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Editorial on the Research Topic

Kinetic plasma dynamics in the light of novel in situ heliospheric
observations: synergistic view with theories and simulations
s

The solar wind, a plasma stream emanating from the Sun, consists of various ion
species, primarily protons (H+), alpha particles (He2+), and minor heavier ions such as
O6+ and Fe12+. Despite the presence of dynamic ion populations, which show variable
abundances that fluctuate within the background solar wind as well as in structures
(e.g., coronal mass ejections, stream interaction regions, etc.), the physics of heating and
acceleration of each ion population remains elusive (Robbins et al., 1970; Marsch et al.,
1982; von Steiger et al., 1995; Marsch, 2010; Verscharen et al., 2019; Ďurovcová et al., 2019;
Mostafavi et al., 2022; Mostafavi et al., 2024). Moreover, energetic non-thermal pickup ions
(PUIs), which predominantly originate from charge exchanges between interstellar neutral
atoms and solar wind ions within the heliosphere (Semar, 1970), play a significant role in the
transport of energy, momentum, andmass throughout the outer heliosphere (Burlaga et al.,
1996; Zank, 2015; McComas et al., 2017; Zank et al., 1996), yet remain poorly understood.

Each plasma species often exhibits complex distribution functions that deviate from
a simple Maxwellian profile, displaying non-Maxwellian features that are critical to
understanding their kinetic behavior. These non-Maxwellian distributions are sources
of free energy that can drive various kinetic instabilities and wave-particle interactions,
processes essential to the heating and acceleration of solar wind ions. Understanding how
the solar wind and energetic PUIs react, particularly in relation to turbulence, collisional
processing, and large-scale heliospheric dynamics, is key to advancing our knowledge of
solar wind behavior and its interactions across different regions of the heliosphere. Space
missions such as Parker Solar Probe and Solar Orbiter (near the Sun), IBEX, WIND, and
STEREO (at 1 AU), and New Horizons (currently in the outer heliosphere) have opened
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new windows into these processes, offering unprecedented in situ
and remote measurements from the Sun’s vicinity to the far reaches
of the heliosphere.

The primary aim of this Research Topic was to expand our
understanding of the science questions related to the heating and
acceleration of solar wind ions and energetic PUIs, particularly
through non-Maxwellian velocity distributions, wave-particle
interactions, and turbulence in both the inner and outer heliosphere.
This Research Topic hosts four significant contributions that
enhance our understanding of these effects in the solar wind.

Previous observations revealed that solar wind ions exhibit
distinct kinetic non-thermal features such as the differential
flows that suggest preferential acceleration of alpha particles
compared to protons (Ryan and Axford, 1975; Marsch et al.,
1982; Ďurovcová et al., 2019; Mostafavi et al., 2022). Additionally,
Coulomb collisions during a transit time of a particle can be
crucial in reducing the ion non-thermal features (Kasper et al.,
2008;Mostafavi et al., 2022; Ran et al., 2024). In this Research Topic,
Johnson et al. introduce an application of collisional analysis to the
alpha-proton differential flow. By comparing in situ observations
from the Parker Solar Probe and the Wind spacecraft, they find
strong evidence that Coulomb collisions play significant roles
in shaping the differential flow through the inner heliosphere.
These results underscore the importance of considering collisional
processes in models of solar wind acceleration and heating.

While the role of Coulomb collisions in shaping ion dynamics
is crucial, understanding the mechanisms of energy dissipation
and turbulence in collisionless plasmas is equally important
(Bourouaine et al., 2013). Here, Guerrero Guio et al. advance this
understanding through a detailed investigation into the probability
distribution functions of magnetic field increments, employing
both single-spacecraft and multi-spacecraft approaches. Their study
reveals a transition from Gaussian to non-Gaussian distributions
at smaller scales, indicating the presence of intermittency within
the turbulent cascade. Moreover, they demonstrate that the multi-
point approach tends to underestimate intermittency due to its
focus on larger scales, highlighting the needs for high-resolution
measurements in capturing the true nature of heliospheric
turbulence. This finding is particularly relevant to the upcoming
Helioswarm mission (Klein et al., 2023).

In the outer heliosphere, beyond the ionization cavity which
is about 4 au from the Sun, PUIs become an important source of
turbulence (Zank et al., 1996; Isenberg et al., 2023; Adhikari et al.,
2023). In this Research Topic, Wang et al. explore the temporal
and latitudinal dependence of turbulence driven by PUIs in the
outer heliosphere. Utilizing a latitude-dependent solar wind speed
model and an advanced ionization rate model, this study provides a
comprehensive analysis of the temporal and spatial variation in the
strength of low-frequency turbulence driven by PUIs from 1998 to
2020.They highlight the significant variability in turbulence driving
rates with solar activity and latitude, emphasizing the need for
turbulence transport models to incorporate these dynamic factors
to accurately predict solar wind heating and cosmic ray modulation.

Finally, Odstrcil advances the field of predictive modeling
for space weather events, with a particular focus on multi-CME
interactions within the heliosphere. This paper enhances our
understanding of how multiple coronal mass ejections interact
as they propagate through the heliosphere, a complex process

that can lead to significant space weather impacts on Earth
and throughout the solar system. While this paper primarily
addresses space weather forecasting, its relevance to kinetic plasma
dynamics cannot be understated. The improved modeling tools
and interpretations presented are crucial for understanding how
large-scale heliospheric disturbances affect the solar wind’s kinetic
properties, thereby linking space weather events to the broader
theme of solar wind dynamics.

Together, these papers illustrate the significant advancements in
the study of plasma dynamics within the heliosphere, from inner to
outer regions.They reflect a growing synergy between observational
data, theoretical models, and numerical simulations, offering amore
integrated understanding of the solar wind ions, turbulence, non-
thermal energetic PUIs, and space weather phenomena. As we
continue to explore the heliosphere with the current and future
missions and advanced models, the insights from these studies will
be instrumental in guiding future research and improving predictive
models of space physics.
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