The final, formatted version of the article will be published soon.
ORIGINAL RESEARCH article
Front. Astron. Space Sci.
Sec. Astrobiology
Volume 11 - 2024 |
doi: 10.3389/fspas.2024.1490090
Application of chemotactic behavior for life detection
Provisionally accepted- 1 Technical University of Berlin, Berlin, Germany
- 2 Humboldt University of Berlin, Berlin, Baden-Wurttemberg, Germany
One excellent biosignature for the present detection of microbial life on Earth is motility, leading to its growing interest within the astrobiological community as an observable attribute that, if detected during future in situ space missions, could point towards the existence of life on Mars or other celestial bodies. Microbial motility can be induced by various stimulants, including certain chemicals called chemoeffectors, leading to subsequent chemotaxis. Following this concept, this work examines the chemotactic affinities of the bacteria Bacillus subtilis and Pseudoalteromonas haloplanktis as well as the archaeon Haloferax volcanii for L-serine, which has been previously demonstrated to have a high chemoeffective potency across a wide range of species from all domains of life on Earth. Methodologically, we introduce here a novel approach for utilizing µ-slides that diverges from the more traditional long-term chemotactic assay in favor of a shorter time frame assay that only requires a simple blob detection algorithm for microbial detection. Given the technical, computational, and time constraints necessary for an in-situ life detection mission, this simplified approach could be a cost and resource-effective way to probe for potential chemotactic-responsive life. Overall, the results indicated that each of the three organisms showed chemotactic behavior toward L-serine, which, to our knowledge, is the first time that an L-serine-induced chemotactic response has been detected for H. volcanii.
Keywords: Chemotaxis, microbial motility, life detection, prokaryotes, Microscopy, biosignature
Received: 02 Sep 2024; Accepted: 09 Dec 2024.
Copyright: © 2024 Riekeles, Bruder and Schulze-Makuch. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Max Riekeles, Technical University of Berlin, Berlin, Germany
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.