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Particle acceleration is a commonly observed phenomenon at dipolarization
fronts. Many studies have attempted to determine the acceleration mechanism,
with betatron acceleration being a major candidate. In previous work, we
attempted to match the observed change in electron energy to the change
predicted by betatron acceleration, but found that although this worked in
some cases, overall betatron acceleration alone could not describe the observed
energy spectrum changes. In this work, we attempted to study whether ion
acceleration showed similar behavior and whether a quasi-adiabatic correction
would be more accurate. On average the betatron acceleration equation
overestimated the observed acceleration and the quasi-adiabatic correction did
not account for the difference, although there are limitations to this study due
to data fidelity. We then turned to study whether our assumptions about the
source population having the same phase space density as the cold pre-existing
background population in the plasma sheet are valid. We indirectly studied this
by comparing the relative abundances of O+ and He++ as proxies for ionospheric
and solar wind populations respectively. We found the betatron acceleration
equation method performs slightly better when there is a stronger ionospheric
component. This suggests that when more plasma containing O+ is present in
the dipolarization front, it indicates that the source population is more local and
therefore this method of using betatron acceleration is more valid.

KEYWORDS

energetic particles, dipolarization fronts, adiabatic acceleration, betatron acceleration,
MMS, magnetotail, ions

1 Introduction

Dipolarization fronts (DFs) are a commonly observed phenomenon in the tail of
Earth’s magnetosphere. They are observed as a sudden increase in the z-component
of the magnetic field (e.g., Russell and McPherron, 1973; Angelopoulos et al., 1992;
Nakamura et al., 2002). This increased z-component is a result of the fact that DFs
carry a more dipolar field than the stretched tail field around it. Accompanying
reconnection in the tail, there is often a high-speed earthward flow such as
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FIGURE 1
MMS data from an example DF with energetic ion acceleration. (A) Magnetic field vector in GSM coordinates, (B) Magnetic elevation angle, (C) EIS
energetic proton flux, (D) Spin-averaged EIS energetic proton flux, (E) FPI thermal ion flux. The vertical lines show the minimum Bz value before the DF
and the peak Bz and the arrows point to the approximate peaks of some of the periodic data artifacts.

a bursty bulk flow (BBF) (e.g., Angelopoulos et al., 1992).
Dipolarizing flux bundles (DFBs) are smaller flux tubes embedded
in BBFs that carry a more dipolar field than the surrounding plasma
(e.g., Liu et al., 2014). DFs are the kinetic-scale boundaries between
DFBs and are often considered a tangential discontinuity between
the dipolar field and the stretched tail field (e.g., Sergeev et al., 2009;
Fu et al., 2012), although not always (Balikhin et al., 2014). This
process is associated with substorms (e.g., Baumjohann et al., 1999;
Fu et al., 2020, and references therein) with evidence that they are
more common with higher geomagnetic activity (e.g., Liu et al.,
2014), a link furthered by the occurrence rate of DFs being about
five events per day (Liu et al., 2013; Xiao et al., 2017), which is
comparable to substorms.

An increase in the flux of energetic (a few 10 s of keV) ions has
been found in many cases at DFs (e.g., Runov et al., 2011; Pan et al.,

2014; Birn et al., 2015; Malykhin et al., 2018), most prominently at
DFs with the strongest increase in Bz (Malykhin et al., 2018). At
lower energies, below around 20 keV, the proton flux can decrease
due to those ions coming from less dense sources (Birn et al.,
2015). The energetic ions at ∼20 keV-∼80 keV are found earthward
of the DF, while they are found closer to the DF above that energy
(Birn et al., 2015).This is because the ions are often accelerated when
reflected by the DF, so they end up in front of it (Zhou et al., 2010;
Zhou et al., 2019). These ions are typically anisotropic, sometimes
with pancake-like (i.e., trapped) pitch-angle distributions, likely as
a result of betatron-type acceleration (Birn et al., 2017; Zhou et al.,
2018). Zhou et al. (2018) tested the anisotropy against an adiabaticity
parameter and found that the anisotropy was stronger when the
plasma was more adiabatic. Although these energetic ions are
primarilyH+, O+ can be efficiently accelerated at DFs as well, and are
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FIGURE 2
Energy spectrum of observed ions before the dipolarization (green
squares), observed ions at peak of dipolarization (black circles), and
betatron model with quasi-adiabatic correction of ions at peak (purple
diamonds).

accelerated even further when the DFs are followed by turbulence
(Panasyuk et al., 2021).

The acceleration of ions at DFs is much more complicated than
electrons at the same location because in general the thickness
of the front is smaller than the ion gyroradius, so fully adiabatic
acceleration is not possible (e.g., Malykhin et al., 2018), producing
orbits that are “partially adiabatic and weakly chaotic” (Büchner and
Zelenyi, 1989). For example, a typical DF thickness is ∼1,000 km
(e.g., Runov et al., 2011) while the gyroradius of a 50 keV proton
in a 10 nT field can be up to >3,000 km but a 50 keV electron
in the same field has a gyroradius of <75 km, so nonadiabatic
effects that are not relevant for electrons are for protons and heavier
ions. An example of the type of particle motion occurring in this
situation is a Speiser orbit (Speiser, 1965) with half orbits around
Bz in the equatorial plane followed by quasi-adiabatic motion out
of the plane (Birn et al., 2015). Ions can also be reflected at DFs
multiple times (e.g., Zhou et al., 2010; Zhou et al., 2012; Birn et al.,
2015; Lu et al., 2016; Zhou et al., 2018). Another way in which
the ions can be not fully adiabatic is when they originate near
the reconnection site and initially gain energy nonadiabatically
before adiabatic or quasi-adiabatic acceleration once they reach the
DFs (Pan et al., 2014). There are other fully non-adiabatic ways
in which ions can be accelerated as well however. They can be
trapped if the DF has a negative Bz dip or quasi-trapped if Bz
never drops below 0. Quasi-trapping can accelerate particle over
40 keV depending on the number of encounters with the front
before getting magnetized and trapping can accelerate particles up
to 100 keV depending on how much time the particle is in phase
with the front. Additionally wave-particle interactions can accelerate
ions. Some of these include waves in turbulent magnetic structures
(Grigorenko et al., 2015) and lower hybrid drift (LHD) waves,
especially in slower DFs (Greco et al., 2017).

These ions present in the plasma sheet are a mix of ions from
the ionosphere like H+, O+, He+, and N+ and ions from the solar

wind like H+ and He++ (e.g., Young et al., 1982; Daglis, 2006;
Kistler, 2020). H+ is present at both sources, so it is not useful for
distinguishing between the two populations.The solar wind is highly
ionized, with the most common species after H+ being He++ at
∼1%–4% of the plasma depending on the solar cycle and whether
it is in the fast or slow solar wind. Meanwhile, the ionosphere is
mostly singly ionized, with O+ as the most common species after
H+, followed by He+, and N+ (e.g., Kistler, 2020). O+ can enter the
plasma sheet from either the nightside auroral region or dayside
cusp, especially during storms (e.g., Kistler et al., 2010; Kistler et al.,
2016; Kistler et al., 2019). During storms, O+ in the plasma sheet
is enhanced (Kistler et al., 2005) and the source evolves from being
primarily solar wind dominated to primarily ionosphere dominated
(Kistler et al., 2023). O+ is also enhanced in the plasma sheet during
substorms (Pandya et al., 2018) and more specifically the levels of
O+ increase with higher Kp index (Young et al., 1982; Mouikis et al.,
2010; Pandya et al., 2018).These cold ionospheric ions can be found
behind a DF (Wang et al., 2017; Xu et al., 2019) and can even affect
the DF itself, such as by making the DF slower (Liang et al., 2016).
O+ density is enhanced at DFs like H+ density is, but it occurs more
gradually (Zhao et al., 2018).

O+ can reach the plasma sheet from two origins: either the cusp
on the dayside or the auroral region on the nightside (e.g., Yau et al.,
1985). Of these two, both can be relevant but generally the auroral
zone is a larger contributor (e.g., Yau et al., 1985; Winglee, 2003).
The tail is generally more disturbed when more O+ is from the cusp
than the auroral zone (Yu and Ridley, 2013). These ions are most
commonly deposited into the plasma sheet at a distance of ∼ 20–40
RE downtail (Li et al., 2013; Artemyev et al., 2020), which is often
tailward of a DF (Liang et al., 2017). In fact, increased levels of
O+ can cause the nightside reconnection site to move earthward,
so O+ is often deposited near the reconnection site or sometimes
even downtail of it (Wiltberger et al., 2010). Polar wind plasma,
which is primarily H+, reaches the plasma sheet first, followed
by the hot cusp plasma and auroral outflow that have more O+

(Kistler et al., 2023). The distance downtail ions are transported
into the plasma sheet depends on the particle velocity, not energy,
so for the same energy O+ will enter closer to Earth than H+ will
(Kistler, 2020). There is also a dawn-dusk asymmetry in where ions
are transported, with more on the dusk side despite there not being
a corresponding asymmetry in the source region (Li et al., 2013),
with this asymmetry also present for energetic O+ in addition to
cold ions (Kronberg et al., 2015). Once the ions are in the plasma
sheet, their flow is primarily earthward, but there is a very small
dawnward component on the dawnside and a more significant
duskward component on the duskside (Hori et al., 2000).

This work builds off of the study we previously
undertook in Chepuri et al. (2023). In that study we studied
how well adiabatic acceleration equations explained energetic
electron observations at DFs. We found that betatron acceleration
overestimated the observed electron acceleration while a combined
betatron and Fermi acceleration equation underestimated it while
having a high error. Two potential explanations are that there are
non-adiabatic processes occurring or that the implicit assumption
in this method that the quiet plasma sheet before the DF is similar
to the source population is not generally valid. In this work, first
we attempt to study ion acceleration to see if they exhibit similar
behavior to electrons.Then, we study the composition of the plasma
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FIGURE 3
MMS data including plasma composition from an example DF with energetic electron acceleration. (A–I) Magnetic field vector in GSM coordinates,
(A–II) Magnetic elevation angle, (A–III) FEEPS energetic electron flux, (A–IV) FPI thermal electron flux, (B–I) H+ density, (B–II) He+ density (B–III) He++

density, (B–IV) O+ density, (B–V) Ratio of O+ and He++ density, (C) Energy spectrum of observed electrons before the dipolarization (green squares),
observed electrons at peak of dipolarization (black circles), and betatron model of electrons at peak (purple diamonds).

as a proxy for what the source population is to try to answer the
open questions from the previous study.

2 Instruments

The Magnetospheric Multiscale (MMS) mission consists of
four spacecraft in tight formation launched in 2015 (Burch et al.,
2016). Starting in 2017, the orbit had an apogee of ∼25 RE
to spend the most amount of time possible in the nightside
reconnection region (Fuselier et al., 2016). The orbit is such that
MMS has a tail season when apogee is on the nightside in the
Northern hemisphere summer, meaning we can focus our search for
events in that time range.

The primary instruments used to measure energetic particles
for this study came from the Energetic Particle Detector (EPD)
investigation (Mauk et al., 2016). These were the Fly’s Eye Energetic
Particle Spectrometer (FEEPS) for electrons (Blake et al., 2016)

and the Energetic Ion Spectrometer (EIS) for ions (Mauk et al.,
2016). FEEPSmeasures electrons in the energy range of 25–650 keV
while EIS can measure H+ in an energy range of 20–500 keV and
O+ above ∼130 keV. FEEPS has 16 energy channels and observes
nearly a full sky with 2.5 s time resolution in survey mode. EIS uses
time-of-flight measurements to determine energies as well as basic
differentiation betweenHydrogen, Helium, andOxygen. In addition
to EPD data, we also used the Fast Plasma Investigation (FPI) to
measure lower energies up to 30 keV (Pollock et al., 2016). Each
spacecraft has four dual 180-degree that spectrometers for electrons,
which allow for a 4π-sr field of view. To study the composition
of the thermal plasma, we used the Hot Plasma Composition
Analyzer (HPCA) (Young et al., 2016). It measures ions from 1 eV
to 40 keV and can differentiate between H+, He+, He++, and O+. It
does this all with a time resolution of around 10 s.

Data from the FIELDS instrument suite (Torbert et al., 2016),
especially the fluxgate magnetometer (FGM) (Russell et al., 2016)
was also necessary to measure magnetic fields and provide other
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FIGURE 4
The normalized root mean square error of the betatron acceleration model for each energetic electron event with respect to the plasma composition.
(A) O+ density, (B) He++ density, (C) Ratio of O+ and He++ density.

context. Finally, we studiedwaves with the search coilmagnetometer
(Le Contel et al., 2016) and the electric field double probes
(Lindqvist et al., 2016; Ergun et al., 2016).

3 Ion acceleration

3.1 Quasi-adiabatic correction to betatron
acceleration

The first complicating factor in using adiabatic acceleration to
describe ion acceleration at dipolarization fronts is the fact the
ions have larger gyroradii than electrons. Because of this, it is not
always accurate to assume the acceleration is adiabatic, and is often
described as “quasi-adabatic” (e.g., Birn et al., 2015; Runov et al.,
2017), as described in Section 1. One way to account for this
mathematically is with an equation describing the variation in the
magnetic moment as adiabaticity is violated. Delcourt and Moore
(1992) derived Equation 1:

μ f

μ0
= (1±

qCΔA| sin(πχ) |
mv0πχ| (χ

2 − 1) |
)
2

, (1)

where μ f and μ0 are the magnetic moment before and after the
dipolarization and q, m, and v0 are the charge, mass, and initial
velocity of the particle. χ is defined in Equation 2:

χ = τ
τc
, (2)

where τ is the dipolarization time and τc is the cyclotron period.
Finally, CΔA is defined in Equation 3:

CΔA = τEp, (3)

where Ep is half of the peak electric field. Expanding this equation
yields the change in velocity from the change in magnetic field from
B0 to B f in Equation 4:

v2f =
B f

B0
(v0 ±

qCΔA| sin(πχ) |
mπχ| (χ2 − 1) |

)
2

, (4)

(Delcourt and Sauvaud, 1994). When χ is large, the final term goes
as χ−3 and the correction goes to 0, so this is the adiabatic limit.
In this regime, ion behavior resembles previously studied electron
behavior. When χ is small however, the final term goes as sin (πχ)

πχ
and the correction is significant. Turning this change in velocity to
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FIGURE 5
(A) O+ density vs. He++ density, (B) O+ density by distance from Earth, (C) O+ density by GSE x, (D) Ratio of O+ density and He++ density by distance
from Earth.

a change in energy, the quasi-adiabatic betatron acceleration change
in energy is given by Equation 5:

W2 = (
Bz2 −Bz1

|B1|
+ 1)(√W1 ±A)

2
, (5)

where A = qCΔA| sin (πχ)|
√2mπχ|χ2−1|

. For the purposes of this study, change
in flux is more useful than change in energy, so similar to
Chepuri et al. (2023), we assumed a piecewise power law
with a power law index n to give Equation 6 for change in
flux:

j2 = j1[
1
W1
(
Bz2 −Bz1

Bt1
+ 1)(√W1 +A)

2
]
n
. (6)

3.2 Event selection

We used the same sample of DFs as in Chepuri et al. (2023),
based on criteria from Schmid et al. (2011) and Wu et al.
(2013), which were:

- ΔBz > 4 nT
- Maximum elevation angle, θ > 45°, where θ = tan−1( Bz

Bxy
)

- Increase in elevation angle, Δθ > 10°
- Maximum earthward flow vx > 150 km/s
- Maximum plasma β > 0.5 to ensure the spacecraft is in the
plasma sheet

- Maximum Bz occurs after the minimum Bz so the
dipolarization is propagating towards the spacecraft and
located at a distance of beyond 10RE and in an MLT range
between 19–5.

Then, to select for events with ion acceleration, we found events
with at least a 5x increase in proton flux at either the 54 keV or
80 keV channel in EIS, which are the energies in the range where
we expect to see acceleration at DFs. We simply used EIS protons
rather than looking at all ion species because H+ is the dominant
ion species, so using these protons alone can describe the larger
energetic ion population. In addition, to ensure that the observed
acceleration was not a fluke of small number statistics, we imposed
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a limit of 30% error in counts from Poisson statistics. With this
definition, we identified 70 events with ion acceleration to use in
this study.

3.3 Results: ion acceleration

To study how well this equation described ion acceleration,
we used energetic proton data from the EIS instrument on MMS.
However, the survey level EIS data showed a data artifact with a
periodicity similar to the spacecraft spin period. For example, this
could be the instrumentmeasuring an ion beamwhich is only visible
as the spacecraft spins to face it. Looking into the datamore for some
examples provided more evidence that it was in fact a beam. The
periodic signal was visible in both EIS protons and FEEPS ions, but
the flux peak was offset in a way that is consistent with the offset
look direction of the two instruments. Additionally, inspection of
EIS angle-angle plots show evidence of a beam in protons.These type
of artifacts were very common, potentially because they are a result
of gyroradius effects of the approaching DF. As a result, we were
limited to spin-averaged data to avoid misleading measurements
facing different directions. This produces one data point every
∼19.5 s, so it is difficult to match up changes in proton flux at this
low time-resolution with changes in the magnetic field that can
occur within seconds or even less than a second. Figure 1 shows
MMS data for one example event on 26 June 2017 and illustrates
this data issue. Panel (a) shows the magnetic field vector in GSM
coordinates, panel (b) shows the magnetic elevation angle, panel (c)
shows the energetic proton flux from EIS with the periodic data
artifact clearly visible and the approximate peaks for some of the
periods marked by arrows, panel (d) shows the spin-averaged EIS
energetic proton flux, and panel (e) shows the thermal ion flux
from FPI. The vertical lines show the minimum Bz value before the
DF and the peak Bz. This level of data cannot be used to precisely
test the validity of the equations, but it can at least give a lower
bound since the data point we use will include some of the pre-
accelerated ion flux in addition to the accelerated ion flux. This
means we would expect the modeled flux given by the equation to
be lower than the observed flux. We can test it by comparing the
observed and modeled energy spectra similar to what we did for
the electron spectra in Chepuri et al. (2023). Figure 2 shows these
spectra for the same example event shown in Figure 1. The green
squares show the observed ion spectrum before the dipolarization,
the black circles show the observed ion spectrum at the peak of
the dipolarization, and the purple diamonds show the modeled
betatron acceleration with a quasi-adiabatic correction as calculated
by Equation 6. The error bars are derived from Poisson statistics
assuming a√N error associatedwith an observation ofN counts. For
the energies with overlap between FPI and EIS measurements, the
observed fluxes from the two instruments are consistent, validating
our choice to assume that measuring energetic protons with EIS
is sufficient to explain the overall energetic ion behavior. Similar
to the results for betatron acceleration of electrons, we found that
on average this method actually overestimated the flux, despite our
expectations. Because of the lack of detail in the data, we were
not able to examine this more precisely. However, there were two
potential factors in this method not being accurate: either there are
non-adiabatic processes occurring or this method does not identify

the source population being accelerated correctly. Because adding a
correction to account for breaking adiabaticity does not improve the
method’s performance, this suggests that the source population is a
bigger problem. To address the question of source population, we
will return to the electron events identified in Chepuri et al. (2023)
and add to it the analysis of plasma composition for these events.

4 Plasma population at electron
acceleration events

4.1 Ion composition data

With in situ spacecraft data, we are unable to measure both
the source population and the particles that have been accelerated
by the DF without extremely fortuitous geometry, so we are
unable to definitively test how well betatron acceleration explains
acceleration using these equations. However, one way we can gain
some information about where the plasma originates is by studying
the plasma composition. As discussed in Section 1, we can use the
relative levels of different ions to determine howmuch of the plasma
is from different sources, and specifically O+ as a marker of plasma
from the ionosphere and He++ as a marker of plasma from the solar
wind. We will test the plasma composition of the DFs with electron
acceleration that were used in Chepuri et al. (2023).

We used the HPCA instrument on MMS to measure the
prevalence of these species. However, the compression scheme
used on HPCA data gave anomalously low values for minor ion
fluxes, including both He++ and O+, so data from times when this
compression scheme was active must be discarded. This leaves us
with the periods that this scheme was turned off, which were 27
May 2018 - 25 September 2018, 16 April 2019 - 17 August 2019,
and after 24 May 2021 (Kistler, private communication). Luckily for
our purposes, the dates when the data is usable from 2018 to 2019
were during the tail season, so most of our data from those years in
addition to 2021 and later are reliable. This left us with 70 out of the
original 168 events with non-compressed HPCA data.

HPCA can differentiate between four different species: H+, He+,
He++, and O+. We can compare the relative amounts of the two
sources by comparing the ratio of the O+ density to the He++

density, and we can also look at the absolute amount of each by
using the ratio of O+ density to H+ density for ionosphere and
He++ density to H+ density. Figure 3 shows data for an example
DF with electron acceleration. Panel (a) shows the basic field and
particle data for the DF: magnetic field vector in GSM coordinates
in panel (a-i), magnetic elevation angle in panel (a-ii), FFEPS
energetic electron flux in panel (a-iii), and FPI thermal electron
flux in panel (a-iv). Panel (b) shows the HPCA data with the
plasma composition. Panel (b-i) shows the H+ density, panel (b-ii)
shows the He+ density, panel (b-iii) shows the He++ density, panel
(b-iv) shows the O+ density, and panel (b-v) shows the ratio of
O+ and He++ density. Finally, panel (c) shows the energy spectra
of observed electrons before the dipolarization (green squares),
observed electrons at peak of dipolarization (black circles), and the
expected spectrum of electrons based on the betatron acceleration
equation (purple diamonds) for this event. For each of our events,
we compared the normalized error of the model to the levels of
these ion species.
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4.2 Results: source population

To quantify the accuracy of the model, we used the root mean
square error of each energy channel for each event normalized to the
standard deviation. This was chosen because when this normalized
error is greater than 1, we cannot say with any confidence that the
equation accurately describes the data. In Figure 4, we show the
normalized error for each event as a function of the O+ level (panel
(a)), He++ level (panel (b)), and the ratio between the two species
(panel (c)). The events are marked if the initial magnetic field is
greater than 10 nT (blue), or less (orange), following our results from
the previous study that high error events tend to have an initial
magnetic field <10 nT. From these figures, focusing on the blue data
points for high magnetic field, we can see that in panel (c) there
appears to be lower error for events with a higher level of O+ in
relation to He++. Looking at the two individual species, there does
not appear to be any correlation with He++, but it does seem that
error is reducedwith higherO+ levels, although there are not enough
data points for this relationship to be conclusive. This suggests that
higher levels of O+ are more important for the improved accuracy of
the betatron acceleration equation than lower levels of He++.

We also looked at a few characteristics of plasma composition
in our events to ensure that there were not other factors that we
were overlooking in our analysis. Some of these are shown in
Figure 5. First we confirmed that there was no correlation between
O+ and He++ (panel (a)), so our analysis in the previous paragraph
treating the two species as separate is reasonable. We also compared
the radial distance from Earth to the densities of the two species.
We found that in the regions where we were sampling, there was
also no correlation with either O+ density (panel (b)) or the ratio
between O+ density and He++ density (panel (d)), so we are also not
measuring a process related to distance. In Section 5, we will discuss
why these patterns may be occurring.

5 Discussion and conclusion

Wewere not able to conclusively test this method of ion betatron
acceleration at DFs, but we still were able to test some aspects
of it. Adding a quasi-adiabatic correction did not improve the
method’s results, which points to focusing on the source population
as the main driver of error. However, the imprecise data introduces
even more uncertainty. Each measurement of energetic protons
covers nearly 20 s, while the changes in the magnetic field occur
on the order of a few seconds. This could potentially lead to
an underestimate of the acceleration since the measurement of
energetic ions after the dipolarization includes some time from
before the dipolarization as well. It could lead to other less
predictable errors as well though, so this data is not generally
reliable, meaning most of the conclusions we can draw from this
work are related to the composition of the plasma.

Using HPCA data to study the plasma source provided some
more useful results. We are using this data to determine the source
of the plasma because that is potentially one of the biggest reasons
why the implemented does not work. This method relies on the
source population being similar to the quiet plasma sheet. Birn et al.
(2014) showed that is not necessarily accurate. They found in
simulations that the distance the source population traveled to the

DF was dependent on energy and pitch angle. Parallel electrons
above ∼100 keV are from the inner tail with x > − 22.5, but below
∼10 keV they are from the plasma sheet boundary layer or lobes,
with the intermediate energies being from the distant tail. For
perpendicular electrons, the lower energy boundary is similar, but
it goes up to a few 100 s of keV before the electrons are primarily
from the near tail.

We were able to see that using betatron acceleration is more
accurate when there are higher levels of O+. O+ outflowing from
the ionosphere tends to be deposited relatively closer to Earth, with
those ions being transported to the plasma sheet around 85% of the
time, typically Earthward of 40–55 RE during disturbed times, as
many of our events are (Li et al., 2013). More precisely, O+ typically
reaches the plasma sheet at around 20–40 RE (Artemyev et al.,
2020).This would put the bulk of O+ ions near the tail reconnection
site. As is shown in Figure 5 (panel (c)), this is around or not far
downtail of our observations. There may be a slight trend towards
having higher levels of O+ at higher x distances, which could be
a result of being closer to the location in the plasma sheet where
O+ is deposited. Therefore, if the plasma during an event has high
levels of O+, it is likely from a more local location in the tail and
therefore more likely to be similar to the plasma sheet prior to
the dipolarization. The same, however, is not true of He++ entering
the tail from the solar wind (e.g., Winglee, 2003) so we do not
have a comparable relationship between He++ levels and accuracy
of this method.

We have statistically studied dipolarization fronts in the
tail with observations of energetic particles by MMS, following
the work in (Chepuri et al., 2023). First, we attempted to test the
accuracy of an equation for betatron acceleration of ions, including
a quasi-adiabatic correction. However, because of the quality of
the data, we could not determine a precise relationship beyond
setting a bound for the acceleration level. This led us to test the
composition of the plasma at these DFs to learn more about the
source population. For the DFs with energetic electron acceleration,
we found that this method of testing betatron acceleration was
more accurate when more O+ was present. We hypothesize that
this is because O+ that flows out of the ionosphere reaches the tail
closer to our observations, so higher levels of O+ are indicative
of a source closer to the observed DF, which makes this method
more accurate.
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