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Simulation study of the impacts
of E-region density on the
growth of equatorial plasma
bubbles

Tatsuhiro Yokoyama*

Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan

Equatorial plasma bubbles (EPBs) in the ionospheric F region are notorious for
causing severe scintillation in radio signals, posing significant challenges for
communication and navigation systems. Understanding and forecasting EPB
occurrence is crucial from a space weather perspective, given their impact on
satellite and terrestrial communication. In this study, we present the impacts
of E-region conductivity on the generation of EPBs by using the 3D high-
resolution bubble (HIRB) model. By changing the production rate of NO+ ions in
the E region, the flux-tube-integrated linear growth rate of the Rayleigh–Taylor
instability can be modified. Multiple simulation runs show that even a moderate
variation of the growth rate turns into a significant difference in EPB growth into
the top of the ionosphere. This is a major factor that has made forecasting EPB
generation quite difficult for several decades.
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1 Introduction

Equatorial plasma bubbles (EPBs) are large-scale plasma density depletions in the
equatorial ionospheric F region, typically forming post-sunset due to the development of
the Rayleigh–Taylor instability (e.g., Kelley, 2009; Woodman, 2009). This phenomenon was
named EPB because the lower density region grows nonlinearly and penetrates through
into the top of the F region. These bubbles can severely disrupt radio wave propagation by
inducing scintillation in amplitude and phase, which affects communication and navigation
systems that rely on ionospheric propagation. The concept of EPB was proposed by
Woodman and LaHoz (1976) based on radar observations and supported by numerical
simulations on a magnetic equatorial plane (Scannapieco and Ossakow, 1976). There
have been a number of simulation studies of EPBs since the first outcome reported by
Scannapieco and Ossakow (1976). The historical review of the numerical simulation studies
of EPBs was presented by Yokoyama (2017).

Despite their critical importance, predicting the day-to-day variability of EPB
occurrence remains a significant challenge due to the complex interplay of contributing
factors. Several studies have addressed the day-to-day variability of the occurrence
of EPBs (e.g., Abdu et al., 2009; Carter et al., 2014; Aa et al., 2023), but it was
quite difficult to determine a key factor that controls their occurrence. From the
modeling approach, the EPB occurrence characteristics were investigated by using a global
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FIGURE 1
Initial density profile.

atmosphere–ionosphere coupled model (Wu, 2015; Shinagawa et al.,
2018; Pedatella et al., 2024). The linear growth rate of the
Rayleigh–Taylor instability estimated from the simulated
parameters shows reasonable seasonal and longitudinal patterns
and strong day-to-day variability. Shinagawa et al. (2018) attributed
the day-to-day variability to the forcing from the lower atmosphere.
The ionospheric altitude variation driven from above (solar and
geomagnetic activities) and below (atmospheric activities) makes
the occurrence conditions of EPBs more complicated.

This paper aims to address this challenge by utilizing the
3D high-resolution bubble (HIRB) model, which provides a
detailed framework for simulating EPB evolution under a range of
ionospheric conditions and thereby improves our understanding
of their behavior and predictability (Yokoyama et al., 2014;
Yokoyama et al., 2015; Yokoyama et al., 2019). The spectral
characteristics of the irregularities inside EPBs have been studied
using the HIRB model (Rino et al., 2018b; a; Rino et al., 2023),
and a comparison with radar observations has been conducted
(Tulasi Ram et al., 2017; Tulasi Ram et al., 2020). In this study,
we concentrate on the impact of the ionospheric E-region on
the generation of EPBs. It has been known that the E-region
conductivity contributes to the flux-tube-integrated linear growth
rate of the Rayleigh–Taylor instability because the equatorial F
region is coupled with the off-equatorial E region by the magnetic
flux tube. To the best of our knowledge, however, such contribution

of the E-region conductivity has not been carefully studied.
Understanding the importance of E-region conductivity will help in
understanding the day-to-day variability of EPB occurrence and the
prediction of EPB occurrences in the future.

2 Model description

The high-resolution bubble (HIRB) model developed by
Yokoyama et al. (2014) is used in this study. It incorporates
an advanced 3D numerical simulation framework to accurately
replicate the growth and dynamics of EPBs in the equatorial
ionosphere.The governing equations in themodel are the continuity
(Equation 1) and momentum (Equations 2, 3) equations for O+ (F
region) and NO+ (E region), and electrons, and the divergence-free
current condition (Equation 4), which are written as:

∂Nj

∂t
+∇ ⋅ (NjVj) = Sj. (1)

e(E+Vj ×B) +Mjg−
∇(NjkBT)

Nj
+Mjνjn (U−Vj) = 0 (2)

−e(E+Ve ×B) +Meg−
∇(NekBT)

Ne
+Meνen (U−Ve) = 0 (3)

∇ ⋅ J = ∇ ⋅ [e(∑
j
NjVj −NeVe)] = 0. (4)

where j stands for each ion species, Nj,e is the ion/electron density
with quasi-neutrality condition (∑

j
Nj = Ne), Vj,e is the ion/electron

velocity, Sj represents the chemical terms, e is an electron charge, E =
E0 −∇ϕ is the electric field, E0 is the background electric field, ϕ is
the electrostatic polarization potential,B is the dipolemagnetic field,
Mj,e is the ion/electron mass, g is the gravitational acceleration, kB is
the Boltzmann constant, T = Tj = Te is the ion/electron temperature
(isothermal condition), νjn,en is the ion/electron collision frequency
with neutrals,U is the neutral wind velocity, and J is the total current
density. Background parameters are obtained from NRLMSISE-00
and IRI-2007: F10.7 is 150, local time is 2000, the day of the year is
83, and the longitude is 135°.

The simulation setting in this study is basically the same as
those conducted in Yokoyama et al. (2014), except for the plasma
density (NO+) in the E region. Six different initial conditions were
set by increasing the production rate of NO+ ions in Equation 1
by factors of 2, 3, 10, 20, and 30. This modification is applied to
all latitudes so that the magnetic field lines with any apex altitudes
over the dip equator penetrate the E region at the corresponding
latitudes. Increasing NO+ has negligible impacts on the collision
frequency and flux tube electron content gradient. The uniform
eastward neutral wind of 120 m s−1 is applied in the F region, and
the background electric field was set to be zero for simplicity.

3 Results

Figure 1 shows plasma density profiles at the beginning of the
simulations. Six solid lines indicate NO+ densities for six different
simulation conditions, and a dotted line indicates the common O+

Frontiers in Astronomy and Space Sciences 02 frontiersin.org

https://doi.org/10.3389/fspas.2024.1502618
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org


Yokoyama 10.3389/fspas.2024.1502618

FIGURE 2
Plasma density distribution on a magnetic equatorial plane at T = 3600 s for six cases. Larger NO+ density weakens the growth of EPBs.

FIGURE 3
Same as Figure 2 at 7,200 s.

density for all cases. The difference of the NO+ density in the E
region between the highest and the lowest cases is less than one
order. Then, the initial sinusoidal perturbation resembling a large-
scale wave structure (e.g., Tsunoda and White, 1981) is applied by
raising the density profile perpendicular to B in the same way as
Yokoyama et al. (2014). Figure 2 shows plasma density distribution
on a magnetic equatorial plane at T = 3600 s after the beginning of

the simulation for the six cases described above. Results at T = 7200
s are shown in Figure 3. It is clearly seen that larger NO+ density
in the E region weakens the growth of EPBs. The initial seedings
in the top three cases eventually turned into structured EPBs in the
top of the F region, while the seeding stayed at the bottom of the F
region in the bottom three cases. Although the difference of theNO+

density in the E region between the highest and the lowest cases is
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FIGURE 4
Profiles of local and flux-tube-integrated growth rates of
Rayleigh–Taylor instability.

less than one order, it has a strong impact on the growth of EPBs.Our
simulations reveal critical insights into the dynamics of EPB growth
and its sensitivity to E-region plasma density or conductivity.

4 Discussion

The local linear growth rate of Rayleigh–Taylor instability (γL)
was given as Equation 5 (e.g., Kelley, 2009)

γL = (
Ez
B
−

g
νin
) 1
N
∂N
∂z
. (5)

This formula does not have an E region contribution to the
growth rate. In the equatorial and low-latitude ionosphere, the
equatorial F region is coupled with the off-equatorial E region along
the magnetic flux tubes. The flux-tube-integrated linear growth rate
of Rayleigh–Taylor instability (γFT) was derived by Sultan (1996)
and given as Equation 6

γFT =
ΣF
P

(ΣE
P +Σ

F
P)
(
Ez
B
L3 −

ge
νFeff
)KF, (6)

where ΣF
P and ΣE

P are the flux-tube-integrated Pedersen
conductivities in the F region and the E region, respectively, L is the
McIlwain L-parameter, ge is the downward gravity acceleration, νFeff

is the flux-tube-integrated effective ion-neutral collision frequency
weighted by the electron density, and KF is the vertical gradient
of flux-tube-integrated electron content in the F region. The
recombination rate that would appear in this formula is ignored
for simplicity.

Figure 4 shows the local and flux-tube-integrated linear growth
rate of Rayleigh–Taylor instability at the initial stage for the six
simulation cases. The maximum value of the flux-tube-integrated
growth rate for the six cases was 1.093× 10−3,0.980× 10−3,0.905×
10−3,0.668× 10−3,0.539× 10−3,0.471× 10−3 indescendingorder.The
difference in the growth rate comes only from the factor ΣF

P/(Σ
E
P +Σ

F
P)

and stays within approximately a factor of 2 among them. Needless to
say, the local growth rates are exactly the same in all cases.

Even minor changes in the linear growth rate could lead to
significant differences in EPB growth after a few hours. This finding
is particularly important in real applications, where variability in
E-region conductivity due to factors such as geomagnetic activity
or lower atmosphere phenomena can lead to significant changes
in EPB behavior. Furthermore, the impact of E-region conductivity
on the temporal characteristics of EPBs may suggest that real-time
measurements could be valuable for improving EPB forecasting. By
integratingE-regionconductivitydataintopredictivemodels, itmaybe
possible to enhance the accuracyof forecasts andprovidemore reliable
warningsforcommunicationandnavigationsystemsaffectedbyEPBs.

Our simulation results, unfortunately, emphasize the difficulty of
forecasting EPBs based on the growth rate estimation, even though
we have access to multiple real-time observations. First, we need to
obtain the flux-tube-integrated growth rate, whichmeans ionospheric
parameters along the magnetic flux tube, such as E-region plasma
density at the off-equatorial regions. This information may only be
available at limited longitude sectorswhere sufficient instrumentshave
been installed. Second, even if sufficient observations are available
to estimate the flux-tube-integrated growth rate, the threshold of the
growthratebywhich theevolutionofEPBsshouldbe judged isdifficult
to define. As shown in this study, a moderate variation of the growth
rate becomes a significant difference in EPB growth into the top of
the ionosphere. This is a major factor that has made forecasting EPB
generation quite difficult for several decades.

5 Conclusion

This study advances our understanding of equatorial plasma
bubble (EPB) dynamics by employing the 3D high-resolution
bubble (HIRB) model to simulate and analyze EPB growth under
various ionospheric E-region conditions. A key finding is the
significant impact of E-region conductivity on EPB development,
even when linear growth rates of the Rayleigh–Taylor instability
(RTI) show moderate variation. Increased E-region conductivity
leads to weaker EPB growth. This underscores the importance
of considering E-region conductivity as a crucial factor in EPB
forecasting models. Integrating real-time E-region conductivity
measurements into forecasting models could further enhance their
accuracy and reliability, offering better predictions and mitigation
strategies for communication and navigation systems affected by
EPBs. However, our results highlight that traditional linear growth
rate analyses alone may not fully capture the complexities of EPB
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behavior and suggest the difficulty of predicting EPB generation
in advance. Overall, this research contributes valuable insights into
the intricate relationship between ionospheric parameters and EPB
formation, emphasizing the need for a holistic approach to EPB
modeling. Future work should focus on refining these models and
incorporating additional factors to improve forecasting capabilities
and better understand the nuances of EPB behavior.
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