over the
frequency range f = 10−3 to 10−5 Hz, the power spectral density of
most Seyfert galaxies has a mean slope of α ∼ 2.0 in the 2− 10 keV
band, exhibiting no characteristic timescales (González-Martín and
Vaughan, 2012), and indicating that red-noise steeply decreases at
higher frequencies (that is shorter time scales). In someAGN there is
a break in the PSD slope at f = 2× 10−4 Hz, from amuch flatter slope
of 2 at lower frequencies to a steeper slope of 3 at higher frequencies,
and the break is connected with the black hole mass. This is similar
to the three slope PSD detected in black hole binaries (BHB): α ∼ 0
for low frequencies ( <0.2 Hz), α ∼ 1 for intermediate frequencies
(∼0.2− 3 Hz) and α ∼ 2 at higher frequencies, above 3 Hz
(Vaughan et al., 2003b).

2.3.2 Quasi-periodic-oscillation (QPO)
The origin of QPOs in AGN are highly debated, they are still

very rare and they have mostly been discovered in the 2− 10 keV
or harder X-ray bands. For example, such QPOs have been found
at 2.6× 10−4 Hz (∼1 hour) in RE J1034 + 396 (Gierliński et al.,
2008; Alston et al., 2014; 2016), at 1.5× 10−4 Hz (∼2 hours) in MS
2254.9–3712 (Alston et al., 2015), at 2.7× 10−4 Hz (∼1 hour) in

1H 0707–495 (Pan et al., 2016). A QPO of a period of ∼3.8 hours
was detected from an ultra-soft AGN candidate 2XMM J123103.2
+ 110648 (Lin et al., 2013). A systematic study of AGN X-ray
variability in a sample of 104 sources in search for QPOs detected
only two sources withQPOs (González-Martín andVaughan, 2012).
Very recently a recurrent QPO has been discovered in the post-
changing-look AGN 1ES 1927 + 654, where the QPO frequency
increased from ∼0.9 mHz to ∼2.3 mHz over a period of 2 years2

(Nature, in press).

2.3.3 X-ray flares
X-ray flares with different amplitude at different timescales are

common in AGN. Typically, flares can exhibit flux increases of ∼5−
10 times over time spans ranging from hours to days (Gallo et al.,
2019; Lawther et al., 2023; Wilkins et al., 2022; Reeves et al.,
2021; Ding et al., 2022). During X-ray flares, a spectral softening
(softer-when-brighter) and a decreasing reflection fraction have
been observed in some AGNs (e.g., Mrk 335 Gallo et al., 2019, 1H
0707–495Wilkins et al., 2014). InMrk 335, the decade-long low flux
state has been marked by occasional X-ray “flares,” (see Figure 4 left
panel) which have sometimes brightened by a factor of 50 within a
single day (Grupe et al., 2012; Wilkins and Gallo, 2015a; Gallo et al.,
2019). In some highly accreting, low SMBH mass AGN, X-ray flares

2 https://arxiv.org/abs/2501.01581
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FIGURE 5
Relationship between AGN corona and its surroundings Left: The αOX vs. Lm2500Å correlation, a relation connecting the accretion disk emission (UV) and
coronal emission (Lusso et al., 2010). S06 and J07 refers to Steffen et al. (2006) and Just et al. (2007) respectively. Right: The tight correlation between
the spatially resolved nuclear IR emission L12μ with the coronal X-ray emission (Asmus et al., 2015), indicating a close relationship between the corona
and the torus. Right panel reproduced by permission of Oxford University Press on behalf of the Royal Astronomical Society. Left panel reproduced
with permission © ESO.

have been linked to the radial expansion of the corona over the
accretion disk: the corona appears brighter when it is more extended
outward, while it dims when it is compact and located closer to the
SMBH (e.g., Wilkins et al., 2014). Extreme variability and flares in
AGN corona suggest that the compact corona must be a dynamic
structure since the time scales for heating and cooling processes for
the hot electrons are less than the light crossing time of the corona
(Fabian et al., 2015), which prevents the system to settle down to an
equilibrium. In addition, the plasma properties also change during a
flare. For example, Wilkins et al. (2022) found that during a flare,
the cutoff energy EC of the primary energy continuum dropped
from 140+100−20  keV to 45+40−9  keV. Another example is the Seyfert 1
galaxy I Zwicky 1 that also showed such dramatic changes in the
plasma properties, when the corona rapidly cooled from EC ∼200 to
∼15 keV within 5 days in January 2020, as caught by XMM-Newton
and NuSTAR, (Ding et al., 2022).

X-ray flaring events in many astrophysical objects are generally
associated with magnetic reconnection (e.g., Petropoulou et al.,
2016; Mehlhaff et al., 2020), a fundamental plasma process where
magnetic energy is converted into thermal and nonthermal particle
energy (e.g., Lyubarsky, 2005; Takahashi et al., 2011). Magnetic
reconnection has a short dissipation time, and short flares with
durations that generally do not exceed a few times t ∼ RG/c
should be preferentially associated with magnetic reconnection
(e.g., Petropoulou et al., 2016; Christie et al., 2018). Longer flaring
episodes could be associated with magnetic flux accumulation in
the corona because of accretion, changing the properties of particle
acceleration and thus that of the emitted photons (e.g., Liska et al.,
2020; Scepi et al., 2021; Ripperda et al., 2022).

2.4 The accretion disk - corona relation

The accretion disk and the corona are energetically and
geometrically related (Haardt andMaraschi, 1993; Lusso et al., 2010;
Lusso and Risaliti, 2016). A direct piece of evidence of the energy-
coupling between the accretion disk and corona is the significant
correlation between the quantity αOX and the mono-chromatic UV
flux at 2500Å (See Figure 5 left panel) (Lusso and Risaliti, 2017).
The parameter αOX = − 0.385 log (F2 keV/F2500Å) is the ratio between
the flux densities at 2 keV (F2 keV) and 2500Å (F2500Å). Together, the
accretion disk and corona form a tightly coupled system.

There is also a significant correlation between αOX and λEdd
(Lusso et al., 2010), in which the ratio between X-ray and optical
flux decreases with increasing Eddington ratio λEdd, implying
increased accretion leads to weaker coronal emission. It has also
been noted that at sub- and super-Eddington accretion levels, the
disc-corona relations are different (Huang et al., 2020). For example,
the hard X-ray slope Γ and the Eddington ratio λEdd show an anti-
correlation for sources with lower accretion rate λEdd < 10

−3. See
Figure 6 left panel (Connolly et al., 2016). On the other-hand a
positive correlation is detected for higher Eddington ratio sources,
which indicates a softer-when-brighter behavior common in higher
accretion rate AGN (McHardy et al., 1999; Shemmer et al., 2006;
Sobolewska and Papadakis, 2009). Perhaps for weakly accreting
AGN (λEdd < 10−3), the disc-corona system transits to an advection-
dominated accretion flow (ADAF), and theX-ray emissionmay arise
from Comptonization process in ADAF (Cao, 2009).

The reverberation mapping time lags between the optical/UV
and the X-rays are an important indication of disk-corona coupling
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FIGURE 6
The relation between the coronal emission and AGN accretion: Left: The relation between the photon-indices Γ and L2−10 keV/LEdd (Connolly et al.,
2016). At lower Eddington ratios ( <10−3) the quantities show an anti-correlation, while for higher accretion rates the correlation is positive indicating a
softer-when-brighter behavior of the corona (Cao, 2009). Right: The X-ray-optical-UV reverberation time lags measured for the
source NGC 5548 (Fausnaugh et al., 2016). The trend of lag with wavelength is broadly consistent with the prediction for continuum reprocessing by a
thin accretion disk with τ∝ λ4/3. Here ṁE = Lbol/LEdd. Left panel reproduced by permission of Oxford University Press on behalf of the Royal
Astronomical Society. Right panel reproduced with permission from © AAS.

TABLE 1 The empirical relations involving AGN coronal emission.

Relationship between Equation

(1a)X-ray and UV αOX = (0.154±−0.010) logL2500Å − (3.176± 0.223)

(1b) X-ray and UV LX ∝ L0.7–0.8
UV

(2a) Γ vs. λEdd (for λEdd > 0.01) Γ = (0.41± 0.09) logλEdd + (2.17± 0.07)

(2b) Γ vs. λEdd (for λEdd < 0.01) Γ = (−0.09± 0.03) logλEdd + (1.55± 0.07)

(3) 2− 10 keV and Infrared log Lint
2−10 keV

1043ergs−1
= (−0.32± 0.03) + (0.95± 0.03) log

Lnuc
12μ

1043 ergs−1

(4) L2−10 keV vs. OIII logL2−10 keV = 0.95 logLOIII + 3.89

(5) Fundamental plane of black hole logLR = (0.60± 0.11) logLX + (0.78± 0.11) log M+ (7.33± 4.05)

(6a) Gudel Benz relation LR, 5GHz ∼ 10
−5.5L2−10 keV

(6b) 100 GHz vs. 2–10  keV logL100GHz = (−13.9± 0.8) + (1.22± 0.02) logL2−10 keV

(7) Iwasawa-Taniguchi effect log (EWFeKα) ∝ (−0.17± 0.03) log (L2−10 keV)

References: (1a): Lusso et al. (2010); Lusso and Risaliti (2016), (1b): (Just et al., 2007; Strateva et al., 2005), (2a): Risaliti et al. (2009); Kelly et al. (2008); Shemmer et al. (2008), (2b): Gu and Cao
(2009), (3): (Gandhi et al., 2009; Asmus et al., 2015) (4): Saade et al. (2022); Malkan et al. (2017) (5): Merloni et al. (2003) (6a): Laor and Behar (2008) (6b): Ricci et al. (2023) (7): Iwasawa and
Taniguchi (1993).
(2a) This positive correlation exists for accretion rates λEdd > 0.01 (2b) For low-luminosity AGN, hence low accretion states, there exists an anti-correlation.
Note that here X-ray, LX−ray and L2−10 keV has been interchangeably used and can be interpreted as similar quantity.

and serves as an important tool to understand the disk-corona
geometry (see for, e.g., Peterson, 1993; Edelson et al., 2015; 2019;
Cackett et al., 2021; 2023; Kara et al., 2023, and references therein).
The corona is compact ≲10RG and centrally located relative to the
accretion disk, and the UV and optical emission is expected to
respond to the incident (and varying) X-ray flux, “echoing” the X-
ray light curve variations after a time delay corresponding to the
light-travel time across the disk (Krolik et al., 1991). For example,

for the well studied case of AGN NGC 5548 (Fausnaugh et al.,
2016) significant time delays between the X-rays and the optical-
UV band (1158Å− 9160Å) have been detected. The trend of lag
(τ) with wavelength (λ) is broadly consistent with the prediction
for continuum reprocessing by a thin accretion disk with τ∝
λ4/3 (See Figure 6 right panel).

Although the correlation between the UV and X-rays are pretty
well constrained in most cases, there are AGN types which show
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additional complexities. The most interesting among them are
changing look AGNs (CL-AGNs), which are sources that undergo
a rapid change in flux and spectral state (in optical/X-rays) in
a matter of months-years (see Ricci and Trakhtenbrot, 2023, for
a review). Mrk 590 is a long term CL-AGN where the UV and
X-rays are well correlated, but UV response to X-ray changes is
lagged by ∼3 days indicating a complex reprocessing geometry (a
lamp-post geometry would predict a zero time lag, see for, e.g.,
Lawther et al., 2023). In the most enigmatic rapid CL-AGN 1ES
1927 + 654, the situation is more extreme, with no correlation
between the UV and X-ray emission during the violent event
(Trakhtenbrot et al., 2019; Laha et al., 2022; Ricci et al., 2021). The
right panel of Figure 4 shows the absolutely uncorrelated behavior
of the X-rays and UV for this source. The X-ray coronal emission
of 1ES 1927 + 654 completely vanished a few months after the
violent optical outburst, while the UV was still bright and dropping
at a rate ∝ t−0.91±0.04. The corona reappeared after ∼4 months
at 10 times the previous luminosity (Trakhtenbrot et al., 2019;
Ricci et al., 2020; 2021; Laha et al., 2022; Masterson et al., 2022),
finally reaching its normal state in about ∼4 years. In these extreme
situations of AGN accretion, the standard disk-corona relations
may not hold.

2.5 Coronae and high-energy neutrinos

Systematic searches for neutrino excess above atmospheric and
cosmic backgrounds with the IceCube detector have detected 79+22−20
neutrinos at TeV energies from the nearby AGN NGC 1068 with a
significance of ∼4.2σ (IceCube Collaboration et al., 2022). Notably,
the isotropic neutrino luminosity (Lν = 2.9

+1.1
−1.1 × 10

42ergs−1) in
the 1.5–15 TeV range exceeds both the gamma-ray luminosity
(L = 1.6× 1041ergs−1) in the 100 MeV–100 GeV range and the upper
limits on gamma-ray luminosity above 200 GeV (Aartsen et al.,
2020; IceCube Collaboration et al., 2022). This suggests the
AGN’s central engine (the X-ray corona), which is opaque to
gamma-rays, significantly contributes to neutrino production (e.g.,
Fang et al., 2023; Murase et al., 2020; Inoue et al., 2020;
Eichmann et al., 2022; Mbarek et al., 2024; Fiorillo et al.,
2024; Padovani et al., 2024). Other AGNs also show hints of
neutrino emission, with future deeper follow-ups expected to
enhance detection significance (Neronov et al., 2023; Murase et al.,
2024). Beyond AGNs, X-ray binary coronae have been proposed
as potential sources of Galactic neutrinos detected by IceCube
(Fang et al., 2024).

The highly magnetized black hole coronae (e.g., Beloborodov,
2017; Hooper and Plant, 2023; Grošelj et al., 2024; Nättilä,
2024; Mbarek et al., 2024) support two primary mechanisms for
accelerating protons responsible for coronal neutrino production.
First, magnetic reconnection in large current sheets near the
black hole, with strong guide fields, can accelerate particles
to extreme energies (Fiorillo et al., 2024). Second, magnetized
turbulence allows particles to be initially energized by reconnection
and subsequently re-accelerated within the turbulent corona
(Mbarek et al., 2024). These high-energy protons interact
with the corona’s dense photon fields, producing the observed
neutrino signal. While purely leptonic models have also been
suggested (Hooper and Plant, 2023), it remains unclear how

electrons could achieve the TeV-scale energies required for
such scenarios.

2.6 The empirical relations involving
corona

Here we list the most important empirical relations involving
emission from the X-ray corona and that produced by other AGN
components (see Table 1 for a list).

(1) X-ray and UV: As noted earlier, the disk and the corona
emission are very tightly related, showing a strong correlation
between αOX vs. L2500Å (Lusso et al., 2010; Bisogni et al., 2021).

(2) Γ− λEdd: A correlation exists between Γ and λEdd
(Γ ∼ 0.3× logλEdd + 2) such that sources with λEdd > 0.3 have
a very steep slope of Γ > 2 (Shemmer et al., 2008; Risaliti et al.,
2009; Brightman et al., 2013). The correlation can be explained
as increased UV emission from the accretion disk due to high
accretion rate can lead to radiative cooling of the X-ray corona
and hence lowering of the electron temperature (that is a
steeper X-ray spectrum). The left panel of Figure 6 shows this
behavior between Γ vs. L2−10 keV/LEdd, where we find that the
higher accreting sources show a positive correlation between
the two quantities, while for very low accreting sources,
there is an anti-correlation (Fausnaugh et al., 2016; Gu and
Cao, 2009). By simulating AGN populations with an X-ray
spectral Comptonizationmodel, Ricci et al. (2018) showed that
Comptonizing plasma with temperatures and compactness
lying along the pair line can straightforwardly explain the
positive correlation between Γ and the Eddington ratio.

A few studies involving high λEdd sources (with Lbol =
1046ergs−1) did not detect any correlation between Γ and λEdd
(Laurenti et al., 2022; Liu et al., 2021). We note here that
these highly accreting sources have higher radiation pressure
from the accretion disk which could affect the structure and
efficiency of the accretion disc-corona system, and hence one
would expect different behavior between UV and X-rays.
Similar lack of Γ− λEdd has been found in a hard X-ray study of
a sample of nearby AGN (Kamraj et al., 2022).

(3) L12μ vs. L2−10 keV: The spatially resolved core IR luminosity at
12μ is correlated very strongly with the 2− 10 keV X-ray
emission (Gandhi et al., 2009; Asmus et al., 2015). See Figure 5
right panel.

(4) L2−10 keV vs. OIII: The hard X-rays are correlated with
the optical emission line intensity (Bassani et al., 1999;
Malkan et al., 2017; Saade et al., 2022).

(5) Fundamental plane of BH: The X-ray luminosity (L2−10 keV),
the radio luminosity (L5GHz), and central black hole mass
(MBH) in accreting systems have long been suggested to be
interrelated (Tananbaum et al., 1983), and this connection
has since been further established (Worrall et al., 1987;
Merloni et al., 2003; Miller et al., 2011; Zhu et al., 2020). The
relation between these three quantities potentially serves as
an indicator of similar physics in action across different mass
scales of accreting systems. However, recent studies with very
high spatial resolution in radio band found that the core radio
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luminosity (L5GHz) is consistently lower than that predicted by
the fundamental plane relation, and the relation only holds
true if we consider the extended radio emission from the
host galaxy (Fischer et al., 2021).

(6) The mm and X-ray relation: As mentioned earlier, AGN
show a strong correlation between their X-ray and radio
luminosity at 5–200 GHz with LR/LX−ray ∼ 10−5.5 (Ricci et al.,
2023; Behar et al., 2015; 2018; Kawamuro et al., 2022). As
noted in the introduction, at lower radio frequencies ( < 45
GHz) synchrotron self absorption prevents a direct view of the
coronal radio emission.

(7) L2−10 keV vs. Hβ-FWHM and Hα luminosity: It has
been observed that the X-ray luminosity correlates
well with the broad Hβ full-width-at-half-maximum
(FWHM) and the Hα luminosity. (Laor et al., 1997;
Brandt et al., 1997; Shemmer et al., 2006).

(8) The Iwasawa-Taniguchi effect: Also known as the X-ray
Baldwin effect, is the anti-correlation between the equivalent
width of the FeKα emission and the 2− 10 keVflux (Iwasawa
and Taniguchi, 1993; Page et al., 2004).

3 List of open questions

Although we have discussed numerous observational
discoveries regarding AGN coronal emission, several fundamental
questions continue to elude us. We list some of the outstanding
questions below, that, if answered, will improve our understanding
of, not only the corona, but also how AGN operate.

• Since corona is found ubiquitously in AGN, is there something
fundamental about the accretion process that produces it? The
corona is a unique physical entity found in most accreting
systems including black hole binaries (BHBs) andAGN. Studies
have found similarities in coronal behavior of AGN and BHBs,
lying at the two ends of black hole mass scales, suggesting
that the AGN accretion-disk and corona are just a scaled-up
version of those found in BHBs (McHardy et al., 2006), with the
underlying physics being the same. Possibly the magnetic fields
that thread the accretion disk creates and sustains the corona in
these accreting systems, whose physics remains similar across a
large range of black hole masses (∼10− 109M⊙).

• What is the geometry of the corona? The recent X-ray
polarimetric results with IXPE point towards a more extended
geometry of the corona, situated along the accretion disk plane.
However, deeper polarimetric studies of larger samples of AGN
in different flux states are required to understand how the
geometry varies depending on accretion and X-ray luminosity
states. This can only be done with the next-generation of X-
ray polarimeters, as IXPE is sensitivity-limited. A systematic
spectral and timing studies of the AGNs in rapidly changing
X-ray flux states can also reveal the geometry.

• What are the main energy pumping and dissipation
mechanisms in the corona? Is the corona in thermal
and radiative equilibrium? Although random magnetic
reconnection events can play an important role in
pumping energy into the corona (Galeev et al., 1979;
Di Matteo, 1998; Merloni and Fabian, 2001; Sironi and

Beloborodov, 2020; Sridhar et al., 2021), we need a deeper
understanding about heating and cooling processes in such a
compact region, which shows constant stochastic fluctuations,
and sometimes flares. Simulations coupled with observational
inputs on simultaneous radiative and thermal equilibrium can
shed light on this topic in the future.

• What determines the fraction of non-thermal electrons in the
X-ray emitting plasma? As mentioned in the introduction, the
existence of non-thermal particles in the corona would result
in a distribution of photons that extends into the MeV band.
This small number of high energy particles could be highly
effective in seeding pair production and can share the total
available energy, thus reducing themean energy per particle and
therefore decreasing the temperature of the thermal population.
Thus the non-thermal fraction of particles in the corona plays
an important role in balancing the temperature of the plasma.
We do not understand the origin and the exact fraction of the
non-thermal electrons in coronal plasma. Future simulations on
magnetic reconnection events could help us understand this.

• What are coronal flares? It is not clear to us if there are particular
flux/spectral states that favor the occurrence of coronal flares
(rise in flux by a factor of ≳ 5 times in a few days/months).
It is also still unclear if the X-ray flares are the main energy
dissipation mechanisms in the corona?

4 Future perspectives

4.1 Need for future missions

Future X-ray studies on AGN corona depends on how well
we can extend our spectroscopic capabilities in the hard X-rays,
preferably up to ∼500 keV. Currently NuSTAR has a bandpass
up to 79 keV and constraining cut-off energy >100 keV becomes
highly uncertain and model dependent. For example, the EC
estimated forNGC5506 using the sameNuSTAR observation by two
different models found EC = 720 ± 130 keV (Matt et al., 2015) and
110 ± 10 keV Baloković et al. (2020).

To estimate the differences in the emissivity profiles (the
illumination pattern of the accretion disk due to the reflection
of X-rays from the corona, convolved with general relativistic
effects), and hence the coronal shape and size, we need high
quality X-ray observations, both in terms of collecting area and
spectral resolution. For example, missions like Athena with its large
collecting area (Nandra et al., 2013) and the recently launched
XRISM with its high spectral resolution (Tashiro et al., 2020) will
provide the ability to distinguish between the different coronal
geometries.

The exciting field of X-ray polarimetry has just taken
off with the launch of IXPE. However, a small effective-area
mission such as this one needs much longer integration time to
constrain the polarisation degree for even a very bright AGN
(∼500ks needed for MCG-5-23–16 to obtain an upper limit
on polarization degree Marinucci et al. (2022b)). Future X-ray
polarimeters should have very large effective area not only to
constrain polarization parameters at a fraction of the exposure
required by IXPE, but also carry out time dependent polarimetric
analysis of AGN.
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High-energy neutrinos are also expected fromAGN corona, and
is currently opening up a huge multi-messenger avenue for AGN-
coronal studies (Kheirandish et al., 2021). In the future, deeper and
more sensitive studies by IceCube and other detectors will help us
in understanding the relation between neutrino emission and the
physical processes in an AGN corona.

4.2 Need for simulations

Coronal heating and cooling problems are among the most
significant unresolved issues in astrophysics. ‘Fluid’ (MHD) models,
by their very nature, are unable to explore the physics of non-thermal
particle accelerationwithin the dissipation regions, where the energy
from the magnetic field is transferred to particles. The corona is
expected to have a good fraction (up to 30%) of non-thermal
particles (Fabian et al., 2017). InMHD simulations, the energy either
stays in the system as thermal energy in the particles or is removed
according to some ad hoc prescription. This is because, most of
the non-thermal acceleration occurs in ‘collisionless’ plasmas, where
Coulomb collisions, typically an efficient means of thermalization,
are explicitly neglected. Therefore, the properties of the population
of non-thermal particles responsible for the emission cannot be
properly captured in fluid models.

On the other hand, particle-in-cell (PIC) simulations capture the
microscopic dynamics of individual particles, rather than assuming
a smooth distribution of particle energies, and thus capture
accurately the non-thermal processes in dissipation regions, and the
nonlinear interplay between charged particles and electromagnetic
fields (e.g., Chernoglazov et al., 2023; Grošelj et al., 2024;
Mbarek et al., 2024; Nättilä, 2024). Moreover, PIC simulations
may include consistently evolving particles and their radiative
cooling effects, in the presence of photons, pair creation and
annihilation processes (Grošelj et al., 2024).These featuresmake PIC
an ideal tool to study the coronal heating problem. However, PIC
simulations are usually employed to study local dissipation processes
on microscopic scales—scaled down from actual astrophysical
scales. Therefore, simulation setups might seem ideal and somewhat
disconnected from the “global properties” of the corona. More
work is still required to more robustly extrapolate the results of
PIC simulations to large scales (underway efforts include, e.g.,
Zou et al., 2024; Sridhar et al., 2024).
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