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Solar flares, as intense solar eruptive events, have a profound impact on
space weather, potentially disrupting human activities like spaceflight and
communication. Hence, identify the key factors that influence the occurrence
of solar flares and accurate forecast holds significant research importance.
Considering the imbalance of the flare data set, three ensemble learning models
(Balanced Random Forest (BRF), RUSBoost (RBC), and NGBoost (NGB)) were
utilized, which have gained popularity in statistical machine learning theory in
recent years, combined with imbalanced data sampling techniques, to classify
and predict the labels representing flare eruptions in the test set. In this study,
these models were used to classify and predict flares with a magnitude ≥C-
and M-class, respectively. After obtaining the feature importance scores of
each model, a comprehensive feature importance ranking was derived based
on the ranking. The main results are as follows: (1) For the prediction of
flares ≥C- and M-class, the best-performing model achieved a Recall of ∼0.76,
∼0.88 and a Tss score of ∼0.65, ∼0.78 on the test set, respectively. These
are relatively high scores for model performance evaluation metrics. (2) The
importance scores of each feature under different evaluation metrics and the
comprehensive importance ranking can be directly obtained through the model
without the need for additional feature analysis tools. Using this ranking to
reduce the dimensionality of the data set for the three main models, similar
or better classification results can be achieved using only about half of the
original features. (3) Our results demonstrate the mean photospheric magnetic
free energy (MEANPOT), the time decay value based on the magnitudes of all
previous flares (Edec), and the total unsigned current helicity (TOTUSJH). They
are the three quantities that have the most significant relationship with solar
flares, which include free energy, twist degree, and the historical information
of flare occurrences, respectively. Besides, analyzing the feature parameters
of four different active regions, we find that the geographical information of
the flare occurrence is an important factor. The object of this work is to
provide prediction methods for imbalanced data as well as feature importance
ranking methods.
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1 Introduction

Solar flares are one of the intense solar eruptive activities,
manifesting as bright chromospheric ribbons and hot coronal loops
on the Sun, releasing a large amount of energy, which typically
lasts from a few minutes to several hours. Based on the magnitude
of energy released, solar flares are classified into different levels,
commonly using X-ray radiation intensity as the criterion. The
flare levels range from A-, B-, C-, M-to X-class, with higher levels
indicating greater energy release. High-level solar flares are often
accompanied by coronal mass ejections (CMEs) (Jing et al., 2004;
Yan et al., 2011; Chen, 2011; Webb and Howard, 2012), which can
significantly impact spaceweather, thereby posing hazards to human
activities such as communications and spaceflight (Baker et al.,
2004). Therefore, analyzing variables related to solar flares and
further establishing practical prediction models for solar flares is of
great practical significance.

Currently, the primary methods for correlation analysis
and prediction of solar flares encompass traditional statistical
models (Gallagher et al., 2002; Bloomfield et al., 2012; Mason
and Hoeksema, 2010), physical numerical models (Feng, 2020),
and machine learning models. Traditional statistical models
summarize the relationships between observed quantities and those
to be predicted, deriving corresponding statistical distribution
models. While these methods are simple and fast, they lack
accuracy. Physical numerical models, which predict through
numerical calculations simulating the generation mechanism of
solar flares, are constrained by the incomplete understanding
of solar flare triggering mechanisms. In recent years, due to the
rapid advancement of computing capabilities, artificial intelligence
algorithms have been introduced for predicting solar flares and
addressing other space weather issues. The progress in machine
learning technology has yielded efficient and accurate classification
and correlation analysis algorithms, including Support Vector
Machines (SVM) (Li et al., 2007; Bobra and Couvidat, 2015;
Nishizuka et al., 2017), Random Forest (RF) (Breiman, 2001;
Liu et al., 2017), XGBoost (XGB) (Sharma, 2017; He, 2021), and
Long Short-Term Memory (LSTM) (Wang et al., 2020; Liu et al.,
2019). These algorithms have found wide application in the analysis
and research of space physics data. Concurrently, the development of
solar activity observation techniques and instruments has provided
extensive data on solar flares and magnetograms (Schou et al.,
2012), serving as crucial sample support for the application of
machine learning algorithms. Essentially, predicting solar flares
boils down to a classification and prediction problem in machine
learning. Therefore, machine learning algorithms can be leveraged
to analyze large samples and identify variables that significantly
impact solar flares. These selected variables can then be used to
train classification and prediction models, enabling data-driven
forecasting of solar flares.

In the realm of solar flare analysis and prediction utilizing
machine learning techniques, scholars have extensively explored
various methodologies. Song et al. (2009) constructed an ordinal
logistic regression model based on three predictive parameters to
forecast the likelihood of X-, M-, and C-class flares occurring
within a 24-h window. Boucheron et al. (2015) developed an
SVM regression model, incorporating 38 features that characterize
the magnetic complexity of the photospheric magnetic field, to

predict flare magnitude and timing. Wang et al. (2020) applied the
LSTM method to predict the maximum flare class within the next
24 h, using a data set comprised of 20 SHARP parameters from
the Joint Science Operations Center’s active region data spanning
from 2010 to 2018. Huang et al. (2018) and Wang et al. (2023)
harnessed the power of convolutional neural networks (CNN)
for image processing to make predictions. While these studies
primarily focus on prediction outcomes, they do not delve into
the analysis of feature importance. Bobra and Couvidat (2014)
merged a vast data set of vector magnetograms with the SVM
algorithm to forecast X-class andM-class solar flares.They screened
25 parameters and retained the top 13, which include TOTUSJH,
TOTBSQ, TOTPOT, TOTUSJZ, ABSNJZH, SAVNCPP, USFLUX,
AREA-ACR, TOTFZ, MEANPOT, R-VALUE, EPSZ, and SHRGT.
The physical implications of these parameters are detailed in Table 1.
Building on the findings of Bobra and Couvidat (2014), Liu et al.
(2017) employed the first 13 parameters and the RF method to
predict flare occurrences within a 24-hour period. Liu et al. (2019)
established three LSTM networks tailored for three classes of solar
flares, marking the inaugural application of LSTM in solar flare
prediction. Utilizing a time series data set featuring 25 magnetic
field parameters and 15 flare historical parameters, they surpassed
other machine learning methods in label prediction performance.
Notably, they discovered that using a subset of 14–22 of the
most significant parameters yielded better prediction results than
utilizing all 40 parameters concurrently. He (2021) adopted the
XGB method to scrutinize the importance of diverse physical
parameters in the SDO/HMI SHARPdata, subsequently establishing
an LSTM network based on the selected features. Ran et al. (2022)
investigated the continuous eruptions of flares using 16 SHARP
parameters to pinpoint the most pertinent ones. By computing
correlation coefficients and variable importance scores derived from
the NGB algorithm, they pinpointed eight parameters that are
most closely associated with flares within the same active region.
Sinha et al. (2022) conducted a feature importance ranking with 19
features, concluding that magnetic properties such as total current
helicity (TOTUSJH), total vertical current density (TOTUSJZ),
total unsigned flux (USFLUX), sum of unsigned flux near PIL (R-
VALUE), and total absolute twist (TOTABSTWIST) are the top-
performing flare indicators. Lastly, Deshmukh et al. (2023) analyzed
20 features, encompassing both physics-based and shape-based
attributes, and found that shape-based features are not significant
indicators.

Currently, the triggering mechanism of solar flares remains
incompletely understood (Priest and Forbes, 2002). By applying
machine learning algorithms to solar flare data for correlation
analysis, we can obtain importance scores for various variables,
which quantify the influence of corresponding physical quantities on
solar flares.These scores serve as a valuable reference for elucidating
the flare triggering mechanism. Furthermore, selecting variables
with higher importance scores aids in simplifying the classification
model, mitigating over-fitting, and enhancing the efficiency and
accuracy of the classification prediction model. In summary,
leveraging machine learning algorithms to analyze correlations
between solar flare and magnetic field data in solar active regions,
and subsequently utilizing these insights for solar flare prediction,
holds considerable practical significance and theoretical value.
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TABLE 1 Names of 40 features and their physical descriptions.

Names of features Physical descriptions

TOTUSJH Total unsigned current helicity

TOTBSQ Total magnitude of Lorentz force

TOTPOT Total photospheric magnetic free energy density

TOTUSJZ Total unsigned vertical current

ABSNJZH Absolute value of the net current helicity

SAVNCPP Sum of the modulus of the net current per
polarity

USFLUX Total unsigned flux

AREA-ACR Area of strong field pixels in the active region

MEANPOT Mean photospheric magnetic free energy

R-VALUE Sum of flux near polarity inversion line

SHRGT45 Fraction of area with shear > 45°

MEANSHR Mean shear angle

MEANGAM Mean angle of field from radial

MEANGBT Mean gradient of total field

MEANGBZ Mean gradient of vertical field

MEANGBH Mean gradient of horizontal field

MEANJZH Mean current helicity

MEANJZD Mean vertical current density

MEANALP Mean characteristic twist parameter, α

TOTFX Sum of x-component of Lorentz force

TOTFY Sum of y-component of Lorentz force

TOTFZ Sum of z-component of Lorentz force

EPSX Sum of x-component of normalized Lorentz force

EPSY Sum of y-component of normalized Lorentz force

EPSZ Sum of z-component of normalized Lorentz force

Bdec Time decay value based on the previous B-class
flares only

Cdec Time decay value based on the previous C-class
flares only

Mdec Time decay value based on the previous M-class
flares only

Xdec Time decay value based on the previous X-class
flares only

(Continued on the following page)

TABLE 1 (Continued) Names of 40 features and their physical
descriptions.

Names of features Physical descriptions

Edec Time decay value based on the magnitudes of all
previous flares

logEdec Time decay value based on the log-magnitudes of
all previous flares

Bhis Total history of B-class flares in an AR

Chis Total history of C-class flares in an AR

Mhis Total history of M-class flares in an AR

Xhis Total history of X-class flares in an AR

Bhis1d 1 day history of B-class flares in an AR

Chis1d 1 day history of C-class flares in an AR

Mhis1d 1 day history of M-class flares in an AR

Xhis1d 1 day history of X-class flares in an AR

Xmax1d Maximum X-ray intensity 1 day before

The structure of this study is organized as follows: In Section 2,
we introduce the data set and define the criteria for Positive and
Negative Samples. Section 3 presents the theoretical foundation
of three models, elaborating on the theory behind imbalanced
classification model algorithms and comparing the strengths and
weaknesses of different algorithms from a theoretical standpoint.
In Section 4, we delve into feature importance analysis and model
evaluation metrics. Furthermore, we select four solar active regions
to examine and compare their differences in feature importance.
Section 5 presents the results and discussions. Lastly, we provide a
summary in Section 6.

2 Data acquisition and preprocessing

Currently, commonly used observation data includes the
magnetic field characteristic data of the photosphere in solar active
regions and flare historical data. The former is considered to be
closely related to solar flares (Shibata and Magara, 2011; Priest and
Forbes, 2002), while the latter is widely used in machine learning
methods involving time series. The flare prediction data set used in
this article is primarily based on the paper “Predicting Solar Flares
Using a Long Short-term Memory Network” (Liu et al., 2019). The
data sources include the SHARP data set created by the SDO/HMI
team and its derivative cgem. Lorentz data set (Fisher et al., 2012;
Chen et al., 2019) as well as the GOES X-ray flare catalog from the
NCEI (National Centers for Environmental Information) covering
the period from May 2010 to May 2018. After removing missing
values, feature construction, labeling, and standardization, 2,34,476
flare samples ≥C-class and above were selected. Among them,
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FIGURE 1
The labeling method for positive and negative samples.

TABLE 2 Positive and negative sample ratios of C data set.

  Positive
sample

Negative
sample

Ratios of
positive
sample

Training set 20,621 107,088 16.15%

Validating set 8012 28,941 21.68%

Testing set 9,393 60,421 13.45%

TABLE 3 Positive and negative sample ratios of M data set.

  Positive
sample

Negative
sample

Ratios of
positive
sample

Training set 2,710 81,867 3.2%

Validating set 1,347 25,126 5.09%

Testing set 1,278 43,411 2.86%

TABLE 4 Confusion matrix.

Positive sample Negative sample

positive sample TP FN

negative sample FP TN

1,27,709 samples were used for the training set, 36,953 for the
validation set, and 69,814 for the test set. For flares ≥M-class,
there were a total of 155,739 samples, with 84,577 samples in the
training set, 26,473 in the validation set, and 44,689 in the test
set. The sampling interval for each sample is 1 h, and each sample
includes 40 features used for flare prediction. These features include
25 physical parameters describing magnetic field characteristics and
15 parameters related to flare historical data. The names of features
and their physical descriptions are shown in Table 1.

Jonas et al. (2018) pointed out that historical flare data plays
a significant role in flare prediction. This historical data primarily

includes six time-decay parameters related to historical flare data:
Bdec, Cdec, Mdec, Xdec, Edec, and logEdec, as well as eight flare
count parameters. The specific calculation formulas are as follows.

Bdec(Xt) = ∑
f i∈FB

e
t−t(fi)

τ , (1a)

Cdec(Xt) = ∑
f i∈FC

e
t−t(fi)

τ , (1b)

Mdec(Xt) = ∑
f i∈FM

e
t−t(fi)

τ , (1c)

Xdec(Xt) = ∑
f i∈FX

e
t−t(fi)

τ , (1d)

Edec(Xt) = ∑
f i∈F

E( fi)e
t−t(fi)

τ , (1e)

logEdec(Xt) = ∑
f i∈F

log(E( fi))e
t−t(fi)

τ . (1f)

In the above formulas (Equations 1a–1f), Xt represents the
observed sample data at time t. FB, FC, FM, and FX denote the sets
of all B-, C-, M- and X-class flares that occurred in the current
solar active region before time t. t( fi) represents the time point at
which flare fi occurred, and τ is the time decay constant, set to 12.
F represents the set of all flares of any class that occurred in the
current solar active region before time t, and E( fi) represents the
size (or energy) of flare fi. Observing the above formulas, for the
four parameters Bdec, Cdec, Mdec, and Xdec, flares that occurred
closer to the observation time t have a greater influence on the
respective parameters. Flares that occurred further away from the
observation time are also included in the respective parameters, but
have a smaller impact on the parameter values. In the calculation of
Edec and logEdec, not only the influence of the flare occurrence time
on the parameter values is considered, but also the different impacts
of flare class sizes on the parameter values. By incorporating these six
time-decay parameters and an additional nine parameters related to
flare counts and X-ray maxima in the active region, the time series
nature of flare data is fully considered.

The prediction target of this study is to forecast whether ≥
C-class or M-class solar flare will occur in a specific solar active
region within the next 24 h. Essentially, this is a binary classification
problem, and thus the data needs to be appropriately labeled. The
labeling method is as follows: As shown in Figure 1, each grid
represents a 1 h time interval, which is also the sampling interval of
the samples. Samples taken within the 24 h prior to the occurrence
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FIGURE 2
Changes in Tss score with respect to different hyper-parameters for the BRF and RBC model on the C and M data set. (A) BRF and C data set (B) BRF
and M data set (C) RBC and C data set (D) RBC and M data set.

of a solar flare of or above the specified class are labeled as Positive
i.e., positive samples, while the remaining samples are labeled as
Negative, i.e., negative samples. The hour in which the flare actually
occurs is excluded from the data set. After labeling, the positive
and negative sample ratios of the prediction data sets for flares ≥C-
class and ≥M-class (hereinafter referred to as the C data set and the
M data set) are presented in Table 2 and Table 3, respectively. As
can be observed from the tables, the ratio of positive and negative
samples is imbalanced,with the proportion of positive samples being
far lower than that of negative samples. This imbalance is even
more pronounced on the M data set. Most ARs provide around 200
samples, with a few exceeding 300.

3 Introduction of three ensemble
models used

Ensemble model uses the Boosting or Bagging algorithm to
integrate some single models, which makes the algorithm powerful.
These integrated single models are also called basic estimators. The

main idea of the ensemble algorithm is to use basic estimators to
accomplish the preliminary learning of the data set, and adjust the
weight of each sample event according to the learning results. The
weight of the correct sample event will be reduced in the next
round of learning, while that of the wrong sample event will be
increased in the next round of learning, and then the data set with
adjusted weight will be re-trained by the next estimator. Finally, the
weighted average of the errors of different basic estimators is taken
as the final output result of the ensemble model. In this study, three
ensemble learning predictionmodelswere employed: BRF, RBC, and
NGB, which are designed to handle imbalanced data. we compared
the performance of several mainstream machine learning methods
those have outstanding performance in this or other fields, including
three kinds of ensemble models.

Random Forest algorithm was proposed by Breiman (2001),
which is an ensemble learning model based on bagging and has
strong generalization. The commonly used base learner of Random
Forest algorithm is decision tree (Berk, 2016). The training set of
each decision tree is obtained through bootstrap sampling, and the
criterion for selecting the optimal splitting feature of its nodes is
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FIGURE 3
Line graphs showing the changes in evaluation metrics with respect to the threshold probability value p. (A) on C data set (B) graph1 on M data set (C)
graph2 on M data set.

TABLE 5 Evaluation indicators of each model on the C data set.

  Recall Precision Tss F1

BRF 0.6812 0.5694 0.6011 0.6203

RBC 0.7643 0.4822 0.6368 0.5913

NGB 0.7543 0.5177 0.6451 0.6140

RF 0.4669 0.7307 0.4401 0.5697

XGB 0.4654 0.6588 0.4279 0.5455

the Gini index. However, the traditional Random Forest algorithm
has limitations in handling imbalanced classification problems.
Since its training goal is to minimize the overall classification error
rate, it tends to pay more attention to the classification results

TABLE 6 Evaluation indicators of each model on the M data set.

  Recall Precision Tss F1

BRF 0.7621 0.3093 0.7120 0.4400

RBC 0.8685 0.2076 0.7709 0.3351

NGB 0.8755 0.1962 0.7700 0.3206

RF 0.2230 0.6801 0.2199 0.3358

XGB 0.1643 0.5172 0.1598 0.2494

of the majority class and ignores the classification results of the
minority class. In addition, during the generation of the training
set for each decision tree, there is a possibility that only a few
positive samples or even no positive samples are present in the
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FIGURE 4
Feature importance ranking obtained by the three methods (BRF, RBC, and NGB) on the C data set.

sample subset obtained by bootstrap sampling. The decision trees
trained by these sample subsets cannot learn the characteristics of
positive samples. The above two points lead to the low accuracy
of the Random Forest algorithm in predicting the minority class.
To improve the performance of Random Forest algorithm in
imbalanced classification problems, Chen and Breiman (2004)
proposed Balanced Random Forest. Compared with the traditional
Random Forest, Balanced Random Forest adds a down-sampling
step to the bootstrap sampling, ensuring that the training set of
each decision tree is balanced. By adding down sampling to the
bootstrap sampling process, Balanced Random Forest ensures that
each training subset is balanced.The base learner can fully learn the
characteristics of theminority class samples, and since different base
learners have different down sampling subsets for the majority class,
the information of the majority class samples can also be learned
by different base learners, alleviating the loss of information of the
majority class samples in down sampling and effectively improving
the classification effect on the minority class samples.

The RUSBoost algorithm, proposed by Seiffert et al. (2010), is
a combination of RUS (Random under sampling) and AdaBoost. It
further enhances AdaBoost’s predictive capabilities for imbalanced
data through random downsampling. Although the introduction
of sample weights in the AdaBoost algorithm effectively alters

the distribution of the data set, the basis for weight updates
remains the overall error rate of the base learner during the
iterative process, thus increasing the focus on misclassified samples.
However, for imbalanced data, the majority class samples still tend
to dominate among the misclassified samples, and the issue of the
model’s low attention to the minority class in imbalanced data
remains unresolved. The RUSBoost algorithm addresses this by
incorporating a random under sampling step before each iteration
of AdaBoost to generate a balanced training set for that iteration,
which is obtained by randomly under sampling the original training
set. The random under sampling incorporated at the beginning of
each iteration ensures that the training set for each base learner
is a balanced data set, addressing the issue of low attention to
minority class samples. Additionally, it retains theweight boosting of
misclassified samples in the AdaBoost algorithm,making RUSBoost
achieve better results in imbalanced data classification.

NGBoost (Duan et al., 2020) is a Boosting algorithm based
on natural gradients. Unlike other Boosting methods used for
classification or regression, NGBoost does not directly predict
categorical labels or regression values. Instead, it predicts
the parameters of the conditional distribution to which the
samples belong, thereby obtaining the probability density of
the target variable. The benefits of using natural gradients for
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FIGURE 5
Feature importance ranking obtained by the three methods (BRF, RBC, and NGB) on the M data set.

parameter learning are obvious. Natural gradients take divergence
as an approximate distance metric, representing the steepest
direction of ascent in Riemannian space, and remain invariant
to parameterization, making the optimization process unaffected
by parameterization. In classification problems, NGBoost directly
predicts probability distributions, which not only allows us to obtain
predictions for label values but also the probabilities corresponding
to different label values.This enables us to set appropriate probability
thresholds based on practical requirements to handle imbalanced
classification issues. The NGBoost algorithm boasts three main
advantages. Firstly, it can predict conditional distributions,
which provides more flexibility in utilizing predicted outputs in
both classification and regression problems. While the type of
distribution to be fitted needs to be specified beforehand, there
are numerous options to choose from, making it applicable in areas
such as counting, survival prediction, and data censoring. Secondly,
it exhibits stability in multi-parameter boosting, where natural
gradients are used as approximate distances, enabling various
parameters to converge together at similar rates during the boosting
process. Thirdly, it possesses strong parameterization capabilities,
which also benefit from the invariance of natural gradients to
parameterization, allowing for the fitting of various distributions
and their parameters. However, the NGBoost algorithm also has the

disadvantage of high computational cost. For each parameter, a set
of base learners must be trained, and the natural gradient of each
sample must be calculated. When the fitted distribution has a large
number of parameters and the data set contains many samples, the
computational cost increases significantly.

4 Feature importance ranking and
model evaluation metrics

Feature selection is based on the importance ranking of the
features and some thresholds. According to the correlation between
the label and features or the contribution of the features in
training, the importance of each feature is ranked by a certain
criterion (scores obtained based on the contribution of features to
model performance), and then the features with weak correlation
are eliminated by setting a threshold. Feature selection can not
only reduce the computational cost for large multivariate sample
data sets, but also eliminate the interference of some redundant
features to the prediction results (Yang et al., 2023). The crucial
features selected out will be used for the machine learning model
in the training and testing, so the feature selection results will
directly influence the final prediction results of the model. The
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FIGURE 6
Line graphs of four evaluation metrics changing with the number of features by the three methods [(A) BRF (B) RBC (C) NGB] on the C data set.

information gain method is a built-in method of ensemble models.
It combines the learning process of the model to rank the features
and can help select the important features that closely match the
model. The information gain method of decision tree model is a
typical representative of this kind of methods. The feature selection
function of the ensemble model itself is based on the principle of
EmbeddedMethods given the differences in calculationmethods for
variable importance among various models, the resulting variable
importance scores also vary. We combined the variable importance
results from three models. After obtaining the importance scores
of each model, we take the average score of the three models, and
based on the comprehensive score, we obtain the final ranking of
each feature.

In binary classification problems, the most commonly used
evaluation metrics are error rate and accuracy. The error rate is
calculated by dividing the number of misclassified samples by the
total number of samples, while the accuracy is calculated by dividing
the number of correctly classified samples by the total number of
samples. The error rate describes how many samples in the data

set are misclassified by the model, while the accuracy describes
how many samples in the data set are correctly classified by the
model.Thesemetrics that focus on the overall classification effect are
appropriate as model evaluation metrics in data sets with balanced
or approximately balanced positive and negative samples.

However, for imbalanced data sets, the effectiveness of using
error rate and accuracy as evaluation metrics is not good (He
and Garcia, 2009). Because these two metrics focus on the overall
classification effect and tend to overlook the classification results on
minority classes. An extreme example can be given: if an imbalanced
data set has 1 positive sample and 99 negative samples, and a
prediction model is established that predicts the label value y as
negative regardless of the observed value x, then the error rate of
this model on this imbalanced data set is 1%, and the accuracy
is 99%, which seems to be a very good result. However, such a
prediction model is meaningless. The reason is that the proportion
of minority class samples is low, and the model only needs to
improve the prediction effect on the majority class samples as
much as possible. Even if a large number of minority class samples
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TABLE 7 Comprehensive importance ranking on C data set.

Names of features BRF score RBC score NGB score Comprehensive score Comprehensive
importance ranking

Cdec 0.04445777 0.24 0.039569781 0.108009184 1

TOTUSJZ 0.03244494 0.02 0.023838192 0.025427711 16

Chis1d 0.02411404 0.08 0.003855108 0.035989716 9

USFLUX 0.037090087 0.01 0.031536684 0.026208924 15

TOTBSQ 0.036843961 0.01 0.032094995 0.026312985 14

R-VALUE 0.027583218 0 0.012975257 0.013519492 26

TOTPOT 0.048722542 0.03 0.059015739 0.045912761 5

Chis 0.027158912 0.02 0.027113269 0.024757394 17

SAVNCPP 0.041051291 0.02 0.013082849 0.02471138 18

AREA-ACR 0.02674578 0.02 0.020906881 0.022550887 20

Edec 0.047105398 0.04 0.066804224 0.051303207 4

Xmax1d 0.036324633 0.03 0.037783188 0.034702607 10

ABSNJZH 0.036214147 0.03 0.043949565 0.036721237 8

TOTFX 0.024803698 0.01 0.02350805 0.01943725 22

TOTFZ 0.025845983 0 0.010118966 0.011988316 29

logEdec 0.027517832 0 0.010653176 0.012723669 27

MEANPOT 0.048604313 0.13 0.09517362 0.091259311 2

Mhis 0.008572467 0 0.008605446 0.005725971 34

MEANJZD 0.020520631 0.04 0.022923278 0.027814636 13

SHRGT45 0.024444539 0.01 0.015812625 0.016752388 25

TOTFY 0.025272852 0.04 0.034835602 0.033369485 11

MEANGBT 0.021326547 0.02 0.010933658 0.017420068 24

MEANSHR 0.020313406 0.02 0.014989387 0.018434264 23

MEANGBZ 0.017890422 0 0.003936336 0.007275586 33

MEANGAM 0.021218319 0 0.001064131 0.007427483 32

EPSX 0.023480997 0.04 0.049882945 0.037787981 7

EPSY 0.02331202 0.02 0.045856741 0.02972292 12

Bdec 0.014182969 0.01 0.00350003 0.009227666 31

Mdec 0.010143306 0 0.004787174 0.004976827 35

Bhis1d 0.004996061 0 0.000279266 0.001758442 36

Bhis 0.013146951 0.04 0.017311964 0.023486305 19

Mhis1d 0.002487663 0 0.000125979 0.000871214 37

(Continued on the following page)
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TABLE 7 (Continued) Comprehensive importance ranking on C data set.

Names of features BRF score RBC score NGB score Comprehensive score Comprehensive
importance ranking

EPSZ 0.018997014 0.01 0.007293411 0.012096808 28

MEANGBH 0.020857118 0.02 0.020987469 0.020614862 21

MEANJZH 0.025222268 0 0.009628002 0.011616757 30

MEANALP 0.040300705 0.03 0.061894913 0.044065206 6

Xhis 0.000856752 0 0 0.000285584 39

Xdec 0.001023385 0 0 0.000341128 38

Xhis1d 4.14E-05 0 0 1.37943E-05 40

are predicted incorrectly, the impact on the overall prediction
metrics is still small. However, the model trained in this way
has poor prediction performance on minority class samples and
has no practical application value. To solve this problem, more
sophisticated evaluation metrics such as recall, precision, Tss score,
and F1 score need to be used.

First, we need to introduce the concept of confusion matrix. For
binary classification problems, the confusion matrix is as follows:
As shown in Table 4, in binary classification prediction, samples
with a true positive label and a positive prediction are referred to
as True Positives (TP), samples with a true positive label but a
negative prediction are called False Negatives (FN), samples with a
true negative label and a negative prediction are designated as True
Negatives (TN), and samples with a true negative label but a positive
prediction are known as False Positives (FP).Through the confusion
matrix, the model’s prediction results on both positive and negative
samples can be evaluated separately. The Recall (Equation 2a) and
Precision (Equation 2b) are defined based on the four classification
scenarios mentioned above.

Recall = TP/(TP+ FN) , (2a)

Precision = TP/(TP+ FP) , (2b)

Recall represents the ratio of true positive samples found by
the model to the total number of positive samples, describing how
many positive samples the model can predict from all positive
samples. Precision represents the ratio of true positive samples
found by the model to the total number of samples predicted
as positive by the model, describing how many of the positive
samples predicted by the model are truly positive. There is a
certain conflict between Recall and Precision, and it is difficult to
achieve high values for both. Generally speaking, when precision
is high, Recall tends to be low; and when Recall is high, Precision
tends to be low (Duan et al., 2020). To improve Recall, it is
necessary to predict as many samples as possible as positive, but
this increases the probability of misjudgment and reduces precision.
To improve Precision, it is necessary to predict samples as positive
more cautiously, but this can easily miss some positive samples
with less obvious features, reducing Recall. To comprehensively

consider Recall and Precision for model evaluation, the following
two comprehensive evaluation metrics are introduced: F1 score
and Tss (true skill statistic) (Bloomfield et al., 2012). The F1 score
(Equation 3a) and Tss (Equation 3b) are defined as.

F1 = (2×Precision×Recall)/ (Precision+Recall) , (3a)

Tss = TP/(TP+ FN) − FP/(TN+ FP) , (3b)

The F1 score is the harmonic mean of Recall and Precision,
considering both evaluation metrics comprehensively. Tss is
obtained by subtracting the ratio of false positives to the total
number of negative samples from the Recall, also considering both
Recall and Precision.However, in imbalanced classification, the total
number of negative samples is often much higher than the number
of positive samples, so Tss tends to favor Recall.

In this paper, Recall, Precision, F1 score, and Tss are used as the
main evaluation metrics for models.

Additionally, we select four solar active regions
(AR12257,AR12468,AR12325,AR12443) to compare their
differences in feature importance.

5 Results and discussions

We have selected and processed two types of flare data sets,
namely C-class and M-class, separately. Firstly, we input all the
features into the BRF, RBC, and NGB model for training and
testing. Adjust the hyper-parameter of BRF, RBC, and the threshold
probability value of NGB, on the validation set. The final hyper-
parameters settings or threshold probability value are obtained by
maximizing the Tss on the validation set as the tuning target. For
BRF, there are two hyper-parameters to be adjusted: the number
of decision tree (ntree) and the size of the random feature subset
(mtry). The tuning ranges are set as ntree ∈ [2,9] with an interval
of 1, and mtry ∈ [200,1000] with an interval of 200. For RBC, two
hyper-parameters are adjusted: the learning rate and the number of
boosting iterations (n-boost). The tuning ranges are set as learning
rate∈ [0.2,1.2] with an interval of 0.2, and n− boost ∈ [50,140]
with an interval of 10. Figure 2 shows the changes in Tss score
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TABLE 8 Comprehensive importance ranking on M data set.

Names of features BRF score RBC score NGB score Comprehensive score Comprehensive
importance ranking

TOTUSJH 0.063300087 0.04 0.119708098 0.074336062 3

TOTUSJZ 0.048066204 0.06 0.029891099 0.045985768 5

TOTPOT 0.046969452 0 0.004257992 0.017075815 24

TOTBSQ 0.036917586 0 0.018390226 0.018435937 21

USFLUX 0.027313603 0.06 0.028418094 0.038577232 6

Cdec 0.05972771 0.02 0.029541305 0.036423005 10

Chis1d 0.032533507 0 0.018898851 0.017144119 23

Chis 0.026877608 0 0.017569839 0.014815816 26

AREA-ACR 0.014988691 0.06 0.016434327 0.030474339 12

SAVNCPP 0.025162855 0.02 0.020030985 0.02173128 16

ABSNJZH 0.051977993 0.02 0.042573433 0.038183809 8

Edec 0.096721346 0.12 0.0671535 0.094624948 2

Xmax1d 0.071565951 0 0.075394155 0.048986702 4

Mhis 0.009463687 0 0.007413022 0.00562557 36

R-VALUE 0.0130379 0 0.009671938 0.007569946 33

Mdec 0.012200002 0.02 0.017216303 0.016472102 25

MEANPOT 0.091303296 0.12 0.084324767 0.098542688 1

Mhis1d 0.003351521 0 0.003465477 0.002272333 38

TOTFX 0.018311851 0.02 0.041960567 0.026757473 13

TOTFZ 0.011803672 0.04 0.011469734 0.021091135 18

MEANSHR 0.017106887 0.04 0.018093152 0.025066679 15

SHRGT45 0.011789182 0 0.032463101 0.014750761 27

MEANGBT 0.010548731 0 0.003140527 0.004563086 37

TOTFY 0.017133748 0.02 0.020293514 0.019142421 20

MEANGAM 0.011024468 0.04 0.013127318 0.021383929 17

logEdec 0.012371202 0.04 0.024985113 0.025785438 14

MEANJZH 0.011884578 0 0.005382536 0.005755705 35

MEANJZD 0.01775335 0.02 0.014814057 0.017522469 22

Bhis 0.010284069 0.06 0.023215773 0.031166614 11

MEANGBZ 0.011426413 0 0.008707009 0.006711141 34

MEANALP 0.029654469 0 0.033202965 0.020952478 19

MEANGBH 0.014657068 0.06 0.040781733 0.0384796 7

(Continued on the following page)
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TABLE 8 (Continued) Comprehensive importance ranking on M data set.

Names of features BRF score RBC score NGB score Comprehensive score Comprehensive
importance ranking

Bdec 0.010219017 0 0.018879037 0.009699351 31

Bhis1d 0.003590899 0.02 0.004731897 0.009440932 32

EPSY 0.018947956 0 0.014385339 0.011111098 29

EPSX 0.018372471 0.06 0.034973871 0.037782114 9

Xhis 0.00070181 0 0.002081754 0.000927855 39

EPSZ 0.009530306 0.02 0.002810328 0.010780211 30

Xdec 0.001247916 0.02 0.020146095 0.013798003 28

Xhis1d 1.61E-04 0 1.17051E-06 5.40371E-05 40

TABLE 9 Evaluation metrics of each model on the C data set after
feature selection.

  Recall Precision Tss F1

BRF 0.6769 0.5350 0.5855 0.5977

RBC 0.7620 0.4739 0.6305 0.5844

NGB 0.7500 0.5226 0.6435 0.6160

with respect to different hyper-parameter for the BRF and RBC
model on the C and M data set. The highest point corresponds
to the optimal combination of hyper-parameters. Therefore, the
final hyper-parameters settings obtained are: (1) For BRF on the
C data set, ntree = 1000 and mtry = 2 (shown in Figure 2A) (2)
For BRF on the M data set, ntree = 1000 and mtry = 6 (shown
in Figure 2B) (3) For RBC on the C data set, learning rate = 0.4
and n-boost = 100 (shown in Figure 2C) (4) For RBC on the M
data set, learning rate = 0.2 and n-boost = 50 (shown in Figure 2D).
For NGB, the based learner is set as a decision tree, the scoring
rule is logarithmic scoring, and the fitting distribution is a normal
distribution. The critical probability value (p) is adjusted within the
range of p ∈ [0.01,0.6] with an interval of 0.01. Figure 3 are line
graphs showing the changes in evaluationmetrics with respect to the
threshold probability value p on the C and M data set, respectively.
In Figure 3A, as the threshold probability value p increases, the
conditional probability required for predicting a sample label as
positive also increases, making the model’s prediction strategy for
positive samples more conservative. The corresponding changes in
Recall and Precision are that Recall decreases with the increase of
p, while Precision increases with the increase of p. This verifies
the conflict between recall and precision mentioned earlier. The
comprehensive evaluation metrics F1 score and Tss both increase
first and then decrease with the increase of p. Taking the critical
probability value p corresponding to the maximum Tss, at this
time p = 0.2. In Figure 3B, Recall decreases with the increase of p,
Precision increases with the increase of p, and the comprehensive

evaluation metrics F1 score and Tss both increase first and then
decrease with the increase of p. Due to the more severe imbalance
on the M data set, Tss only shows an upward and then downward
trend within the range of [0,0.1], and decreases with the increase
of p when p is greater than 0.1. There are large fluctuations in the
Tss values at an interval of 0.01. To further refine the value of p,
a line graph showing the changes in the four evaluation metrics
with respect to the threshold probability value p is plotted within
the parameter tuning range of p ∈ [0.001,0.1] with an interval of
0.001, as shown in Figure 3C. In Figure 3C, the threshold probability
value p corresponding to the maximum Tss is chosen, which in
this case is p = 0.034. Tables 5, 6 represent the evaluation metrics
of each model on the C and M data set, respectively. On the C
data set, the Tss of the three models on the test set all exceeded 0.6
with both the Recall of RBC and NGB exceeding 0.75. While BRF
has a Recall of 0.68, it has the highest Precision among the three
models, resulting in the highest F1 score. On the M data set, the Tss
of the three models on the test set all exceeded 0.75. Among them,
the Recalls of RBC and NGB both exceeded 0.85, while the Recall
of BRF was slightly lower at 0.76. However, BRF had the highest
Precision among the three models, resulting in the highest F1 score.
The performance of the three models is consistent on both of the C
and M data set. To better demonstrate the advantages of these three
methods in dealingwith imbalanced data sets, we use RF andXGB as
two comparison methods. For the prediction results of imbalanced
data, the ability to accurately predict the minority positive samples
becomes a key criterion for evaluating the performance of a model.
Therefore, Recall and Tss serve as the primary metrics for assessing
such problems. By comparing, Recall and Tss, BRF, RBC and NGB
demonstrate remarkable advantages than RF and XGB.

The feature importance rankings obtained by the three methods
on C data set are shown in Figure 4. Since the parameter
distribution fitted in the NGB model is normal distribution
with a parameter dimension of 2, the NGB model outputs two
rankings of importance scores. Observing these Figures, there
is some overlap in the features with high importance scores
across various models, but there are also significant differences.
Edec and MEANPOT remain in the top ten in four different
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FIGURE 7
Line graphs of four evaluation metrics changing with the number of features by the three methods [(A) BRF (B) RBC (C) NGB] on the M data set.

TABLE 10 Evaluation metrics of each model on the M data set after
feature selection.

  Recall Precision Tss F1

BRF 0.8153 0.2880 0.7560 0.4257

RBC 0.8708 0.2083 0.7734 0.3363

NGB 0.8716 0.2109 0.7756 0.3396

importance score rankings. TOTUSJH, Cdec, MEANALP, EPSX,
and ABSNJZH rank in the top ten in three different importance
score rankings. While TOTPOT, USFLUX, TOTBSQ, Xmax1d, and
TOTFY rank in the top ten in two different importance score
rankings. Additionally, SAVNCPP, Chis, MEANJZD, Bhis, Chis1d,
TOTUSJZ, and EPSY only rank in the top ten in one of the
importance scores.

The feature importance rankings obtained by the three methods
onM data set are shown in Figure 5. In these sub-figures, we can see
that there is someoverlap in the featureswith high importance scores
across various models, but there are also significant differences.
Edec, MEANPOT, and TOTUSJH consistently rank in the top ten
in four different importance score rankings. TOTUSJZ ranks in
the top ten in three different importance score rankings, while
Xmax1d, Cdec, ABSNJZH, Chis1d, EPSX, MEANGBH, logEdec,
and TOTFX rank in the top ten in two different importance score
rankings. Additionally, TOTPOT, TOTBSQ, USFLUX, Bhis, AREA-
ACR, MEANALP, Xdec, SAVNCPP, and SHRGT only rank in
the top ten in one of the importance scores.After obtaining the
importance rankings score for each feature within each model,
we averaged these scores across the three models to determine
the comprehensive importance ranking. The results for the C and
M data sets are presented in Table 7 and Table 8, respectively.
Ran et al. (2022) studied the most relevant to flares with 16 SHARP
parameters by calculating correlation coefficients and variable
importance scores, and they identified eight parameters (TOTPOT,
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FIGURE 8
Feature importance rankings with three ensemble machine learning models (RF, XGB, and NGB) for AR12257.

MEANPOT, USFLUX, MEANGAM, MEANJZH, MEANGBH,
MEANALP,MEANSHR)most relevant to flares. All of these features
are physical parameters describing magnetic field characteristics. In
fact, TOTPOT and MEANPOT represent the same characteristic,
while the other six parameters are all related to the distortion
and deformation of the magnetic field. We have analyzed more
characteristics, including 40 parameters, not only parameters related
to the magnetic field, but also additional historical information of
flare occurrences and exponential time decay values. According to
Tables 7, 8, MEANPOT, Edec, and TOTUSJH have high importance
scores on the two data sets. They are three quantities that have
the most significant relationship with solar flares, which include
free energy, twist degree, and the historical information of flare
occurrences, respectively. Moreover, there is a high overlap between
the top ten features in terms of importance on the two data sets, with
seven features appearing in the top ten of both lists: MEANPOT,
Cdec, Edec, TOTUSJH, ABSNJZH, Xmax1d, and EPSX. Among
them, Cdec, Edec, and Xmax1d are all features related to historical
flare data, indicating that flare history data contributes significantly
to flare prediction. Furthermore, compared to simple counting of
historical data, exponential time decay values are more valuable
in prediction. Meanwhile, MEANPOT, TOTUSJH, ABSNJZH, and
EPSX are physical parameters that describe the overall magnetic
field situation and also have high importance scores in flare
prediction. This aligns with reality because solar flare eruptions

involve a significant process of storing and releasing free energy.The
frequency and temporal decay characteristics of flare eruptions in
an active region represent the vitality of that region. Active regions
that store a large amount of free energy and experience frequent
eruptions with low decay rates are more likely to generate flares.

Using the comprehensive ranking of feature importance
obtained in Section 4, feature selection is performed for the three
prediction models. Starting from a model trained with at least two
features, features are added in descending order of importance.
Observe the changes in the evaluation index values of the BRF,
RBC, and NGB models trained with different numbers of features
on the C data set, as shown in the following figure: In Figure 6A, as
the number of features increases, the Recall of the BRF model on
the validation set generally decreases, while the Precision generally
increases. When the number of features is greater than or equal to
15, the Recall and Precision are basically stable, and the F1 score
and Tss also tend to stabilize. In Figure 6B, when the number of
features is less than 20, four evaluation indicators of RBC fluctuate
violently with the change of feature numbers, and the performance
is very unstable. When the number of features is greater than or
equal to 20, the Recall, Precision, F1 score, and Tss all tend to
stabilize. In Figure 6C, the evaluation metrics of NGB change little
with the increase of feature numbers.TheRecall shows a slow growth
trend, while the Precision shows a slow decreasing trend. There is
only a large fluctuation when the number of features increases from
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FIGURE 9
Feature importance rankings with three ensemble machine learning models (RF, XGB, and NGB) for AR12468.

2 to 3. And the Recall tends to be stable when the number of features
is greater than or equal to 22, and at this time, the F1 score and Tss
tend to be stable. Based on the prediction performance of the above
three models under different feature quantities, the number of BRF
features is selected as 15, the number of RBC features as 20, and the
number of NGB features as 23.

The evaluation metrics of the three models on the training set
after feature selection are as follows: Comparing the evaluation
indicators of the three models in Table 5 and Table 9, after feature
selection, the prediction effects of BRF, RBC, and NGB models
are basically consistent with those before feature selection. The
difference in Tss scores is less than 0.02, while the F1 scores
of BRF and RBC are slightly lower than those before feature
selection, and the F1 score of NGB is slightly higher. After
feature selection, the biggest loss of prediction performance is
BRF. Observing the changes in various evaluation metrics of the
BRF, RBC, and NGB models trained with different numbers of
features on the M validation set, as shown in Figure 7: Based
on the prediction performance of the above three models with
varying feature quantities, we selected 12 features for BRF, 26
for RBC, and 18 for NGB. Comparing Tables 6 and 10, after
feature selection, the prediction effects of the three models,
BRF, RBC, and NGB, all showed slight improvements. Among
them, the Tss scores of RBC and NGB increased by less than
0.01, while the Tss score of BRF improved by 0.044. Feature

selection enhanced both the Recall and Precision of the BRF
model. Furthermore, we analyzed the textual feature parameters of
four active regions (AR12257,AR12468,AR12325,AR12443) using
three ensemble machine learning models (RF, XGB, and NGB).
Figures 8–11 present the feature importance rankings obtained by
these three models. By summing the scores from the four results, we
derived the final feature importance ranking, as shown in Table 11.
From these results, we observe that the temporal decay parameter
for flare history (Cdec) and physical parameters reflecting the overall
magnetic field conditions, such as TOTUSJH, TOTBSQ, SAVNCPP,
and MEANALP, consistently exhibit high feature importance across
different active regions. Conversely, features related to coordinate
directions and positions, including EPSZ, EPSY, and EPSX, show
significant variations in their importance rankings across different
ARs. This indicates that the importance of parameters related to
location may vary in different activity zones. When analyzing
and predicting solar flares, geographic location information is
also a factor that should be considered. Firstly, the probability
of flare occurrence varies with different latitudes. As the latitude
of the active region reflects the activity of the current solar
cycle, and the size of active regions varies at different locations,
according to Murakozy (2024), larger active regions may have
a higher number of interacting sunspots and a smaller distance
between the positive and negative poles of newly emerged sunspots,
leading to differences in activity among different active regions.
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FIGURE 10
Feature importance rankings with three ensemble machine learning models (RF, XGB, and NGB) for AR12325.

Secondly, the surrounding environment of an active region can
also affect its eruptive activities. For example, medium and low
latitudes are easily influenced by some coronal streams, while
the magnetic fields in medium and high latitude active regions
are relatively weak. Additionally, there may be influences from
generator effects such as meridional circulations, all of which will
be reflected in the location of the active regions. If the geographical
location factors of different active regions are ignored, some
information will be lost.

6 Conclusion

In this study, we focus on solar flare prediction and the
analysis of the importance of predictive features. It encompasses
the collection and preprocessing of flare-related data, the training
of classification models with data and algorithms, the hyper-
parameter tuning of the classification models, the derivation of
feature importance scores and rankings, the feature selection of
the prediction model based on feature importance results, and
the evaluation of the model’s predictive performance on a test
set. After collecting and processing the data, we employ ensemble
learning algorithms and imbalanced sampling techniques to train
an initial prediction model. Through this model, we obtain variable
importance scores and synthesize scores from different methods to

derive a comprehensive ranking of the importance of each variable.
By comparing the importance scores of variables from different
solar active regions, we identify their differences and commonalities,
which serve as the basis for feature selection. We utilize ensemble
learning methods to construct classification models and adjust
hyper-parameters to improve classification performance. Finally, we
compare the classification results of different methods, as well as
the results before and after feature selection, to explore avenues for
improving the prediction of solar flares. We use three ensemble
learning algorithms to perform binary classification predictions
for flares ≥C- and M-class. By employing sampling techniques
and probability distribution predictions, the predictive performance
on imbalanced flare data sets is improved. The main research
conclusions are as follows:

(1) Three ensemble learning algorithms suitable for imbalanced
classification predictions, namely BRF, RBC, and NGB, are
used to construct prediction models. For the prediction of
flares ≥C- and M-class, the best-performing model achieved
a Recall of ∼0.76, ∼0.88 and a Tss score of ∼0.65, ∼0.78 on
the test set, respectively. Comparing the performance of the
three models across various evaluation metrics, BRF is more
conservative in predicting positive samples, with a lower Recall
rate than the other two models, but correspondingly, it has a
higher Precision rate. RBC and NGB have higher Recall rates
and slightly higher Tss scores than BRF. Since NGB performs
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FIGURE 11
Feature importance rankings with three ensemble machine learning models (RF, XGB, and NGB) for AR12443.

TABLE 11 Top 10 features ranked by importance in different ARs.

Ranking AR12257 AR12468 AR12325 AR12443

1 MEANJZD Cdec Cdec TOTFX

2 MEANALP MEANALP logEdec MEANALP

3 EPSZ Xmax1d MEANJZD AREA-ACR

4 MEANGBH Edec TOTFX Cdec

5 TOTUSJH TOTUSJH MEANGAM EPSX

6 TOTFZ TOTFZ MEANGBT Bdec

7 MEANSHR EPSY TOTUSJH TOTBSQ

8 TOTBSQ TOTBSQ Edec logEdec

9 USFLUX SAVNCPP TOTUSJZ TOTPOT

10 SAVNCPP TOTPOT Chis SAVNCPP

probability distribution predictions, the probability threshold
can be adjusted according to actual needs to balance between
Recall and Precision.

(2) Feature importance scores are obtained through the three
ensemble learningmodels directly obtained through themodel
without the need for additional feature analysis tools. The
results from different models are integrated in the form
of rankings. Using this ranking for feature selection in the
prediction model, only about half of the features with strong
importance are needed to achieve similar or even better
prediction performance compared to using all 40 features.

(3) Comparing the feature importance rankings of the flare
prediction models for ≥C- and M-class, a high degree of
overlap is found. Our results demonstrate the magnetic field,
historical information of flare occurrences and exponential
time decay values have the most significant relationship with
solar flares.This alsomeans that frequency and temporal decay
characteristics of flare eruptions in an active region represent
the vitality of that region. Active regions that store a large
amount of free energy and experience frequent eruptions with
low decay rates are more likely to generate flares. By analyzing
the feature parameters of four active regions, we find that
the geographical information of the flare occurrence is an
important factor for flare prediction.

In this research, there are still some limitations. The number
of ARs selected for studying the differences in feature importance
across different ARs is relatively small, which cannot reflect the
overall pattern of feature importance for global ARs. In future work,
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we will select data from more active regions for analysis based on
their distribution characteristics. In addition, the hyper-parameters
of themodel can be further adjusted and optimized to achievemuch
better prediction results.
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